/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "arm_compute/core/Error.h" #include "arm_compute/core/Validate.h" #include #include namespace arm_compute { inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y) { ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr); // Calculate sampling position float in_x = (x + 0.5f) * wr - 0.5f; float in_y = (y + 0.5f) * hr - 0.5f; // Get bounding box offsets int x_from = std::floor(x * wr - 0.5f - in_x); int y_from = std::floor(y * hr - 0.5f - in_y); int x_to = std::ceil((x + 1) * wr - 0.5f - in_x); int y_to = std::ceil((y + 1) * hr - 0.5f - in_y); // Clamp position to borders in_x = std::max(-1.f, std::min(in_x, static_cast(width))); in_y = std::max(-1.f, std::min(in_y, static_cast(height))); // Clamp bounding box offsets to borders x_from = ((in_x + x_from) < -1) ? -1 : x_from; y_from = ((in_y + y_from) < -1) ? -1 : y_from; x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to; y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to; // Get pixel index const int xi = std::floor(in_x); const int yi = std::floor(in_y); // Bounding box elements in each dimension const int x_elements = (x_to - x_from + 1); const int y_elements = (y_to - y_from + 1); ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0); // Sum pixels in area int sum = 0; for(int j = yi + y_from, je = yi + y_to; j <= je; ++j) { const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from; sum = std::accumulate(ptr, ptr + x_elements, sum); } // Return average return sum / (x_elements * y_elements); } template struct IncrementIterators { template static void unroll(T &&it, Ts &&... iterators) { auto increment = [](T && it) { it.increment(dimension); }; utility::for_each(increment, std::forward(it), std::forward(iterators)...); } static void unroll() { // End of recursion } }; template struct ForEachDimension { template static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators) { const auto &d = w[dim - 1]; for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...)) { id.set(dim - 1, v); ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...); } } }; template <> struct ForEachDimension<0> { template static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators) { lambda_function(id); } }; template inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators) { w.validate(); for(unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i) { ARM_COMPUTE_ERROR_ON(w[i].step() == 0); } Coordinates id; ForEachDimension::unroll(w, id, std::forward(lambda_function), std::forward(iterators)...); } inline constexpr Iterator::Iterator() : _ptr(nullptr), _dims() { } inline Iterator::Iterator(const ITensor *tensor, const Window &win) : Iterator() { ARM_COMPUTE_ERROR_ON(tensor == nullptr); ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr); const ITensorInfo *info = tensor->info(); const Strides &strides = info->strides_in_bytes(); _ptr = tensor->buffer() + info->offset_first_element_in_bytes(); //Initialize the stride for each dimension and calculate the position of the first element of the iteration: for(unsigned int n = 0; n < info->num_dimensions(); ++n) { _dims[n]._stride = win[n].step() * strides[n]; std::get<0>(_dims)._dim_start += strides[n] * win[n].start(); } //Copy the starting point to all the dimensions: for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n) { _dims[n]._dim_start = std::get<0>(_dims)._dim_start; } ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions()); } inline void Iterator::increment(const size_t dimension) { ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions); _dims[dimension]._dim_start += _dims[dimension]._stride; for(unsigned int n = 0; n < dimension; ++n) { _dims[n]._dim_start = _dims[dimension]._dim_start; } } inline constexpr int Iterator::offset() const { return _dims.at(0)._dim_start; } inline constexpr uint8_t *Iterator::ptr() const { return _ptr + _dims.at(0)._dim_start; } inline void Iterator::reset(const size_t dimension) { ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1); _dims[dimension]._dim_start = _dims[dimension + 1]._dim_start; for(unsigned int n = 0; n < dimension; ++n) { _dims[n]._dim_start = _dims[dimension]._dim_start; } } inline bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info) { if(info.tensor_shape().total_size() == 0) { info.set_data_type(data_type); info.set_num_channels(num_channels); info.set_tensor_shape(shape); info.set_quantization_info(quantization_info); return true; } return false; } inline bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source) { if(info_sink.tensor_shape().total_size() == 0) { info_sink.set_data_type(info_source.data_type()); info_sink.set_num_channels(info_source.num_channels()); info_sink.set_tensor_shape(info_source.tensor_shape()); info_sink.set_quantization_info(info_source.quantization_info()); info_sink.set_data_layout(info_source.data_layout()); return true; } return false; } inline bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape) { if(info.tensor_shape().total_size() == 0) { info.set_tensor_shape(shape); return true; } return false; } inline bool set_format_if_unknown(ITensorInfo &info, Format format) { if(info.data_type() == DataType::UNKNOWN) { info.set_format(format); return true; } return false; } inline bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type) { if(info.data_type() == DataType::UNKNOWN) { info.set_data_type(data_type); return true; } return false; } inline bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout) { if(info.data_layout() == DataLayout::UNKNOWN) { info.set_data_layout(data_layout); return true; } return false; } inline bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info) { if(info.quantization_info().empty() && (is_data_type_quantized_asymmetric(info.data_type()))) { info.set_quantization_info(quantization_info); return true; } return false; } inline Coordinates index2coords(const TensorShape &shape, int index) { int num_elements = shape.total_size(); ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!"); ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!"); Coordinates coord{ 0 }; for(int d = shape.num_dimensions() - 1; d >= 0; --d) { num_elements /= shape[d]; coord.set(d, index / num_elements); index %= num_elements; } return coord; } inline int coords2index(const TensorShape &shape, const Coordinates &coord) { int num_elements = shape.total_size(); ARM_COMPUTE_UNUSED(num_elements); ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!"); int index = 0; int stride = 1; for(unsigned int d = 0; d < coord.num_dimensions(); ++d) { index += coord[d] * stride; stride *= shape[d]; } return index; } inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension) { ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!"); /* Return the index based on the data layout * [N C H W] * [3 2 1 0] * [N H W C] */ switch(data_layout_dimension) { case DataLayoutDimension::CHANNEL: return (data_layout == DataLayout::NCHW) ? 2 : 0; break; case DataLayoutDimension::HEIGHT: return (data_layout == DataLayout::NCHW) ? 1 : 2; break; case DataLayoutDimension::WIDTH: return (data_layout == DataLayout::NCHW) ? 0 : 1; break; case DataLayoutDimension::BATCHES: return 3; break; default: ARM_COMPUTE_ERROR("Data layout index not supported!"); break; } } inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index) { ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!"); /* Return the index based on the data layout * [N C H W] * [3 2 1 0] * [N H W C] */ switch(index) { case 0: return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::WIDTH : DataLayoutDimension::CHANNEL; break; case 1: return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::HEIGHT : DataLayoutDimension::WIDTH; break; case 2: return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::CHANNEL : DataLayoutDimension::HEIGHT; break; case 3: return DataLayoutDimension::BATCHES; break; default: ARM_COMPUTE_ERROR("Index value not supported!"); break; } } } // namespace arm_compute