/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Error.h" #include "arm_compute/core/Helpers.h" #include "arm_compute/core/IMultiImage.h" #include "arm_compute/core/Utils.h" #include namespace { #ifndef DOXYGEN_SKIP_THIS constexpr float red_coef_bt709 = 1.5748F; constexpr float green_coef_bt709 = -0.1873f; constexpr float green_coef2_bt709 = -0.4681f; constexpr float blue_coef_bt709 = 1.8556f; constexpr float rgb2yuv_bt709_kr = 0.2126f; constexpr float rgb2yuv_bt709_kb = 0.0722f; // K_g = 1 - K_r - K_b constexpr float rgb2yuv_bt709_kg = 0.7152f; // C_u = 1 / (2 * (1 - K_b)) constexpr float rgb2yuv_bt709_cu = 0.5389f; // C_v = 1 / (2 * (1 - K_r)) constexpr float rgb2yuv_bt709_cv = 0.6350f; constexpr float rgb2u8_red_coef = 0.2126f; constexpr float rgb2u8_green_coef = 0.7152f; constexpr float rgb2u8_blue_coef = 0.0722f; inline float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in) { float32x4x4_t out; const auto tmp1 = vmovl_u8(vget_low_u8(in)); out.val[0] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1))); out.val[1] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1))); const auto tmp2 = vmovl_u8(vget_high_u8(in)); out.val[2] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp2))); out.val[3] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp2))); return out; } inline void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out) { out.val[0] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[0])), vqmovn_u32(vcvtq_u32_f32(in2.val[0])))); out.val[1] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[1])), vqmovn_u32(vcvtq_u32_f32(in2.val[1])))); out.val[2] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[2])), vqmovn_u32(vcvtq_u32_f32(in2.val[2])))); } inline void convert_float32x4x4_to_unit8x16(const float32x4x4_t &in, uint8x16_t &out) { const auto low = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[0])), vqmovn_u32(vcvtq_u32_f32(in.val[1]))); const auto high = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[2])), vqmovn_u32(vcvtq_u32_f32(in.val[3]))); out = vcombine_u8(vqmovn_u16(low), vqmovn_u16(high)); } inline float32x4_t rgb_to_greyscale_calculation(const float32x4_t &rcolor, const float32x4_t &gcolor, const float32x4_t &bcolor, const float rcoef, const float gcoef, const float bcoef) { float32x4_t greyscale = vmulq_n_f32(rcolor, rcoef); greyscale = vmlaq_n_f32(greyscale, gcolor, gcoef); greyscale = vmlaq_n_f32(greyscale, bcolor, bcoef); return greyscale; } inline void rgb_to_u8_conversion(const uint8x16x3_t &in, uint8x16_t &out) { float32x4x4_t out_float32; //Conversion from 3(RGB) 4 uint8s to 3(RGB) 4 floats const float32x4x4_t r_float32 = convert_uint8x16_to_float32x4x4(in.val[0]); const float32x4x4_t g_float32 = convert_uint8x16_to_float32x4x4(in.val[1]); const float32x4x4_t b_float32 = convert_uint8x16_to_float32x4x4(in.val[2]); //New grayscale image = ( (RED_COEFF * R) + (GREEN_COEFF * G) + (BLUE_COEFF * B) ) //Computation of 1(Greyscale) 4 uint8 using 3(RGB) 4 uint8s float out_float32.val[0] = rgb_to_greyscale_calculation(r_float32.val[0], g_float32.val[0], b_float32.val[0], rgb2u8_red_coef, rgb2u8_green_coef, rgb2u8_blue_coef); out_float32.val[1] = rgb_to_greyscale_calculation(r_float32.val[1], g_float32.val[1], b_float32.val[1], rgb2u8_red_coef, rgb2u8_green_coef, rgb2u8_blue_coef); out_float32.val[2] = rgb_to_greyscale_calculation(r_float32.val[2], g_float32.val[2], b_float32.val[2], rgb2u8_red_coef, rgb2u8_green_coef, rgb2u8_blue_coef); out_float32.val[3] = rgb_to_greyscale_calculation(r_float32.val[3], g_float32.val[3], b_float32.val[3], rgb2u8_red_coef, rgb2u8_green_coef, rgb2u8_blue_coef); //Conversion