/* * Copyright (c) 2017-2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__ #define __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__ #include "arm_compute/core/Helpers.h" #include "arm_compute/core/ITensorInfo.h" #include "arm_compute/core/Utils.h" #include namespace arm_compute { namespace misc { namespace shape_calculator { inline TensorShape compute_permutation_output_shape(const ITensorInfo &input, const PermutationVector &perm) { TensorShape output_shape = input.tensor_shape(); permute(output_shape, perm); return output_shape; } inline TensorShape compute_weights_reshaped_shape(const ITensorInfo &weights, bool has_bias = false) { // Calculate output shape TensorShape weights_reshaped{ weights.tensor_shape() }; weights_reshaped.collapse(3); const size_t tmp_dim = weights_reshaped[0]; weights_reshaped.set(0, weights_reshaped[1]); weights_reshaped.set(1, tmp_dim + (has_bias ? 1 : 0)); return weights_reshaped; } inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_interleave4x4_height = 1) { // The interleaved output matrix will have the following shape: [ a_height * W, ceil(a_width / W) ] where W = 4 * mult_interleave4x4_height ARM_COMPUTE_ERROR_ON(mult_interleave4x4_height < 1); const int interleave_width = 4 * mult_interleave4x4_height; TensorShape shape_interleaved_a{ a.tensor_shape() }; shape_interleaved_a.set(0, a.dimension(0) * interleave_width); shape_interleaved_a.set(1, std::ceil(a.dimension(1) / static_cast(interleave_width))); return shape_interleaved_a; } inline TensorShape compute_transpose1xW_shape(const ITensorInfo &b) { // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ] TensorShape shape_transposed1xW_b{ b.tensor_shape() }; shape_transposed1xW_b.set(0, b.dimension(1) * 16); shape_transposed1xW_b.set(1, std::ceil(b.dimension(0) / 16.f)); return shape_transposed1xW_b; } inline TensorShape compute_transpose1xW_with_element_size_shape(const ITensorInfo &b, int mult_transpose1xW_width = 1) { // Note: mult_transpose1xW_width expresses the number of chunks with size 1x(W) we want to store on the same row // The transpose1xW output matrix will have the following shape: // [ b_height * W, ceil(b_width / W) ] where W = (16 / element size of the tensor) * mult_transpose1xW_width ARM_COMPUTE_ERROR_ON(mult_transpose1xW_width < 1); TensorShape shape_transposed1xW_b{ b.tensor_shape() }; const size_t transpose_width = (16 / b.element_size()) * mult_transpose1xW_width; shape_transposed1xW_b.set(0, b.dimension(1) * transpose_width); shape_transposed1xW_b.set(1, static_cast(std::ceil(b.dimension(0) / static_cast(transpose_width)))); return shape_transposed1xW_b; } inline TensorShape compute_reductionA_shape(const ITensorInfo &b) { TensorShape shape_vector_sum_col{ b.tensor_shape() }; if(shape_vector_sum_col.num_dimensions() > 1) { shape_vector_sum_col.remove_dimension(1); } return shape_vector_sum_col; } inline TensorShape compute_reductionB_shape(const ITensorInfo &a) { TensorShape shape_vector_sum_row{ a.tensor_shape() }; shape_vector_sum_row.set(Window::DimX, a.dimension(1)); if(a.num_dimensions() > 1) { shape_vector_sum_row.remove_dimension(1); } return shape_vector_sum_row; } inline TensorShape compute_col2im_shape(const ITensorInfo &input, std::pair convolved_dims) { TensorShape col2im_shape{ input.tensor_shape() }; col2im_shape.set(0, convolved_dims.first); col2im_shape.set(1, convolved_dims.second); col2im_shape.set(2, input.tensor_shape()[0]); return col2im_shape; } inline TensorShape compute_transposed_shape(const ITensorInfo &input) { TensorShape shape_transposed{ input.tensor_shape() }; shape_transposed.set(0, input.dimension(1)); shape_transposed.set(1, input.dimension(0)); return shape_transposed; } inline TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info, unsigned int depth_multiplier) { const TensorShape input_shape{ input.tensor_shape() }; const TensorShape weights_shape{ weights.tensor_shape() }; const DataLayout data_layout = input.data_layout(); const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); unsigned int output_width = 0; unsigned int output_height = 0; std::tie(output_width, output_height) = scaled_dimensions(input_shape[width_idx], input_shape[height_idx], weights_shape[width_idx], weights_shape[height_idx], conv_info); TensorShape