/* * Copyright (c) 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_NESYMM_H #define ARM_COMPUTE_NESYMM_H #include "arm_compute/core/NEON/NEMath.h" #include namespace arm_compute { using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */ using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */ using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */ using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */ /** Performs final quantization step on 8 signed 16-bit elements * * @tparam is_bounded_relu Specified if a fused bounded relu should be applied * * @param[in] in_s32 Input to be quantized. * @param[in] result_fixedpoint_multiplier Result multiplier parameter * @param[in] result_shift Result shift parameter * @param[in] min_s16 Relu lower bound * @param[in] max_s16 Relu upper bound * * @return Quantized values */ template int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32, int result_fixedpoint_multiplier, int32_t result_shift, int16x8_t min_s16, int16x8_t max_s16) { if(result_shift < 0) { in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift)); in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift)); in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier); in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier); } else { // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier); in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier); // Round to the nearest division by a power-of-two using result_shift_s32 in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift); in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift); } // Convert S32 to S16 int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])); if(is_bounded_relu) { out_s16 = vmaxq_s16(out_s16, min_s16); out_s16 = vminq_s16(out_s16, max_s16); } return out_s16; } /** Performs final quantization step on single signed 16-bit element * * @tparam is_bounded_relu Specified if a fused bounded relu should be applied * * @param[in] in_value Input to be quantized. * @param[in] result_fixedpoint_multiplier Result multiplier parameter * @param[in] result_shift Result shift parameter * @param[in] min_s16 Relu lower bound * @param[in] max_s16 Relu upper bound * * @return Quantized values */ template inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier, int32_t result_shift, int16_t min_s16, int16_t max_s16) { if(result_shift < 0) { const int64_t in_64 = static_cast(in_value) * (1 << (-result_shift)) * static_cast(result_fixedpoint_multiplier); in_value = static_cast((in_64 + (1 << 30)) >> 31); } else { // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar const int64_t in_64 = static_cast(in_value) * static_cast(result_fixedpoint_multiplier); // Shift value by result_shift_s32 in_value = rounding_divide_by_pow2(static_cast((in_64 + (1 << 30)) >> 31), result_shift); } // Bound the result int16_t out_s16 = static_cast(std::max(-32768, std::min(32767, in_value))); if(is_bounded_relu) { out_s16 = static_cast(std::max(min_s16, std::min(max_s16, out_s16))); } return out_s16; } /** Dequantize a neon vector holding 8 16-bit quantized values. * * @param[in] qv Input values to be dequantized. * @param[in] scale Quantization scale * * @return Dequantized values in a neon vector */ inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale) { const float32x4_t vscale = vdupq_n_f32(scale); const float32x4x2_t vdequantized_input = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale) } }; return vdequantized_input; } /** Quantize a neon vector holding 8 floating point values. * * @param[in] qv Input values to be quantized. * @param[in] scale Quantization scale * * @return A neon vector holding the quantized values */ inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale) { const float32x4_t vinvscale = vdupq_n_f32(1.f / scale); const int32x4x2_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)) #else //__aarch64__ vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)) #endif //__aarch64__ } }; return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])); } /** Dequantize a neon vector holding 16 16-bit quantized values. * * @param[in] qv Input values to be dequantized. * @param[in] qi Quantization information to be used in the computation. * * @return Dequantized values in a neon vector */ inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi) { const float scale = qi.scale; const float32x4_t vscale = vdupq_n_f32(scale); const float32x4x4_t vdequantized_input = { { vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale), vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale), } }; return vdequantized_input; } /** Quantize a neon vector holding 16 floating point values. * * @param[in] qv Input values to be quantized. * @param[in] qi Quantization information to be used in the computation. * * @return A neon vector holding the quantized values */ inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) { const float scale = qi.scale; ARM_COMPUTE_ERROR_ON(scale == 0.f); const float32x4_t vinvscale = vdupq_n_f32(1.f / scale); const int32x4x4_t rf = { { #ifdef __aarch64__ vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)), #else //__aarch64__ vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)), #endif //__aarch64__ } }; const qsymm16x8x2_t res = { vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])), vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])), }; return res; } } // namespace arm_compute #endif // ARM_COMPUTE_NESYMM_H