from 1(Greyscale) 4 floats to 1(Greyscale) 4 uint8s convert_float32x4x4_to_unit8x16(out_float32, out); } inline void rgb_to_yuv_calculation(const float32x4_t &rvec, const float32x4_t &gvec, const float32x4_t &bvec, float32x4_t &yvec, float32x4_t &uvec, float32x4_t &vvec) { /* Y'= 0.2126*R' + 0.7152*G' + 0.0722*B' U'=-0.1146*R' - 0.3854*G' + 0.5000*B' V'= 0.5000*R' - 0.4542*G' - 0.0458*B' */ const auto c128 = vdupq_n_f32(128.f); // Y = R * K_r + G * (1 - K_r - K_b) * B * K_b yvec = vmulq_n_f32(rvec, rgb2yuv_bt709_kr); yvec = vmlaq_n_f32(yvec, gvec, rgb2yuv_bt709_kg); yvec = vmlaq_n_f32(yvec, bvec, rgb2yuv_bt709_kb); // U = (B - Y) / (2 * (1 - K_b)) uvec = vsubq_f32(bvec, yvec); uvec = vmlaq_n_f32(c128, uvec, rgb2yuv_bt709_cu); // V = (R - Y) / (2 * (1 - K_r)) vvec = vsubq_f32(rvec, yvec); vvec = vmlaq_n_f32(c128, vvec, rgb2yuv_bt709_cv); } inline void yuyv_to_rgb_calculation(const float32x4_t &yvec_val, float32x4_t uvec_val, const float32x4_t &yyvec_val, float32x4_t vvec_val, unsigned char *output_ptr, const bool alpha) { float32x4x3_t rgb1, rgb2; // Compute: cb - 128 and cr - 128; const auto c128 = vdupq_n_f32(128.f); uvec_val = vsubq_f32(uvec_val, c128); vvec_val = vsubq_f32(vvec_val, c128); // Compute: // r = 0.0000f*f_u + 1.5748f*f_v; // g = 0.1873f*f_u - 0.4681f*f_v; // b = 1.8556f*f_u + 0.0000f*f_v; const auto red = vmulq_n_f32(vvec_val, red_coef_bt709); const auto blue = vmulq_n_f32(uvec_val, blue_coef_bt709); const auto green = vaddq_f32(vmulq_n_f32(uvec_val, green_coef_bt709), vmulq_n_f32(vvec_val, green_coef2_bt709)); // Compute the final r,g,b values using y1 for the first texel and y2 for the second one. // the result is stored in two float32x4x3_t which then are converted to one uint8x8x3_t // and written back to memory using vst3 instruction rgb1.val[0] = vaddq_f32(yvec_val, red); rgb1.val[1] = vaddq_f32(yvec_val, green); rgb1.val[2] = vaddq_f32(yvec_val, blue); rgb2.val[0] = vaddq_f32(yyvec_val, red); rgb2.val[1] = vaddq_f32(yyvec_val, green); rgb2.val[2] = vaddq_f32(yyvec_val, blue); uint8x8x3_t u8_rgb; convert_float32x4x3_to_uint8x8x3(rgb1, rgb2, u8_rgb); if(!alpha) { vst3_lane_u8(&output_ptr[0], u8_rgb, 0); vst3_lane_u8(&output_ptr[3], u8_rgb, 4); vst3_lane_u8(&output_ptr[6], u8_rgb, 1); vst3_lane_u8(&output_ptr[9], u8_rgb, 5); vst3_lane_u8(&output_ptr[12], u8_rgb, 2); vst3_lane_u8(&output_ptr[15], u8_rgb, 6); vst3_lane_u8(&output_ptr[18], u8_rgb, 3); vst3_lane_u8(&output_ptr[21], u8_rgb, 7); } else { uint8x8x4_t u8_rgba; u8_rgba.val[0] = u8_rgb.val[0]; u8_rgba.val[1] = u8_rgb.val[1]; u8_rgba.val[2] = u8_rgb.val[2]; u8_rgba.val[3] = vdup_n_u8(255); vst4_lane_u8(&output_ptr[0], u8_rgba, 0); vst4_lane_u8(&output_ptr[4], u8_rgba, 4); vst4_lane_u8(&output_ptr[8], u8_rgba, 1); vst4_lane_u8(&output_ptr[12], u8_rgba, 5); vst4_lane_u8(&output_ptr[16], u8_rgba, 2); vst4_lane_u8(&output_ptr[20], u8_rgba, 6); vst4_lane_u8(&output_ptr[24], u8_rgba, 3); vst4_lane_u8(&output_ptr[28], u8_rgba, 7); } } inline uint8x16x3_t load_rgb(const unsigned char *const ptr, const bool alpha) { uint8x16x3_t rgb; if(alpha) { const auto tmp = vld4q_u8(ptr); rgb.val[0] = tmp.val[0]; rgb.val[1] = tmp.val[1]; rgb.val[2] = tmp.val[2]; } else { rgb = vld3q_u8(ptr); } return rgb; } inline void rgb_to_yuv_conversion(uint8x16x3_t &vec_top, uint8x16x3_t &vec_bottom) { // Convert the uint8x16_t to float32x4x4_t const float32x4x4_t frvec_top = convert_uint8x16_to_float32x4x4(vec_top.val[0]); const float32x4x4_t fgvec_top = convert_uint8x16_to_float32x4x4(vec_top.val[1]); const