/* * Copyright (c) 2016-2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_HELPERS_H__ #define __ARM_COMPUTE_HELPERS_H__ #include "arm_compute/core/Coordinates.h" #include "arm_compute/core/Error.h" #include "arm_compute/core/IAccessWindow.h" #include "arm_compute/core/Steps.h" #include "arm_compute/core/Strides.h" #include "arm_compute/core/TensorShape.h" #include "arm_compute/core/Types.h" #include "arm_compute/core/Window.h" #include #include #include #include #include #include #include namespace arm_compute { class IKernel; class ITensor; class ITensorInfo; /** Disable bitwise operations by default */ template struct enable_bitwise_ops { static constexpr bool value = false; /**< Disabled */ }; #ifndef DOXYGEN_SKIP_THIS template typename std::enable_if::value, T>::type operator&(T lhs, T rhs) { using underlying_type = typename std::underlying_type::type; return static_cast(static_cast(lhs) & static_cast(rhs)); } #endif /* DOXYGEN_SKIP_THIS */ /** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object * It also calls the kernel's configuration. * * @param[in] args All the arguments that need pass to kernel's configuration. * * @return A unique pointer pointed to a CL/GLES kernel object */ template std::unique_ptr create_configure_kernel(T &&... args) { std::unique_ptr k = arm_compute::support::cpp14::make_unique(); k->configure(std::forward(args)...); return k; } /** Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object * * @return A unique pointer pointed to a Kernel kernel object */ template std::unique_ptr create_kernel() { std::unique_ptr k = arm_compute::support::cpp14::make_unique(); return k; } namespace traits { /** Check if a type T is contained in a tuple Tuple of types */ template struct is_contained; template struct is_contained> : std::false_type { }; template struct is_contained> : std::true_type { }; template struct is_contained> : is_contained> { }; } /** Computes bilinear interpolation using the pointer to the top-left pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be in single channel format. * * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input. * @param[in] stride Stride to access the bottom-left and bottom-right pixel values * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer * * @note dx and dy must be in the range [0, 1.0] * * @return The bilinear interpolated pixel value */ template inline T delta_bilinear_c1(const T *pixel_ptr, size_t stride, float dx, float dy) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const float dx1 = 1.0f - dx; const float dy1 = 1.0f - dy; const T a00 = *pixel_ptr; const T a01 = *(pixel_ptr + 1); const T a10 = *(pixel_ptr + stride); const T a11 = *(pixel_ptr + stride + 1); const float w1 = dx1 * dy1; const float w2 = dx * dy1; const float w3 = dx1 * dy; const float w4 = dx * dy; return static_cast(a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4); } /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be quantized and in single channel format. * * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input. * @param[in] stride Stride to access the bottom-left and bottom-right pixel values * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer * @param[in] iq_info Input QuantizationInfo * @param[in] oq_info Output QuantizationInfo * * @note dx and dy must be in the range [0, 1.0] * * @return The bilinear interpolated pixel value */ inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy, UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const float dx1 = 1.0f - dx; const float dy1 = 1.0f - dy; const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info); const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info); const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info); const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info); const float w1 = dx1 * dy1; const float w2 = dx * dy1; const float w3 = dx1 * dy; const float w4 = dx * dy; float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4; return static_cast(quantize_qasymm8(res, oq_info)); } /** Computes linear interpolation using the pointer to the top pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be in single channel format. * * @param[in] pixel_ptr Pointer to the top pixel value of a single channel input. * @param[in] stride Stride to access the bottom pixel value * @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer * * @note dy must be in the range [0, 1.0] * * @return The linear interpolated pixel value */ template inline T delta_linear_c1_y(const T *pixel_ptr, size_t stride, float dy) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const float dy1 = 1.0f - dy; const T a00 = *pixel_ptr; const T a10 = *(pixel_ptr + stride); const float w1 = dy1; const float w3 = dy; return static_cast(a00 * w1 + a10 * w3); } /** Computes linear interpolation using the pointer to the left pixel and the pixel's distance between * the real coordinates and the smallest following integer coordinates. Input must be in single channel format. * * @param[in] pixel_ptr Pointer to the left pixel value of a single channel input. * @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer * * @note dx must be in the range [0, 1.0] * * @return The linear interpolated pixel value */ template inline T delta_linear_c1_x(const T *pixel_ptr, float dx) { ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr); const T a00 = *pixel_ptr; const T a01 = *(pixel_ptr + 1); const float dx1 = 1.0f - dx; const float w1 = dx1; const float w2 = dx; return static_cast(a00 * w1 + a01 * w2); } /** Return the pixel at (x,y) using bilinear interpolation. * * @warning Only works if the iterator was created with an IImage * * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel input. * @param[in] stride Stride in bytes of the image; * @param[in] x X position of the wanted pixel * @param[in] y Y position of the wanted pixel * * @return The pixel at (x, y) using bilinear interpolation. */ template inline T pixel_bilinear_c1(const T *first_pixel_ptr, size_t stride, float x, float y) { ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr); const int32_t xi = std::floor(x); const int32_t yi = std::floor(y); const float dx = x - xi; const float dy = y - yi; return delta_bilinear_c1(first_pixel_ptr + xi + yi * stride, stride, dx, dy); } /** Return the pixel at (x,y) using bilinear interpolation by clamping when out of borders. The image must be single channel input * * @warning Only works if the iterator was created with an IImage * * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel image. * @param[in] stride Stride in bytes of the image * @param[in] width Width of the image * @param[in] height Height of the image * @param[in] x X position of the wanted pixel * @param[in] y Y position of the wanted pixel * * @return The pixel at (x, y) using bilinear interpolation. */ template inline uint8_t pixel_bilinear_c1_clamp(const T *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y) { ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr); x = std::max(-1.f, std::min(x, static_cast(width))); y = std::max(-1.f, std::min(y, static_cast(height))); const float xi = std::floor(x); const float yi = std::floor(y); const float dx = x - xi; const float dy = y - yi; if(dx == 0.0f) { if(dy == 0.0f) { return static_cast(first_pixel_ptr[static_cast(xi) + static_cast(yi) * stride]); } return delta_linear_c1_y(first_pixel_ptr + static_cast(xi) + static_cast(yi) * stride, stride, dy); } if(dy == 0.0f) { return delta_linear_c1_x(first_pixel_ptr + static_cast(xi) + static_cast(yi) * stride, dx); } return delta_bilinear_c1(first_pixel_ptr + static_cast(xi) + static_cast(yi) * stride, stride, dx, dy); } /** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8 * * @note The interpolation area depends on the width and height ration of the input and output images * @note Currently average of the contributing pixels is calculated * * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image. * @param[in] stride Stride in bytes of the image * @param[in] width Width of the image * @param[in] height Height of the image * @param[in] wr Width ratio among the input image width and output image width. * @param[in] hr Height ratio among the input image height and output image height. * @param[in] x X position of the wanted pixel * @param[in] y Y position of the wanted pixel * * @return The pixel at (x, y) using area interpolation. */ inline uint8_t pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr, float hr, int x, int y); /** Iterator updated by @ref execute_window_loop for each window element */ class Iterator { public: /** Default constructor to create an empty iterator */ constexpr Iterator(); /** Create a container iterator for the metadata and allocation contained in the ITensor * * @param[in] tensor The tensor to associate to the iterator. * @param[in] window The window which will be used to iterate over the tensor. */ Iterator(const ITensor *tensor, const Window &window); /** Increment the iterator along the specified dimension of the step value associated to the dimension. * * @warning It is the caller's responsibility to call increment(dimension+1) when reaching the end of a dimension, the iterator will not check for overflow. * * @note When incrementing a dimension 'n' the