/* * Copyright (c) 2018 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * * NOTE: Header to be included by implementation files only. * * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ #include "arm_compute/core/NEON/kernels/convolution/common/arm.hpp" #include "arm_compute/core/NEON/kernels/convolution/depthwise/impl_base.hpp" #pragma once namespace depthwise { // Partial specialisation for FP32 to FP32 template struct DepthwiseConvolutionImpl { typedef DepthwiseConvolution< OutputTileRows, OutputTileCols, KernelRows, KernelCols, StrideRows, StrideCols, float, float > DWC; template < int in_pad_top, int in_pad_left, int in_pad_bottom, int in_pad_right, int out_pad_bottom, int out_pad_right > static void process_tile( const int n_channels, const float* const weights, const float* const inptr, const int in_row_stride, const int in_col_stride, float* const outptr, const int out_row_stride, const int out_col_stride ); }; template template < int in_pad_top, int in_pad_left, int in_pad_bottom, int in_pad_right, int out_pad_bottom, int out_pad_right > void DepthwiseConvolutionImpl::process_tile( const int n_channels, const float* const weights, const float* const inptr, const int in_row_stride, const int in_col_stride, float* const outptr, const int out_row_stride, const int out_col_stride ) { constexpr auto inner_tile_rows = DWC::inner_tile_rows; constexpr auto inner_tile_cols = DWC::inner_tile_cols; constexpr auto kernel_rows = DWC::kernel_rows; constexpr auto kernel_cols = DWC::kernel_cols; constexpr auto output_tile_rows = DWC::output_tile_rows; constexpr auto output_tile_cols = DWC::output_tile_cols; constexpr auto stride_rows = DWC::stride_rows; constexpr auto stride_cols = DWC::stride_cols; // Compute valid ranges of the tile constexpr int in_cells_i = inner_tile_rows - in_pad_bottom; constexpr int in_cells_j = inner_tile_cols - in_pad_right; constexpr int out_cells_i = output_tile_rows - out_pad_bottom; constexpr int out_cells_j = output_tile_cols - out_pad_right; // Instantiate pointers const float* inptr_base = inptr; const float* wptr_base = weights; float* outptr_base = outptr; const int weight_col_stride = n_channels; const int weight_row_stride = kernel_cols * n_channels; // Perform the depthwise convolution int channels_remaining = n_channels; #ifdef __aarch64__ for (; channels_remaining >= 4; channels_remaining -= 4) { // Load input tile float32x4_t u[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { const float* const inptr_row = inptr_base + (i - in_pad_top)*in_row_stride; for (int j = 0; j < inner_tile_cols; j++) { if (i < in_pad_top || in_cells_i <= i || j < in_pad_left || in_cells_j <= j) { u[i][j] = vdupq_n_f32(0.0f); } else { u[i][j] = vld1q_f32(inptr_row + (j - in_pad_left)*in_col_stride); } } } inptr_base += 4; // Load weights tile float32x4_t w[kernel_rows][kernel_cols]; for (int i = 0; i < kernel_rows; i++) { const float* const wptr_row = wptr_base + i*weight_row_stride; for (int j = 0; j < kernel_cols; j++) { w[i][j] = vld1q_f32(wptr_row + j*weight_col_stride); } } wptr_base += 4; // Perform the convolution float32x4_t v[out_cells_i][out_cells_j]; for (int out_i = 0; out_i < out_cells_i; out_i++) { for (int out_j = 0; out_j < out_cells_j; out_j++) { // Base co-ordinate const int base_i = out_i * stride_rows; const int base_j = out_j * stride_cols; // Fill the accumulator for (int in_i = 0; in_i < kernel_rows; in_i++) { const int i = base_i + in_i; for (int in_j = 0; in_j < kernel_cols; in_j++) { const int j = base_j + in_j; if (in_i == 0 && in_j == 0) { // v[out_i][out_j] = w[in_i][in_j] * u[i][j]; v[out_i][out_j] = vmulq_f32(w[in_i][in_j], u[i][j]); } else { // v[out_i][out_j] += w[in_i][in_j] * u[i][j]; v[out_i][out_j] = vmlaq_f32(v[out_i][out_j], w[in_i][in_j], u[i][j]); } } } } } // Store the output tile for (int i = 0; i < out_cells_i; i++) { float* const outptr_row = outptr_base + i*out_row_stride; for (int j = 0; j < out_cells_j; j++) { vst1q_f32(outptr_row + j*out_col_stride, v[i][j]); } } outptr_base += 4; } #endif // __aarch64__ for (; channels_remaining; channels_remaining--) { // Load input tile float u[inner_tile_rows][inner_tile_cols]; for (int i = 0; i < inner_tile_rows; i++) { const float* const inptr_row = inptr_base + (i - in_pad_top)*in_row_stride; for (int j = 0; j < inner_tile_cols; j++) { if (i < in_pad_top || in_cells_i <= i || j < in_pad_left || in_cells_j <= j) { u[i][j] = static_cast(0); } else { u[i][j] = *(inptr_row + (j - in_pad_left)*in_col_stride); } } } inptr_base++; // Load weights tile float w[kernel_rows][kernel_cols]; for (int i = 0; i < kernel_rows; i++) { const float* const wptr_row = wptr_base + i*weight_row_stride; for (int j = 0; j < kernel_cols; j++) { w[i][j] = *(wptr_row + j*weight_col_stride); } } wptr_base++; // Perform the convolution float v[out_cells_i][out_cells_j]; for (int out_i = 0; out_i < out_cells_i; out_i++) { for (int out_j = 0; out_j < out_cells_j; out_j++) { // Clear the accumulator v[out_i][out_j] = static_cast(0); // Base co-ordinate const int base_i = out_i * stride_rows; const int base_j = out_j * stride_cols; // Fill the accumulator for (int in_i = 0; in_i < kernel_rows; in_i++) { const int i = base_i + in_i; for (int in_j = 0; in_j < kernel_cols; in_j++) { const int j = base_j + in_j; v[out_i][out_j] += w[in_i][in_j] * u[i][j]; } } } } // Store the output tile for (int i = 0; i < out_cells_i; i++) { float* const outptr_row = outptr_base + i*out_row_stride; for (int j = 0; j < out_cells_j; j++) { *(outptr_row + j*out_col_stride) = v[i][j]; } } outptr_base++; } } } // namespace depthwise