float32x4x4_t fbvec_top = convert_uint8x16_to_float32x4x4(vec_top.val[2]); const float32x4x4_t frvec_bottom = convert_uint8x16_to_float32x4x4(vec_bottom.val[0]); const float32x4x4_t fgvec_bottom = convert_uint8x16_to_float32x4x4(vec_bottom.val[1]); const float32x4x4_t fbvec_bottom = convert_uint8x16_to_float32x4x4(vec_bottom.val[2]); float32x4x4_t fyvec_top, fuvec_top, fvvec_top; float32x4x4_t fyvec_bottom, fuvec_bottom, fvvec_bottom; for(auto i = 0; i < 4; ++i) { rgb_to_yuv_calculation(frvec_top.val[i], fgvec_top.val[i], fbvec_top.val[i], fyvec_top.val[i], fuvec_top.val[i], fvvec_top.val[i]); rgb_to_yuv_calculation(frvec_bottom.val[i], fgvec_bottom.val[i], fbvec_bottom.val[i], fyvec_bottom.val[i], fuvec_bottom.val[i], fvvec_bottom.val[i]); } convert_float32x4x4_to_unit8x16(fyvec_top, vec_top.val[0]); convert_float32x4x4_to_unit8x16(fuvec_top, vec_top.val[1]); convert_float32x4x4_to_unit8x16(fvvec_top, vec_top.val[2]); convert_float32x4x4_to_unit8x16(fyvec_bottom, vec_bottom.val[0]); convert_float32x4x4_to_unit8x16(fuvec_bottom, vec_bottom.val[1]); convert_float32x4x4_to_unit8x16(fvvec_bottom, vec_bottom.val[2]); } inline void store_rgb_to_nv12(const uint8x16_t &rvec_top, const uint8x16_t &gvec_top, const uint8x16_t &bvec_top, const uint8x16_t &rvec_bottom, const uint8x16_t &gvec_bottom, const uint8x16_t &bvec_bottom, unsigned char *const __restrict out_y_top, unsigned char *const __restrict out_y_bottom, unsigned char *const __restrict out_uv) { uint8x16x3_t vec_top, vec_bottom; vec_top.val[0] = rvec_top; vec_top.val[1] = gvec_top; vec_top.val[2] = bvec_top; vec_bottom.val[0] = rvec_bottom; vec_bottom.val[1] = gvec_bottom; vec_bottom.val[2] = bvec_bottom; rgb_to_yuv_conversion(vec_top, vec_bottom); vst1q_u8(out_y_top, vec_top.val[0]); vst1q_u8(out_y_bottom, vec_bottom.val[0]); const auto uvec = vuzpq_u8(vec_top.val[1], vec_bottom.val[1]); const auto vvec = vuzpq_u8(vec_top.val[2], vec_bottom.val[2]); const auto utmp = vrhaddq_u8(uvec.val[0], uvec.val[1]); const auto vtmp = vrhaddq_u8(vvec.val[0], vvec.val[1]); uint8x8x2_t uvvec; uvvec.val[0] = vhadd_u8(vget_low_u8(utmp), vget_high_u8(utmp)); uvvec.val[1] = vhadd_u8(vget_low_u8(vtmp), vget_high_u8(vtmp)); vst2_u8(out_uv, uvvec); } inline void store_rgb_to_iyuv(const uint8x16_t &rvec_top, const uint8x16_t &gvec_top, const uint8x16_t &bvec_top, const uint8x16_t &rvec_bottom, const uint8x16_t &gvec_bottom, const uint8x16_t &bvec_bottom, unsigned char *const __restrict out_y_top, unsigned char *const __restrict out_y_bottom, unsigned char *const __restrict out_u, unsigned char *const __restrict out_v) { uint8x16x3_t vec_top, vec_bottom; vec_top.val[0] = rvec_top; vec_top.val[1] = gvec_top; vec_top.val[2] = bvec_top; vec_bottom.val[0] = rvec_bottom; vec_bottom.val[1] = gvec_bottom; vec_bottom.val[2] = bvec_bottom; rgb_to_yuv_conversion(vec_top, vec_bottom); vst1q_u8(out_y_top, vec_top.val[0]); vst1q_u8(out_y_bottom, vec_bottom.val[0]); const auto uvvec_top = vuzpq_u8(vec_top.val[1], vec_top.val[2]); const auto uvvec_bottom = vuzpq_u8(vec_bottom.val[1], vec_bottom.val[2]); const auto uvvec = vhaddq_u8(vrhaddq_u8(uvvec_top.val[0], uvvec_top.val[1]), vrhaddq_u8(uvvec_bottom.val[0], uvvec_bottom.val[1])); vst1_u8(out_u, vget_low_u8(uvvec)); vst1_u8(out_v, vget_high_u8(uvvec)); } inline void store_rgb_to_yuv4(const uint8x16_t &rvec, const uint8x16_t &gvec, const uint8x16_t &bvec, unsigned char *const __restrict out_y, unsigned char *const __restrict out_u, unsigned char *const __restrict out_v) { // Convert the uint8x16_t to float32x4x4_t