coordinates of all the dimensions in the range (0,n-1) are reset. For example if you iterate over a 2D image, everytime you change row (dimension 1), the iterator for the width (dimension 0) is reset to its start. * * @param[in] dimension Dimension to increment */ void increment(size_t dimension); /** Return the offset in bytes from the first element to the current position of the iterator * * @return The current position of the iterator in bytes relative to the first element. */ constexpr int offset() const; /** Return a pointer to the current pixel. * * @warning Only works if the iterator was created with an ITensor. * * @return equivalent to buffer() + offset() */ constexpr uint8_t *ptr() const; /** Move the iterator back to the beginning of the specified dimension. * * @param[in] dimension Dimension to reset */ void reset(size_t dimension); private: uint8_t *_ptr; class Dimension { public: constexpr Dimension() : _dim_start(0), _stride(0) { } int _dim_start; int _stride; }; std::array _dims; }; /** Iterate through the passed window, automatically adjusting the iterators and calling the lambda_functino for each element. * It passes the x and y positions to the lambda_function for each iteration * * @param[in] w Window to iterate through. * @param[in] lambda_function The function of type void(function)( const Coordinates & id ) to call at each iteration. * Where id represents the absolute coordinates of the item to process. * @param[in,out] iterators Tensor iterators which will be updated by this function before calling lambda_function. */ template inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators); /** Update window and padding size for each of the access patterns. * * First the window size is reduced based on all access patterns that are not * allowed to modify the padding of the underlying tensor. Then the padding of * the remaining tensors is increased to match the window. * * @param[in] win Window that is used by the kernel. * @param[in] patterns Access patterns used to calculate the final window and padding. * * @return True if the window has been changed. Changes to the padding do not * influence the returned value. */ template bool update_window_and_padding(Window &win, Ts &&... patterns) { bool window_changed = false; utility::for_each([&](const IAccessWindow & w) { window_changed |= w.update_window_if_needed(win); }, patterns...); bool padding_changed = false; utility::for_each([&](IAccessWindow & w) { padding_changed |= w.update_padding_if_needed(win); }, patterns...); return window_changed; } /** Calculate the maximum window for a given tensor shape and border setting * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()); /** Calculate the maximum window for a given tensor shape and border setting * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_window(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()) { return calculate_max_window(info.valid_region(), steps, skip_border, border_size); } /** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. The border region will be excluded from the window. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_window_horizontal(const ValidRegion &valid_region, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()); /** Calculate the maximum window used by a horizontal kernel for a given tensor shape and border setting * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] skip_border (Optional) If true exclude the border region from the window. * @param[in] border_size (Optional) Border size. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_window_horizontal(const ITensorInfo &info, const Steps &steps = Steps(), bool skip_border = false, BorderSize border_size = BorderSize()) { return calculate_max_window_horizontal(info.valid_region(), steps, skip_border, border_size); } /** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border. * * @param[in] valid_region Valid region object defining the shape of the tensor space for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] border_size (Optional) Border size. The border region will be included in the window. * * @return The maximum window the kernel can be executed on. */ Window calculate_max_enlarged_window(const ValidRegion &valid_region, const Steps &steps = Steps(), BorderSize border_size = BorderSize()); /** Calculate the maximum window for a given tensor shape and border setting. The window will also includes the border. * * @param[in] info Tensor info object defining the shape of the object for which the window is created. * @param[in] steps (Optional) Number of elements processed for each step. * @param[in] border_size (Optional) Border size. The border region will be included in the window. * * @return The maximum window the kernel can be executed on. */ inline Window calculate_max_enlarged_window(const ITensorInfo &info, const Steps &steps = Steps(), BorderSize border_size = BorderSize()) { return calculate_max_enlarged_window(info.valid_region(), steps, border_size); } /** Intersect multiple valid regions. * * @param[in] regions Valid regions. * * @return Intersection of all regions. */ template ValidRegion intersect_valid_regions(const Ts &... regions) { auto intersect = [](const ValidRegion & r1, const ValidRegion & r2) -> ValidRegion { ValidRegion region; for(size_t d = 0; d < std::min(r1.anchor.num_dimensions(), r2.anchor.num_dimensions()); ++d) { region.anchor.set(d, std::max(r1.anchor[d], r2.anchor[d])); } for(size_t d = 0; d < std::min(r1.shape.num_dimensions(), r2.shape.num_dimensions()); ++d) { region.shape.set(d, std::min(r1.shape[d], r2.shape[d])); } return region; }; return utility::foldl(intersect, regions...); } /** Create a strides object based on the provided strides and the tensor dimensions. * * @param[in] info Tensor info object providing the shape of the tensor for unspecified strides. * @param[in] stride_x Stride to be used in X dimension (in bytes). * @param[in] fixed_strides Strides to be used in higher dimensions starting at Y (in bytes). * * @return Strides object based on the specified strides. Missing strides are * calculated based on the tensor shape and the strides of lower dimensions. */ template inline Strides compute_strides(const ITensorInfo &info, T stride_x, Ts &&... fixed_strides) { const TensorShape &shape = info.tensor_shape(); // Create strides object Strides strides(stride_x, fixed_strides...); for(size_t i = 1 + sizeof...(Ts); i < info.num_dimensions(); ++i) { strides.set(i, shape[i - 1] * strides[i - 1]); } return strides; } /** Create a strides object based on the tensor dimensions. * * @param[in] info Tensor info object used to compute the strides. * * @return Strides object based on element size and tensor shape. */ template inline Strides compute_strides(const ITensorInfo &info) { return compute_strides(info, info.element_size()); } /** Permutes given Dimensions according to a permutation vector * * @warning Validity of permutation is not checked * * @param[in, out] dimensions Dimensions to permute * @param[in] perm Permutation vector */ template inline void permute(Dimensions &dimensions, const PermutationVector &perm) { auto dimensions_copy = utility::make_array::num_max_dimensions>(dimensions.begin(), dimensions.end()); for(unsigned int i = 0; i < perm.num_dimensions(); ++i) { T dimension_val = (perm[i] < dimensions.num_dimensions()) ? dimensions_copy[perm[i]] : 0; dimensions.set(i, dimension_val); } } /** Permutes given TensorShape according to a permutation vector * * @warning Validity of permutation is not checked * * @param[in, out] shape Shape to permute * @param[in] perm Permutation vector */ inline void permute(TensorShape &shape, const PermutationVector &perm) { TensorShape shape_copy = shape; for(unsigned int i = 0; i < perm.num_dimensions(); ++i) { size_t dimension_val = (perm[i] < shape.num_dimensions()) ? shape_copy[perm[i]] : 1; shape.set(i, dimension_val, false); // Avoid changes in _num_dimension } } /** Auto initialize the tensor info (shape, number of channels and data type) if the current assignment is empty. * * @param[in,out] info Tensor info used to check and assign. * @param[in] shape New shape. * @param[in] num_channels New number of channels. * @param[in] data_type New data type * @param[in] quantization_info (Optional) New quantization info * * @return True if the tensor info has been initialized */ bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info = QuantizationInfo()); /** Auto initialize the tensor info using another tensor info. * * @param info_sink Tensor info used to check and assign * @param info_source Tensor info used to assign * * @return True if the tensor info has been initialized */ bool auto_init_if_empty(ITensorInfo &info_sink, const ITensorInfo &info_source); /** Set the shape to the specified value if the current assignment is empty. * * @param[in,out] info Tensor info used to check and assign. * @param[in] shape New shape. * * @return True if the shape has been changed. */ bool set_shape_if_empty(ITensorInfo &info, const TensorShape &shape); /** Set the format, data type and number of channels to the specified value if * the current data type is unknown. * * @param[in,out] info Tensor info used to check and assign. * @param[in] format New format. * * @return True if the