/* * Copyright (c) 2016, 2017 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_UTILS_H__ #define __ARM_COMPUTE_UTILS_H__ #include "arm_compute/core/Error.h" #include "arm_compute/core/Types.h" #include #include #include #include #include #include #include #include #include namespace arm_compute { /** Computes the smallest number larger or equal to value that is a multiple of divisor. */ template inline auto ceil_to_multiple(S value, T divisor) -> decltype(((value + divisor - 1) / divisor) * divisor) { ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0); return ((value + divisor - 1) / divisor) * divisor; } /** Computes the largest number smaller or equal to value that is a multiple of divisor. */ template inline auto floor_to_multiple(S value, T divisor) -> decltype((value / divisor) * divisor) { ARM_COMPUTE_ERROR_ON(value < 0 || divisor <= 0); return (value / divisor) * divisor; } /** Calculate the rounded up quotient of val / m. */ template constexpr auto DIV_CEIL(S val, T m) -> decltype((val + m - 1) / m) { return (val + m - 1) / m; } /** Returns the arm_compute library build information * * Contains the version number and the build options used to build the library * * @return The arm_compute library build information */ std::string build_information(); /** Load an entire file in memory * * @param[in] filename Name of the file to read. * @param[in] binary Is it a binary file ? * * @return The content of the file. */ std::string read_file(const std::string &filename, bool binary); /** The size in bytes of the data type * * @param[in] data_type Input data type * * @return The size in bytes of the data type */ inline size_t data_size_from_type(DataType data_type) { switch(data_type) { case DataType::U8: case DataType::S8: case DataType::QS8: return 1; case DataType::U16: case DataType::S16: case DataType::F16: case DataType::QS16: return 2; case DataType::F32: case DataType::U32: case DataType::S32: case DataType::QS32: return 4; case DataType::F64: case DataType::U64: case DataType::S64: return 8; case DataType::SIZET: return sizeof(size_t); default: ARM_COMPUTE_ERROR("Invalid data type"); return 0; } } /** The size in bytes of the pixel format * * @param[in] format Input format * * @return The size in bytes of the pixel format */ inline size_t pixel_size_from_format(Format format) { switch(format) { case Format::U8: return 1; case Format::U16: case Format::S16: case Format::F16: case Format::UV88: case Format::YUYV422: case Format::UYVY422: return 2; case Format::RGB888: return 3; case Format::RGBA8888: return 4; case Format::U32: case Format::S32: case Format::F32: return 4; //Doesn't make sense for planar formats: case Format::NV12: case Format::NV21: case Format::IYUV: case Format::YUV444: default: ARM_COMPUTE_ERROR("Undefined pixel size for given format"); return 0; } } /** The size in bytes of the data type * * @param[in] dt Input data type * * @return The size in bytes of the data type */ inline size_t element_size_from_data_type(DataType dt) { switch(dt) { case DataType::S8: case DataType::U8: case DataType::QS8: return 1; case DataType::U16: case DataType::S16: case DataType::QS16: case DataType::F16: return 2; case DataType::U32: case DataType::S32: case DataType::F32: case DataType::QS32: return 4; default: ARM_COMPUTE_ERROR("Undefined element size for given data type"); return 0; } } /** Return the data type used by a given single-planar pixel format * * @param[in] format Input format * * @return The size in bytes of the pixel format */ inline DataType data_type_from_format(Format format) { switch(format) { case Format::U8: case Format::UV88: case Format::RGB888: case Format::RGBA8888: case Format::YUYV422: case Format::UYVY422: return DataType::U8; case Format::U16: return DataType::U16; case Format::S16: return DataType::S16; case Format::U32: return DataType::U32; case Format::S32: return DataType::S32; case Format::F16: return DataType::F16; case Format::F32: return DataType::F32; //Doesn't make sense for planar formats: case Format::NV12: case Format::NV21: case Format::IYUV: case Format::YUV444: default: ARM_COMPUTE_ERROR("Not supported data_type for given format"); return DataType::UNKNOWN; } } /** Return the plane index of a given channel given an input format. * * @param[in] format Input format * @param[in] channel Input channel * * @return The plane index of the specific channel of the specific format */ inline int plane_idx_from_channel(Format format, Channel channel) { switch(format) { case Format::NV12: case Format::NV21: { switch(channel) { case Channel::Y: return 0; case Channel::U: case Channel::V: return 1; default: ARM_COMPUTE_ERROR("Not supported channel"); return 0; } } case Format::IYUV: case Format::YUV444: { switch(channel) { case Channel::Y: return 0; case Channel::U: return 1; case Channel::V: return 2; default: ARM_COMPUTE_ERROR("Not supported channel"); return 0; } } default: ARM_COMPUTE_ERROR("Not supported format"); return 0; } } /** Return the number of planes for a given format * * @param[in] format Input format * * @return The number of planes for a given image format. */ inline size_t num_planes_from_format(Format format) { switch(format) { case Format::U8: case Format::S16: case Format::U16: case Format::S32: case Format::U32: case Format::F16: case Format::F32: case Format::RGB888: case Format::RGBA8888: case Format::YUYV422: case Format::UYVY422: return 1; case Format::NV12: case Format::NV21: return 2; case Format::IYUV: case Format::YUV444: return 3; default: ARM_COMPUTE_ERROR("Not supported format"); return 0; } } /** Return the number of channels for a given single-planar pixel format * * @param[in] format Input format * * @return The number of channels for a given image format. */ inline size_t num_channels_from_format(Format format) { switch(format) { case Format::U8: case Format::U16: case Format::S16: case Format::U32: case Format::S32: case Format::F16: case Format::F32: return 1; // Because the U and V channels are subsampled // these formats appear like having only 2 channels: case Format::YUYV422: case Format::UYVY422: return 2; case Format::UV88: return 2; case Format::RGB888: return 3; case Format::RGBA8888: return 4; //Doesn't make sense for planar formats: case Format::NV12: case Format::NV21: case Format::IYUV: case Format::YUV444: default: return 0; } } /** Separate a 2D convolution into two 1D convolutions * * @param[in] conv 2D convolution * @param[out] conv_col 1D vertical convolution * @param[out] conv_row 1D horizontal convolution * @param[in] size Size of the 2D convolution * * @return true if the separation was successful */ inline bool separate_matrix(const int16_t *conv, int16_t *conv_col, int16_t *conv_row, uint8_t size) { int32_t min_col = -1; int16_t min_col_val = -1; for(int32_t i = 0; i < size; ++i) { if(conv[i] != 0 && (min_col < 0 || abs(min_col_val) > abs(conv[i]))) { min_col = i; min_col_val = conv[i]; } } if(min_col < 0) { return false; } for(uint32_t j = 0; j < size; ++j) { conv_col[j] = conv[min_col + j * size]; } for(uint32_t i = 0; i < size; i++) { if(static_cast(i) == min_col) { conv_row[i] = 1; } else { int16_t coeff = conv[i] / conv[min_col]; for(uint32_t j = 1; j < size; ++j) { if(conv[i + j * size] != (conv_col[j] * coeff)) { return false; } } conv_row[i] = coeff; } } return true; } /** Calculate the scale of the given square matrix * * The scale is the absolute value of the sum of all the coefficients in the matrix. * * @note If the coefficients add up to 0 then the scale is set to 1. * * @param[in] matrix Matrix coefficients * @param[in] matrix_size Number of elements per side of the square matrix. (Number of coefficients = matrix_size * matrix_size). * * @return The absolute value of the sum of the coefficients if they don't add up to 0, otherwise 1. */ inline uint32_t calculate_matrix_scale(const int16_t *matrix, unsigned int matrix_size) { const size_t size = matrix_size * matrix_size; return std::max(1, std::abs(std::accumulate(matrix, matrix + size, 0))); } /** Calculate the output shapes of the depth concatenate function. * * @param[in] inputs_vector The vector that stores all the pointers to input. * * @return the output shape */ template TensorShape calculate_depth_concatenate_shape(const std::vector &inputs_vector) { TensorShape out_shape = inputs_vector[0]->info()->tensor_shape(); size_t max_x = 0; size_t max_y = 0; size_t depth = 0; for(const auto &tensor : inputs_vector) { ARM_COMPUTE_ERROR_ON(tensor == nullptr); const TensorShape shape = tensor->info()->tensor_shape(); max_x = std::max(shape.x(), max_x); max_y = std::max(shape.y(), max_y); depth += shape.z(); } out_shape.set(0, max_x); out_shape.set(1, max_y); out_shape.set(2, depth); return out_shape; } /** Calculate accurary required by the horizontal and vertical convolution computations * * @param[in] conv_col Pointer to the vertical vector of the separated convolution filter * @param[in] conv_row Pointer to the horizontal vector of the convolution filter * @param[in] size Number of elements per vector of the separated matrix * * @return The return type is a pair. The first element of the pair is the biggest data type needed for the first stage. The second * element of the pair is the biggest data type needed for the second stage. */ inline std::pair data_type_for_convolution(const int16_t *conv_col, const int16_t *conv_row, size_t size) { DataType first_stage = DataType::UNKNOWN; DataType second_stage = DataType::UNKNOWN; auto gez = [](const int16_t &v) { return v >= 0; }; auto accu_neg = [](const int &first, const int &second) { return first + (second < 0 ? second : 0); }; auto accu_pos = [](const int &first, const int &second) { return first + (second > 0 ? second : 0); }; const bool only_positive_coefficients = std::all_of(conv_row, conv_row + size, gez) && std::all_of(conv_col, conv_col + size, gez); if(only_positive_coefficients) { const int max_row_value = std::accumulate(conv_row, conv_row + size, 0) * UINT8_MAX; const int max_value = std::accumulate(conv_col, conv_col + size, 