const float32x4x4_t frvec = convert_uint8x16_to_float32x4x4(rvec); const float32x4x4_t fgvec = convert_uint8x16_to_float32x4x4(gvec); const float32x4x4_t fbvec = convert_uint8x16_to_float32x4x4(bvec); float32x4x4_t fyvec, fuvec, fvvec; for(auto i = 0; i < 4; ++i) { rgb_to_yuv_calculation(frvec.val[i], fgvec.val[i], fbvec.val[i], fyvec.val[i], fuvec.val[i], fvvec.val[i]); } uint8x16_t yvec, uvec, vvec; convert_float32x4x4_to_unit8x16(fyvec, yvec); convert_float32x4x4_to_unit8x16(fuvec, uvec); convert_float32x4x4_to_unit8x16(fvvec, vvec); vst1q_u8(out_y, yvec); vst1q_u8(out_u, uvec); vst1q_u8(out_v, vvec); } #endif /* DOXYGEN_SKIP_THIS */ } namespace arm_compute { /** Convert RGB to RGBX. * * @param[in] input Input RGB data buffer. * @param[out] output Output RGBX buffer. * @param[in] win Window for iterating the buffers. * */ void colorconvert_rgb_to_rgbx(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); Iterator in(input_ptr, win); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta1 = vld3q_u8(in.ptr()); uint8x16x4_t ta2; ta2.val[0] = ta1.val[0]; ta2.val[1] = ta1.val[1]; ta2.val[2] = ta1.val[2]; ta2.val[3] = vdupq_n_u8(255); vst4q_u8(out.ptr(), ta2); }, in, out); } /** Convert RGB to U8. * * @param[in] input Input RGB data buffer. * @param[out] output Output U8 buffer. * @param[in] win Window for iterating the buffers. * */ void colorconvert_rgb_to_u8(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); Iterator in(input_ptr, win); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta1 = vld3q_u8(in.ptr()); uint8x16_t ta2; rgb_to_u8_conversion(ta1, ta2); vst1q_u8(out.ptr(), ta2); }, in, out); } /** Convert RGBX to RGB. * * @param[in] input Input RGBX data buffer. * @param[out] output Output RGB buffer. * @param[in] win Window for iterating the buffers. * */ void colorconvert_rgbx_to_rgb(const void *input, void *output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); Iterator in(input_ptr, win); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta1 = vld4q_u8(in.ptr()); uint8x16x3_t ta2; ta2.val[0] = ta1.val[0]; ta2.val[1] = ta1.val[1]; ta2.val[2] = ta1.val[2]; vst3q_u8(out.ptr(), ta2); }, in, out); } /** Convert YUYV to RGB. * * @param[in] input Input YUYV data buffer. * @param[out] output Output RGB buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_yuyv_to_rgb(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto element_size = alpha ? 32 : 24; constexpr auto shift = yuyv ? 0 : 1; Iterator in(input_ptr, win); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta = vld4q_u8(in.ptr()); //ta.val[0] = Y0 Y2 Y4 Y6 ... //ta.val[1] = U0 U2 U4 U6 ... //ta.val[2] = Y1 Y3 Y5 Y7 ... //ta.val[3] = V0 V2 V4 V7 ... // Convert the uint8x16x4_t to float32x4x4_t const float32x4x4_t yvec = convert_uint8x16_to_float32x4x4(ta.val[0 + shift]); const float32x4x4_t uvec = convert_uint8x16_to_float32x4x4(ta.val[1 - shift]); const float32x4x4_t yyvec = convert_uint8x16_to_float32x4x4(ta.val[2 + shift]); const float32x4x4_t vvec = convert_uint8x16_to_float32x4x4(ta.val[3 - shift]); yuyv_to_rgb_calculation(yvec.val[0], uvec.val[0], yyvec.val[0], vvec.val[0], out.ptr() + 0 * element_size, alpha); yuyv_to_rgb_calculation(yvec.val[1], uvec.val[1], yyvec.val[1], vvec.val[1], out.ptr() + 1 * element_size, alpha); yuyv_to_rgb_calculation(yvec.val[2], uvec.val[2], yyvec.val[2], vvec.val[2], out.ptr() + 2 * element_size, alpha); yuyv_to_rgb_calculation(yvec.val[3], uvec.val[3], yyvec.val[3], vvec.val[3], out.ptr() + 3 * element_size, alpha); }, in, out); } /** Convert NV12 to RGB. * * @param[in] input Input NV12 data buffer. * @param[out] output Output RGB buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_nv12_to_rgb(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto element_size = alpha ? 