output_shape{ input_shape }; output_shape.set(width_idx, output_width); output_shape.set(height_idx, output_height); output_shape.set(channel_idx, input_shape[channel_idx] * depth_multiplier); return output_shape; } inline TensorShape compute_deconvolution_shape(const ITensorInfo &input, unsigned int sx, unsigned int sy, unsigned int inner_border_right, unsigned int inner_border_top, const PadStrideInfo &info) { TensorShape scale_out_shape(input.tensor_shape()); const unsigned int out_x = input.dimension(0) + (input.dimension(0) - 1) * (sx - 1) + inner_border_right + 2 * info.pad().first; const unsigned int out_y = input.dimension(1) + (input.dimension(1) - 1) * (sy - 1) + inner_border_top + 2 * info.pad().second; scale_out_shape.set(0, out_x); scale_out_shape.set(1, out_y); return scale_out_shape; } inline TensorShape compute_im2col_conv_shape(const ITensorInfo *input, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation) { // The output shape will be the 2D shape used as input for GEMM [ out_channels * kernel_area, num_elems_per_out_channel ] TensorShape output_shape{ input->tensor_shape() }; const DataLayout data_layout = input->data_layout(); const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); std::pair out_dims = scaled_dimensions(output_shape[width_idx], output_shape[height_idx], kernel_dims.width, kernel_dims.height, conv_info, dilation); output_shape.set(0, (output_shape[channel_idx] * kernel_dims.area() + (has_bias ? 1 : 0))); output_shape.set(1, (out_dims.first * out_dims.second)); output_shape.set(2, 1); return output_shape; } inline TensorShape compute_im2col_fc_shape(const ITensorInfo *input, const int num_input_dimensions = 3) { TensorShape output_shape{ input->tensor_shape() }; output_shape.collapse(num_input_dimensions); return output_shape; } inline TensorShape compute_im2col_flatten_shape(const ITensorInfo *input) { // The output shape will be the flatten version of the input (i.e. [ width * height * channels, 1, 1, ... ] ). Used for FlattenLayer. ARM_COMPUTE_ERROR_ON(input->num_dimensions() < 3); TensorShape output_shape{ input->tensor_shape() }; const size_t flatten_shape = input->dimension(0) * input->dimension(1) * input->dimension(2); output_shape.set(0, flatten_shape); output_shape.remove_dimension(1); output_shape.remove_dimension(1); return output_shape; } inline TensorShape compute_interleave_custom_shape(const TensorShape &input, const int x_interleave, const int y_interleave) { TensorShape output_shape{ input }; output_shape.set(0, output_shape.x() * x_interleave); output_shape.set(1, std::ceil(output_shape.y() / static_cast(y_interleave))); return output_shape; } inline TensorShape compute_fully_connected_reshaped_weights_shape(const ITensorInfo *input, bool transpose_weights, bool is_batched_fc_layer, const int interleave) { TensorShape output_shape{ input->tensor_shape() }; // Transpose weights if the user hasn't done it if(transpose_weights) { output_shape = compute_transposed_shape(*input); } // If we run multiple batches we need 1xW transpose, too. if(is_batched_fc_layer) { output_shape = compute_transposed_shape(input->clone()->set_tensor_shape(output_shape)); output_shape = compute_interleave_custom_shape(output_shape, interleave, interleave); } return output_shape; } inline TensorShape compute_winograd_filter_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info) { TensorShape tensor_shape{ input.tensor_shape() }; const Size2D kernel_size = winograd_info.kernel_size; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1); tensor_shape.remove_dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH)); tensor_shape.set(Window::DimX, input.dimension(3)); tensor_shape.set(Window::DimY, input.dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL))); tensor_shape.set(Window::DimZ, input_tile_size.area()); return tensor_shape; } inline TensorShape compute_winograd_input_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info) { const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D kernel_size = winograd_info.kernel_size; const Size2D output_tile_size = winograd_info.output_tile_size; const Size2D input_tile_size = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1); // Compute height const