/* * Copyright (c) 2016-2020 Arm Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef ARM_COMPUTE_HELPERS_H #define ARM_COMPUTE_HELPERS_H #include "arm_compute/core/Error.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/ITensor.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Validate.h" #include "arm_compute/core/Window.h" #include #include #include #include namespace arm_compute { class IKernel; class ITensor; class ITensorInfo; /** Iterator updated by @ref execute_window_loop for each window element */ class Iterator { public: /** Default constructor to create an empty iterator */ constexpr Iterator(); /** Create a container iterator for the metadata and allocation contained in the ITensor * * @param[in] tensor The tensor to associate to the iterator. * @param[in] window The window which will be used to iterate over the tensor. */ Iterator(const ITensor *tensor, const Window &window); /** Increment the iterator along the specified dimension of the step value associated to the dimension. * * @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow. * * @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start. * * @param[in] dimension Dimension to increment */ void increment(size_t dimension); /** Return the offset in bytes from the first element to the current position of the iterator * * @return The current position of the iterator in bytes relative to the first element. */ constexpr size_t offset() const; /** Return a pointer to the current pixel. * * @warning Only works if the iterator was created with an ITensor. * * @return equivalent to buffer() + offset() */ constexpr uint8_t *ptr() const; /** Move the iterator back to the beginning of the specified dimension. * * @param[in] dimension Dimension to reset */ void reset(size_t dimension); private: uint8_t *_ptr; class Dimension { public: constexpr Dimension() : _dim_start(0), _stride(0) { } size_t _dim_start; size_t _stride; }; std::array _dims; }; /** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element. * It passes the x and y positions to the lambda_function for each iteration * * @param[in] w Window to iterate through. * @param[in] lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration. * Where id represents the absolute coordinates of the item to process. * @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function. */ template inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators); /** Permutes given Dimensions according to a permutation vector * * @warning Validity of permutation is not checked * * @param[in, out] dimensions Dimensions to permute * @param[in] perm Permutation vector */ template inline void permute(Dimensions &dimensions, const PermutationVector &perm) { auto dimensions_copy = utility::make_array::num_max_dimensions>(dimensions.begin(), dimensions.end()); for(unsigned int i = 0; i < perm.num_dimensions(); ++i) { T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0; dimensions.set(i, dimension_val); } } /** Permutes given TensorShape according to a permutation vector * * @warning Validity of permutation is not checked * * @param[in, out] shape Shape to permute * @param[in] perm Permutation vector */ inline void permute(TensorShape &shape, const PermutationVector &perm) { TensorShape shape_copy = shape; for(unsigned int i = 0; i < perm.num_dimensions(); ++i) { size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1; shape.set(i, dimension_val, false, false); // Avoid changes in _num_dimension } } /** Helper function to calculate the Valid Region for Scale. * * @param[in] src_info Input tensor info used to check. * @param[in] dst_shape Shape of the output. * @param[in] interpolate_policy Interpolation policy. * @param[in] sampling_policy Sampling policy. * @param[in] border_undefined True if the border is undefined. * * @return The corresponding valid region */ ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape, InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined); /** Convert a linear index into n-dimensional coordinates. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] index Linear index specifying the i-th element. * * @return n-dimensional coordinates. */ inline Coordinates index2coords(const TensorShape &shape, int index); /** Convert n-dimensional coordinates into a linear index. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] coord N-dimensional coordinates. * * @return linead index */ inline int coords2index(const TensorShape &shape, const Coordinates &coord); /** Get the index of the given dimension. * * @param[in] data_layout The data layout. * @param[in] data_layout_dimension The dimension which this index is requested for. * * @return The int conversion of the requested data layout index. */ inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension); /** Get the DataLayoutDimension of a given index and layout. * * @param[in] data_layout The data layout. * @param[in] index The data layout index. * * @return The dimension which this index is requested for. */ inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index); /** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform * to know the number of tiles on the x and y direction * * @param[in] in_dims Spatial dimensions of the input tensor of convolution layer * @param[in] kernel_size Kernel size * @param[in] output_tile_size Size of a single output tile * @param[in] conv_info Convolution info (i.e. pad, stride,...) * * @return the number of output tiles along the x and y directions of size "output_tile_size" */ inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info) { int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast(output_tile_size.width)); int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast(output_tile_size.height)); // Clamp in case we provide paddings but we have 1D convolution num_tiles_x = std::min(num_tiles_x, static_cast(in_dims.width)); num_tiles_y = std::min(num_tiles_y, static_cast(in_dims.height)); return Size2D(num_tiles_x, num_tiles_y); } /** Wrap-around a number within the range 0 <= x < m * * @param[in] x Input value * @param[in] m Range * * @return the wrapped-around number */ template inline T wrap_around(T x, T m) { return x >= 0 ? x % m : (x % m + m) % m; } /** Convert negative coordinates to positive in the range [0, num_dims_input] * * @param[out] coords Array of coordinates to be converted. * @param[in] max_value Maximum value to be used when wrapping the negative values in coords */ inline Coordinates &convert_negative_axis(Coordinates &coords, int max_value) { for(unsigned int i = 0; i < coords.num_dimensions(); ++i) { coords[i] = wrap_around(coords[i], max_value); } return coords; } } // namespace arm_compute #include "arm_compute/core/Helpers.inl" #endif /*ARM_COMPUTE_HELPERS_H */