32 : 24; const auto out_stride = output_ptr->info()->strides_in_bytes().y(); constexpr auto shift = uv ? 0 : 1; // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_uv(input_ptr->plane(1), win_uv); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); const auto ta_uv = vld2q_u8(in_uv.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_uv.val[0] = U0 U2 U4 U6 ... //ta_uv.val[1] = V0 V2 V4 V6 ... // Convert the uint8x16x4_t to float32x4x4_t float32x4x4_t yvec_top = convert_uint8x16_to_float32x4x4(ta_y_top.val[0]); float32x4x4_t yyvec_top = convert_uint8x16_to_float32x4x4(ta_y_top.val[1]); float32x4x4_t yvec_bottom = convert_uint8x16_to_float32x4x4(ta_y_bottom.val[0]); float32x4x4_t yyvec_bottom = convert_uint8x16_to_float32x4x4(ta_y_bottom.val[1]); float32x4x4_t uvec = convert_uint8x16_to_float32x4x4(ta_uv.val[0 + shift]); float32x4x4_t vvec = convert_uint8x16_to_float32x4x4(ta_uv.val[1 - shift]); yuyv_to_rgb_calculation(yvec_top.val[0], uvec.val[0], yyvec_top.val[0], vvec.val[0], out.ptr() + 0 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[1], uvec.val[1], yyvec_top.val[1], vvec.val[1], out.ptr() + 1 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[2], uvec.val[2], yyvec_top.val[2], vvec.val[2], out.ptr() + 2 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[3], uvec.val[3], yyvec_top.val[3], vvec.val[3], out.ptr() + 3 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[0], uvec.val[0], yyvec_bottom.val[0], vvec.val[0], out.ptr() + out_stride + 0 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[1], uvec.val[1], yyvec_bottom.val[1], vvec.val[1], out.ptr() + out_stride + 1 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[2], uvec.val[2], yyvec_bottom.val[2], vvec.val[2], out.ptr() + out_stride + 2 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[3], uvec.val[3], yyvec_bottom.val[3], vvec.val[3], out.ptr() + out_stride + 3 * element_size, alpha); }, in_y, in_uv, out); } /** Convert IYUV to RGB. * * @param[in] input Input IYUV data buffer. * @param[out] output Output RGB buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_iyuv_to_rgb(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto element_size = alpha ? 32 : 24; const auto out_stride = output_ptr->info()->strides_in_bytes().y(); // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_u(input_ptr->plane(1), win_uv); Iterator in_v(input_ptr->plane(2), win_uv); Iterator out(output_ptr, win); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); const auto ta_u = vld1q_u8(in_u.ptr()); const auto ta_v = vld1q_u8(in_v.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_u.val[0] = U0 U2 U4 U6 ... //ta_v.val[0] = V0 V2 V4 V6 ... // Convert the uint8x16x4_t to float32x4x4_t float32x4x4_t yvec_top = convert_uint8x16_to_float32x4x4(ta_y_top.val[0]); float32x4x4_t yyvec_top = convert_uint8x16_to_float32x4x4(ta_y_top.val[1]); float32x4x4_t yvec_bottom = convert_uint8x16_to_float32x4x4(ta_y_bottom.val[0]); float32x4x4_t yyvec_bottom = convert_uint8x16_to_float32x4x4(ta_y_bottom.val[1]); float32x4x4_t uvec = convert_uint8x16_to_float32x4x4(ta_u); float32x4x4_t vvec = convert_uint8x16_to_float32x4x4(ta_v); yuyv_to_rgb_calculation(yvec_top.val[0], uvec.val[0], yyvec_top.val[0], vvec.val[0], out.ptr() + 0 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[1], uvec.val[1], yyvec_top.val[1], vvec.val[1], out.ptr() + 1 