unsigned int num_tiles_x = std::ceil((input.tensor_shape().x() - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast(output_tile_size.width)); const unsigned int num_tiles_y = std::ceil((input.tensor_shape().y() - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast(output_tile_size.height)); const unsigned int width = input.tensor_shape()[get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL)]; const unsigned int height = num_tiles_x * num_tiles_y; const unsigned int depth = input_tile_size.area(); TensorShape output_shape{ input.tensor_shape() }; output_shape.set(0, width); output_shape.set(1, height); output_shape.set(2, depth); return output_shape; } inline TensorShape compute_winograd_output_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info) { const PadStrideInfo conv_info = winograd_info.convolution_info; const Size2D kernel_size = winograd_info.kernel_size; const Size2D input_dimensions = winograd_info.input_dimensions; const DataLayout data_layout = winograd_info.output_data_layout; // Compute output shape unsigned int output_width = 0; unsigned int output_height = 0; std::tie(output_width, output_height) = scaled_dimensions(input_dimensions.width, input_dimensions.height, kernel_size.width, kernel_size.height, conv_info); TensorShape tensor_shape{ input.tensor_shape() }; // Output dimension const unsigned int out_w = output_width; const unsigned int out_h = output_height; const unsigned int out_c = input.dimension(0); tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH), out_w); tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT), out_h); tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL), out_c); return tensor_shape; } inline TensorShape compute_deep_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info) { const TensorShape input_shape{ input.tensor_shape() }; const TensorShape weights_shape{ weights.tensor_shape() }; const size_t idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH); const size_t idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT); const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL); const unsigned int input_width = input_shape[idx_width]; const unsigned int input_height = input_shape[idx_height]; const unsigned int weights_width = weights_shape[idx_width]; const unsigned int weights_height = weights_shape[idx_height]; const unsigned int weights_channel = weights_shape[idx_channel]; unsigned int output_width = 0; unsigned int output_height = 0; std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, weights_width, weights_height, conv_info); TensorShape output_shape{ input_shape }; output_shape.set(idx_width, output_width); output_shape.set(idx_height, output_height); output_shape.set(idx_channel, weights_channel); return output_shape; } inline TensorShape compute_min_max_shape(const ITensorInfo *input) { TensorShape output_shape{ input->tensor_shape() }; output_shape.set(Window::DimX, 2); output_shape.remove_dimension(1); output_shape.remove_dimension(1); return output_shape; } inline TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info) { unsigned int pooled_w = 0; unsigned int pooled_h = 0; TensorShape output_shape{ input.tensor_shape() }; const bool is_global_pooling = pool_info.is_global_pooling(); const unsigned int idx_width = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH); const unsigned int idx_height = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT); const unsigned int pool_size_x = is_global_pooling ? output_shape[idx_width] : pool_info.pool_size().width; const unsigned int pool_size_y = is_global_pooling ? output_shape[idx_height] : pool_info.pool_size().height; std::tie(pooled_w, pooled_h) = scaled_dimensions(output_shape[idx_width], output_shape[idx_height], pool_size_x, pool_size_y, pool_info.pad_stride_info()); output_shape.set(idx_width, pooled_w); output_shape.set(idx_height, pooled_h); return output_shape; } inline TensorShape compute_rnn_shape(const ITensorInfo *input, const unsigned int batch_size) { TensorShape output_shape{ input->tensor_shape() }; output_shape.set(1, batch_size); return output_shape; } } // namespace shape_calculator } // namespace misc } // namespace arm_compute #endif /* __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__ */