0) * max_row_value; first_stage = (max_row_value <= UINT16_MAX) ? DataType::U16 : DataType::S32; second_stage = (max_value <= UINT16_MAX) ? DataType::U16 : DataType::S32; } else { const int min_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_neg) * UINT8_MAX; const int max_row_value = std::accumulate(conv_row, conv_row + size, 0, accu_pos) * UINT8_MAX; const int neg_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_neg); const int pos_coeffs_sum = std::accumulate(conv_col, conv_col + size, 0, accu_pos); const int min_value = neg_coeffs_sum * max_row_value + pos_coeffs_sum * min_row_value; const int max_value = neg_coeffs_sum * min_row_value + pos_coeffs_sum * max_row_value; first_stage = ((INT16_MIN <= min_row_value) && (max_row_value <= INT16_MAX)) ? DataType::S16 : DataType::S32; second_stage = ((INT16_MIN <= min_value) && (max_value <= INT16_MAX)) ? DataType::S16 : DataType::S32; } return std::make_pair(first_stage, second_stage); } /** Calculate the accuracy required by the squared convolution calculation. * * * @param[in] conv Pointer to the squared convolution matrix * @param[in] size The total size of the convolution matrix * * @return The return is the biggest data type needed to do the convolution */ inline DataType data_type_for_convolution_matrix(const int16_t *conv, size_t size) { auto gez = [](const int16_t v) { return v >= 0; }; const bool only_positive_coefficients = std::all_of(conv, conv + size, gez); if(only_positive_coefficients) { const int max_conv_value = std::accumulate(conv, conv + size, 0) * UINT8_MAX; if(max_conv_value <= UINT16_MAX) { return DataType::U16; } else { return DataType::S32; } } else { const int min_value = std::accumulate(conv, conv + size, 0, [](int a, int b) { return b < 0 ? a + b : a; }) * UINT8_MAX; const int max_value = std::accumulate(conv, conv + size, 0, [](int a, int b) { return b > 0 ? a + b : a; }) * UINT8_MAX; if((INT16_MIN <= min_value) && (INT16_MAX >= max_value)) { return DataType::S16; } else { return DataType::S32; } } } /** Returns expected shape for the deconvolution output tensor. * * @param[in] out_dims widht and height of the output tensor, these values can be obtained with the function deconvolution_output_dimensions. * @param[in] input Shape of the input tensor. * @param[in] weights Shape of the weights tensor. * * @return Deconvolution output tensor shape. */ TensorShape deconvolution_output_shape(const std::pair &out_dims, TensorShape input, TensorShape weights); /** Returns expected width and height of the deconvolution's output tensor. * * @param[in] in_width Width of input tensor (Number of columns) * @param[in] in_height Height of input tensor (Number of rows) * @param[in] kernel_width Kernel width. * @param[in] kernel_height Kernel height. * @param[in] padx X axis padding. * @param[in] pady Y axis padding. * @param[in] ax The number of zeros added to right edge of the input. * @param[in] ay The number of zeros added to top edge of the input. * @param[in] upscalex How much to scale the X axis. * @param[in] upscaley How much to scale the Y axis. * @param[in] round Rounding policy to be used when computing the output's dimensions. * * @return A pair with the new width in the first position and the new height in the second. */ const std::pair deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height, unsigned int kernel_width, unsigned int kernel_height, unsigned int padx, unsigned int pady, unsigned int ax, unsigned int ay, float upscalex, float upscaley, DimensionRoundingType round); /** Returns expected width and height of output scaled tensor depending on dimensions rounding mode. * * @param[in] width Width of input tensor (Number of columns) * @param[in] height Height of input tensor (Number of rows) * @param[in] kernel_width Kernel width. * @param[in] kernel_height Kernel height. * @param[in] pad_stride_info Pad and stride information. * * @return A pair with the new width in the first position and the new height in the second. */ const std::pair scaled_dimensions(unsigned int width, unsigned int height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &pad_stride_info); /** Convert a tensor format into a string. * * @param[in] format @ref Format to be translated to string. * * @return The string describing the format. */ const std::string &string_from_format(Format format); /** Convert a channel identity into a string. * * @param[in] channel @ref Channel to be translated to string. * * @return The string describing the channel. */ const std::string &string_from_channel(Channel channel); /** Convert a data type identity into a string. * * @param[in] dt @ref DataType to be translated to string. * * @return The string describing the data type. */ const std::string &string_from_data_type(DataType dt); /** Convert a matrix pattern into a string. * * @param[in] pattern @ref MatrixPattern to be translated to string. * * @return The string describing the matrix pattern. */ const std::string &string_from_matrix_pattern(MatrixPattern pattern); /** Translates a given