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[2], uvec.val[2], yyvec_top.val[2], vvec.val[2], out.ptr() + 2 * element_size, alpha); yuyv_to_rgb_calculation(yvec_top.val[3], uvec.val[3], yyvec_top.val[3], vvec.val[3], out.ptr() + 3 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[0], uvec.val[0], yyvec_bottom.val[0], vvec.val[0], out.ptr() + out_stride + 0 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[1], uvec.val[1], yyvec_bottom.val[1], vvec.val[1], out.ptr() + out_stride + 1 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[2], uvec.val[2], yyvec_bottom.val[2], vvec.val[2], out.ptr() + out_stride + 2 * element_size, alpha); yuyv_to_rgb_calculation(yvec_bottom.val[3], uvec.val[3], yyvec_bottom.val[3], vvec.val[3], out.ptr() + out_stride + 3 * element_size, alpha); }, in_y, in_u, in_v, out); } /** Convert YUYV to NV12. * * @param[in] input Input YUYV data buffer. * @param[out] output Output NV12 buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_yuyv_to_nv12(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto shift = yuyv ? 0 : 1; // NV12's UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in(input_ptr, win); Iterator out_y(output_ptr->plane(0), win); Iterator out_uv(output_ptr->plane(1), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_top = vld4q_u8(in.ptr()); const auto ta_bottom = vld4q_u8(in.ptr() + input_ptr->info()->strides_in_bytes().y()); //ta.val[0] = Y0 Y2 Y4 Y6 ... //ta.val[1] = U0 U2 U4 U6 ... //ta.val[2] = Y1 Y3 Y5 Y7 ... //ta.val[3] = V0 V2 V4 V7 ... uint8x16x2_t yvec; yvec.val[0] = ta_top.val[0 + shift]; yvec.val[1] = ta_top.val[2 + shift]; vst2q_u8(out_y.ptr(), yvec); uint8x16x2_t yyvec; yyvec.val[0] = ta_bottom.val[0 + shift]; yyvec.val[1] = ta_bottom.val[2 + shift]; vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), yyvec); uint8x16x2_t uvvec; uvvec.val[0] = vhaddq_u8(ta_top.val[1 - shift], ta_bottom.val[1 - shift]); uvvec.val[1] = vhaddq_u8(ta_top.val[3 - shift], ta_bottom.val[3 - shift]); vst2q_u8(out_uv.ptr(), uvvec); }, in, out_y, out_uv); } /** Convert IYUV to NV12. * * @param[in] input Input IYUV data buffer. * @param[out] output Output NV12 buffer. * @param[in] win Window for iterating the buffers. * */ void colorconvert_iyuv_to_nv12(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_u(input_ptr->plane(1), win_uv); Iterator in_v(input_ptr->plane(2), win_uv); Iterator out_y(output_ptr->plane(0), win); Iterator out_uv(output_ptr->plane(1), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); uint8x16x2_t ta_uv; ta_uv.val[0] = vld1q_u8(in_u.ptr()); ta_uv.val[1] = vld1q_u8(in_v.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_uv.val[0] = U0 U2 U4 U6 ... //ta_uv.val[1] = V0 V2 V4 V6 ... vst2q_u8(out_y.ptr(), ta_y_top); vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), ta_y_bottom); vst2q_u8(out_uv.ptr(), ta_uv); }, in_y, in_u, in_v, out_y, out_uv); } /** Convert NV12 to IYUV. * * @param[in] input Input NV12 data buffer. * @param[out] output Output IYUV buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_nv12_to_iyuv(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto shift = uv ? 0 : 1; // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_uv(input_ptr->plane(1), win_uv); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win_uv); Iterator out_v(output_ptr->plane(2), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); const auto ta_uv = vld2q_u8(in_uv.