/* * Copyright (c) 2018-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_NECONVOLUTIONLAYER_H__ #define __ARM_COMPUTE_NECONVOLUTIONLAYER_H__ #include "arm_compute/runtime/IFunction.h" #include "arm_compute/core/Types.h" #include "arm_compute/runtime/MemoryGroup.h" #include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEFFTConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEGEMMConvolutionLayer.h" #include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h" #include namespace arm_compute { class ITensor; /** Basic function to simulate a convolution layer. This function calls one of the following NEON functions: * -# @ref NEGEMMConvolutionLayer (executed only in case GEMM is required for the operation) * -# @ref NEWinogradConvolutionLayer (executed only in case Winograd is required for the operation) * -# @ref NEDirectConvolutionLayer (executed only in case Direct Convolution is required for the operation) * -# @ref NEFFTConvolutionLayer (executed only in case FFT is required for the operation) * * * The function selects one of the algorithms mentioned above based on: * - The size of the kernel * - Number of input/output feature maps * - Amount of memory needed * * Generally GEMM-based convolution is executed when neither Winograd nor FFT nor Direct convolution can be performed. * * FP32 Algorithm| Filter Size | Input/Output feature maps | * --------------|----------------------------------------------------|-------------------------------------------| * Winograd | 3x3 1x3 3x1 5x1 1x5 5x5(fast maths) 7x1 1x7 | Input channels is greater than 3 | * FFT | Squared kernels and greater than 9x9 | Input feature maps > Output feature maps | * DirectConv | 9x9 | | * GEMM | Any size | | * * Winograd 5x5 requires fast maths enabled. * * FP16 Algorithm| Filter Size | * --------------|------------------| * Winograd | Not supported | * FFT | Not supported | * DirectConv | 9x9 | * GEMM | Any size | * * */ class NEConvolutionLayer : public IFunction { public: /** Constructor */ NEConvolutionLayer(std::shared_ptr memory_manager = nullptr); /** Set the input and output tensors. * * @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM], * while every optional dimension from 4 and above represent a batch of inputs. * Data types supported: QASYMM8/F16/F32. * @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported: Same as @p input. * @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. * Data type supported: Should match @p input data type, except for input of QASYMM8 type where biases should be of S32 type. * @param[out] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs. * Data types supported: Same as @p input. * @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo. * @param[in] weights_info Specifies if the weights tensor has been reshaped with NEWeightsReshapeKernel. If this is not part of the fully connected layer the weights * tensor has also been transposed with NEGEMMTranspose1xWKernel. Data type supported: Same as @p input. * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU supported. * @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation * available which may introduce a drop of accuracy as well. Default is false * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is not supported */ void configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false, unsigned int num_groups = 1); /** Static function to check if given info will lead to a valid configuration of @ref NEConvolutionLayer * * @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM], * while every optional dimension from 4 and above represent a batch of inputs. * Data types supported: QASYMM8/F16/F32. * @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input. * @param[in] biases Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. * Data type supported: Should match @p input data type, except for input of QASYMM8 type where biases should be of S32 type. * @param[in] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs. * Data types supported: Same as @p input. * @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo. * @param[in] weights_info Specifies if the weights tensor has been reshaped with NEWeightsReshapeKernel. If this is not part of the fully connected layer the weights * tensor has also been transposed with NEGEMMTranspose1xWKernel. Data type supported: Same as @p input. * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). * @param[in] act_info (Optional) Activation layer information in case of a fused activation. * @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation * available which may introduce a drop of accuracy as well. Default is false * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is not supported * * @return a status */ static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false, unsigned int num_groups = 1); /** Static function to check if given info will return the convolution called by @ref NEConvolutionLayer * * @param[in] input Source tensor. 3 lower dimensions represent a single input [width, height, IFM], * while every optional dimension from 4 and above represent a batch of inputs. * Data types supported: QASYMM8/F16/F32. * @param[in] weights Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input. * @param[in] output Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs. * Data types supported: Same as @p input. * @param[in] conv_info Contains padding and stride information described in @ref PadStrideInfo. * @param[in] weights_info Specifies if the weights tensor has been reshaped with NEWeightsReshapeKernel. If this is not part of the fully connected layer the weights * tensor has also been transposed with NEGEMMTranspose1xWKernel. Data type supported: Same as @p input. * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1). * @param[in] act_info (Optional) Activation layer information in case of a fused activation. * @param[in] enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation * available which may introduce a drop of accuracy as well. Default is false * * @return the Convolution Method Hint */ static ConvolutionMethod get_convolution_method(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false); // Inherited methods overridden: void run() override; void prepare() override; private: std::shared_ptr _memory_manager; std::unique_ptr _function; /**< Function to run */ }; } #endif /* __ARM_COMPUTE_NECONVOLUTIONLAYER_H__ */