activation function to a string. * * @param[in] act @ref ActivationLayerInfo::ActivationFunction to be translated to string. * * @return The string describing the activation function. */ const std::string &string_from_activation_func(ActivationLayerInfo::ActivationFunction act); /** Translates a given non linear function to a string. * * @param[in] function @ref NonLinearFilterFunction to be translated to string. * * @return The string describing the non linear function. */ const std::string &string_from_non_linear_filter_function(NonLinearFilterFunction function); /** Translates a given interpolation policy to a string. * * @param[in] policy @ref InterpolationPolicy to be translated to string. * * @return The string describing the interpolation policy. */ const std::string &string_from_interpolation_policy(InterpolationPolicy policy); /** Translates a given border mode policy to a string. * * @param[in] border_mode @ref BorderMode to be translated to string. * * @return The string describing the border mode. */ const std::string &string_from_border_mode(BorderMode border_mode); /** Translates a given normalization type to a string. * * @param[in] type @ref NormType to be translated to string. * * @return The string describing the normalization type. */ const std::string &string_from_norm_type(NormType type); /** Translates a given pooling type to a string. * * @param[in] type @ref PoolingType to be translated to string. * * @return The string describing the pooling type. */ const std::string &string_from_pooling_type(PoolingType type); /** Lower a given string. * * @param[in] val Given string to lower. * * @return The lowered string */ std::string lower_string(const std::string &val); /** Check if a given data type is of floating point type * * @param[in] dt Input data type. * * @return True if data type is of floating point type, else false. */ inline bool is_data_type_float(DataType dt) { switch(dt) { case DataType::F16: case DataType::F32: return true; default: return false; } } /** Check if a given data type is of fixed point type * * @param[in] dt Input data type. * * @return True if data type is of fixed point type, else false. */ inline bool is_data_type_fixed_point(DataType dt) { switch(dt) { case DataType::QS8: case DataType::QS16: case DataType::QS32: return true; default: return false; } } /** Create a string with the float in full precision. * * @param val Floating point value * * @return String with the floating point value. */ inline std::string float_to_string_with_full_precision(float val) { std::stringstream ss; ss.precision(std::numeric_limits::digits10 + 1); ss << val; return ss.str(); } /** Print consecutive elements to an output stream. * * @param[out] s Output stream to print the elements to. * @param[in] ptr Pointer to print the elements from. * @param[in] n Number of elements to print. * @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0. * @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter */ template void print_consecutive_elements_impl(std::ostream &s, const T *ptr, unsigned int n, int stream_width = 0, const std::string &element_delim = " ") { using print_type = typename std::conditional::value, T, int>::type; for(unsigned int i = 0; i < n; ++i) { // Set stream width as it is not a "sticky" stream manipulator if(stream_width != 0) { s.width(stream_width); } s << std::right << static_cast(ptr[i]) << element_delim; } } /** Identify the maximum width of n consecutive elements. * * @param[in] s The output stream which will be used to print the elements. Used to extract the stream format. * @param[in] ptr Pointer to the elements. * @param[in] n Number of elements. * * @return The maximum width of the elements. */ template int max_consecutive_elements_display_width_impl(std::ostream &s, const T *ptr, unsigned int n) { using print_type = typename std::conditional::value, T, int>::type; int max_width = -1; for(unsigned int i = 0; i < n; ++i) { std::stringstream ss; ss.copyfmt(s); ss << static_cast(ptr[i]); max_width = std::max(max_width, ss.str().size()); } return max_width; } /** Print consecutive elements to an output stream. * * @param[out] s Output stream to print the elements to. * @param[in] dt Data type of the elements * @param[in] ptr Pointer to print the elements from. * @param[in] n Number of elements to print. * @param[in] stream_width (Optional) Width of the stream. If set to 0 the element's width is used. Defaults to 0. * @param[in] element_delim (Optional) Delimeter among the consecutive elements. Defaults to space delimeter */ void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim = " "); /** Identify the maximum width of n consecutive elements. * * @param[in] s Output stream to print the elements to. * @param[in] dt Data type of the elements * @param[in] ptr Pointer to print the elements from. * @param[in] n Number of elements to print. * * @return The maximum width of the elements. */ int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n); } #endif /*__ARM_COMPUTE_UTILS_H__ */