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_uv.val[0] = U0 U2 U4 U6 ... //ta_uv.val[1] = V0 V2 V4 V6 ... vst2q_u8(out_y.ptr(), ta_y_top); vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), ta_y_bottom); vst1q_u8(out_u.ptr(), ta_uv.val[0 + shift]); vst1q_u8(out_v.ptr(), ta_uv.val[1 - shift]); }, in_y, in_uv, out_y, out_u, out_v); } /** Convert YUYV to IYUV. * * @param[in] input Input YUYV data buffer. * @param[out] output Output IYUV buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_yuyv_to_iyuv(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto shift = yuyv ? 0 : 1; // Destination's UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in(input_ptr, win); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win_uv); Iterator out_v(output_ptr->plane(2), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_top = vld4q_u8(in.ptr()); const auto ta_bottom = vld4q_u8(in.ptr() + input_ptr->info()->strides_in_bytes().y()); //ta.val[0] = Y0 Y2 Y4 Y6 ... //ta.val[1] = U0 U2 U4 U6 ... //ta.val[2] = Y1 Y3 Y5 Y7 ... //ta.val[3] = V0 V2 V4 V7 ... uint8x16x2_t yvec; yvec.val[0] = ta_top.val[0 + shift]; yvec.val[1] = ta_top.val[2 + shift]; vst2q_u8(out_y.ptr(), yvec); uint8x16x2_t yyvec; yyvec.val[0] = ta_bottom.val[0 + shift]; yyvec.val[1] = ta_bottom.val[2 + shift]; vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), yyvec); uint8x16_t uvec; uvec = vhaddq_u8(ta_top.val[1 - shift], ta_bottom.val[1 - shift]); vst1q_u8(out_u.ptr(), uvec); uint8x16_t vvec; vvec = vhaddq_u8(ta_top.val[3 - shift], ta_bottom.val[3 - shift]); vst1q_u8(out_v.ptr(), vvec); }, in, out_y, out_u, out_v); } /** Convert NV12 to YUV4. * * @param[in] input Input NV12 data buffer. * @param[out] output Output YUV4 buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_nv12_to_yuv4(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); constexpr auto shift = uv ? 0 : 1; // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_uv(input_ptr->plane(1), win_uv); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win); Iterator out_v(output_ptr->plane(2), win); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); const auto ta_uv = vld2q_u8(in_uv.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_uv.val[0] = U0 U2 U4 U6 ... //ta_uv.val[1] = V0 V2 V4 V6 ... vst2q_u8(out_y.ptr(), ta_y_top); vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), ta_y_bottom); uint8x16x2_t uvec; uvec.val[0] = ta_uv.val[0 + shift]; uvec.val[1] = ta_uv.val[0 + shift]; vst2q_u8(out_u.ptr(), uvec); vst2q_u8(out_u.ptr() + output_ptr->plane(1)->info()->strides_in_bytes().y(), uvec); uint8x16x2_t vvec; vvec.val[0] = ta_uv.val[1 - shift]; vvec.val[1] = ta_uv.val[1 - shift]; vst2q_u8(out_v.ptr(), vvec); vst2q_u8(out_v.ptr() + output_ptr->plane(2)->info()->strides_in_bytes().y(), vvec); }, in_y, in_uv, out_y, out_u, out_v); } /** Convert IYUV to YUV4. * * @param[in] input Input IYUV data buffer. * @param[out] output Output YUV4 buffer. * @param[in] win Window for iterating the buffers. * */ void colorconvert_iyuv_to_yuv4(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in_y(input_ptr->plane(0), win); Iterator in_u(input_ptr->plane(1), win_uv); Iterator in_v(input_ptr->plane(2), win_uv); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win); Iterator out_v(output_ptr->plane(2), win); execute_window_loop(win, [&](const Coordinates &) { const auto ta_y_top = vld2q_u8(in_y.ptr()); const auto ta_y_bottom = vld2q_u8(in_y.ptr() + input_ptr->plane(0)->info()->strides_in_bytes().y()); const auto ta_u = vld1q_u8(in_u.ptr()); const auto ta_v = vld1q_u8(in_v.ptr()); //ta_y.val[0] = Y0 Y2 Y4 Y6 ... //ta_y.val[1] = Y1 Y3 Y5 Y7 ... //ta_u = U0 U2 U4 U6 ... //ta_v = V0 V2 V4 V6 ... vst2q_u8(out_y.ptr(), ta_y_top); vst2q_u8(out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), ta_y_bottom); uint8x16x2_t uvec; uvec.val[0] = ta_u; uvec.val[1] = ta_u; vst2q_u8(out_u.ptr(), uvec); vst2q_u8(out_u.ptr() + output_ptr->plane(1)->info()->strides_in_bytes().y(), uvec); uint8x16x2_t vvec; vvec.val[0] = ta_v; vvec.val[1] = ta_v; vst2q_u8(out_v.ptr(), vvec); vst2q_u8(out_v.ptr() + output_ptr->plane(2)->info()->strides_in_bytes().y(), vvec); }, in_y, in_u, in_v, out_y, out_u, out_v); } /** Convert RGB to NV12. * * @param[in] input Input RGB data buffer. * @param[out] output Output NV12 buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_rgb_to_nv12(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in(input_ptr, win); Iterator out_y(output_ptr->plane(0), win); Iterator out_uv(output_ptr->plane(1), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_rgb_top = load_rgb(in.ptr(), alpha); const auto ta_rgb_bottom = load_rgb(in.ptr() + input_ptr->info()->strides_in_bytes().y(), alpha); //ta_rgb.val[0] = R0 R1 R2 R3 ... //ta_rgb.val[1] = G0 G1 G2 G3 ... //ta_rgb.val[2] = B0 B1 B2 B3 ... store_rgb_to_nv12(ta_rgb_top.val[0], ta_rgb_top.val[1], ta_rgb_top.val[2], ta_rgb_bottom.val[0], ta_rgb_bottom.val[1], ta_rgb_bottom.val[2], out_y.ptr(), out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), out_uv.ptr()); }, in, out_y, out_uv); } /** Convert RGB to IYUV. * * @param[in] input Input RGB data buffer. * @param[out] output Output IYUV buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_rgb_to_iyuv(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); // UV's width and height are subsampled Window win_uv(win); win_uv.set(Window::DimX, Window::Dimension(win_uv.x().start() / 2, win_uv.x().end() / 2, win_uv.x().step() / 2)); win_uv.set(Window::DimY, Window::Dimension(win_uv.y().start() / 2, win_uv.y().end() / 2, 1)); win_uv.validate(); Iterator in(input_ptr, win); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win_uv); Iterator out_v(output_ptr->plane(2), win_uv); execute_window_loop(win, [&](const Coordinates &) { const auto ta_rgb_top = load_rgb(in.ptr(), alpha); const auto ta_rgb_bottom = load_rgb(in.ptr() + input_ptr->info()->strides_in_bytes().y(), alpha); //ta_rgb.val[0] = R0 R1 R2 R3 ... //ta_rgb.val[1] = G0 G1 G2 G3 ... //ta_rgb.val[2] = B0 B1 B2 B3 ... store_rgb_to_iyuv(ta_rgb_top.val[0], ta_rgb_top.val[1], ta_rgb_top.val[2], ta_rgb_bottom.val[0], ta_rgb_bottom.val[1], ta_rgb_bottom.val[2], out_y.ptr(), out_y.ptr() + output_ptr->plane(0)->info()->strides_in_bytes().y(), out_u.ptr(), out_v.ptr()); }, in, out_y, out_u, out_v); } /** Convert RGB to YUV4. * * @param[in] input Input RGB data buffer. * @param[out] output Output YUV4 buffer. * @param[in] win Window for iterating the buffers. * */ template void colorconvert_rgb_to_yuv4(const void *__restrict input, void *__restrict output, const Window &win) { ARM_COMPUTE_ERROR_ON(nullptr == input); ARM_COMPUTE_ERROR_ON(nullptr == output); win.validate(); const auto input_ptr = static_cast(input); const auto output_ptr = static_cast(output); Iterator in(input_ptr, win); Iterator out_y(output_ptr->plane(0), win); Iterator out_u(output_ptr->plane(1), win); Iterator out_v(output_ptr->plane(2), win); execute_window_loop(win, [&](const Coordinates &) { const auto ta_rgb = load_rgb(in.ptr(), alpha); //ta_rgb.val[0] = R0 R1 R2 R3 ... //ta_rgb.val[1] = G0 G1 G2 G3 ... //ta_rgb.val[2] = B0 B1 B2 B3 ... store_rgb_to_yuv4(ta_rgb.val[0], ta_rgb.val[1], ta_rgb.val[2], out_y.ptr(), out_u.ptr(), out_v.ptr()); }, in, out_y, out_u, out_v); } } // namespace arm_compute