format has been changed. */ bool set_format_if_unknown(ITensorInfo &info, Format format); /** Set the data type and number of channels to the specified value if * the current data type is unknown. * * @param[in,out] info Tensor info used to check and assign. * @param[in] data_type New data type. * * @return True if the data type has been changed. */ bool set_data_type_if_unknown(ITensorInfo &info, DataType data_type); /** Set the data layout to the specified value if * the current data layout is unknown. * * @param[in,out] info Tensor info used to check and assign. * @param[in] data_layout New data layout. * * @return True if the data type has been changed. */ bool set_data_layout_if_unknown(ITensorInfo &info, DataLayout data_layout); /** Set the quantization info to the specified value if * the current quantization info is empty and the data type of asymmetric quantized type * * @param[in,out] info Tensor info used to check and assign. * @param[in] quantization_info Quantization info * * @return True if the quantization info has been changed. */ bool set_quantization_info_if_empty(ITensorInfo &info, QuantizationInfo quantization_info); /** Helper function to calculate the Valid Region for Scale. * * @param[in] src_info Input tensor info used to check. * @param[in] dst_shape Shape of the output. * @param[in] interpolate_policy Interpolation policy. * @param[in] sampling_policy Sampling policy. * @param[in] border_undefined True if the border is undefined. * * @return The corresponding valid region */ ValidRegion calculate_valid_region_scale(const ITensorInfo &src_info, const TensorShape &dst_shape, InterpolationPolicy interpolate_policy, SamplingPolicy sampling_policy, bool border_undefined); /** Convert a linear index into n-dimensional coordinates. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] index Linear index specifying the i-th element. * * @return n-dimensional coordinates. */ inline Coordinates index2coords(const TensorShape &shape, int index); /** Convert n-dimensional coordinates into a linear index. * * @param[in] shape Shape of the n-dimensional tensor. * @param[in] coord N-dimensional coordinates. * * @return linead index */ inline int coords2index(const TensorShape &shape, const Coordinates &coord); /** Get the index of the given dimension. * * @param[in] data_layout The data layout. * @param[in] data_layout_dimension The dimension which this index is requested for. * * @return The int conversion of the requested data layout index. */ inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension); /** Get the DataLayoutDimension of a given index and layout. * * @param[in] data_layout The data layout. * @param[in] index The data layout index. * * @return The dimension which this index is requested for. */ inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index); /** Calculate the normalization dimension index for a given normalization type * * @param[in] layout Data layout of the input and output tensor * @param[in] info Normalization info * * @return Normalization dimension index */ inline unsigned int get_normalization_dimension_index(DataLayout layout, const NormalizationLayerInfo &info) { const unsigned int width_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::WIDTH); const unsigned int channel_idx = get_data_layout_dimension_index(layout, DataLayoutDimension::CHANNEL); return info.is_in_map() ? width_idx : channel_idx; } /** Calculate the number of output tiles required by Winograd Convolution layer. This utility function can be used by the Winograd input transform * to know the number of tiles on the x and y direction * * @param[in] in_dims Spatial dimensions of the input tensor of convolution layer * @param[in] kernel_size Kernel size * @param[in] output_tile_size Size of a single output tile * @param[in] conv_info Convolution info (i.e. pad, stride,...) * * @return the number of output tiles along the x and y directions of size "output_tile_size" */ inline Size2D compute_winograd_convolution_tiles(const Size2D &in_dims, const Size2D &kernel_size, const Size2D &output_tile_size, const PadStrideInfo &conv_info) { int num_tiles_x = std::ceil((in_dims.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast(output_tile_size.width)); int num_tiles_y = std::ceil((in_dims.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast(output_tile_size.height)); // Clamp in case we provide paddings but we have 1D convolution num_tiles_x = std::min(num_tiles_x, static_cast(in_dims.width)); num_tiles_y = std::min(num_tiles_y, static_cast(in_dims.height)); return Size2D(num_tiles_x, num_tiles_y); } /** Wrap-around a number within the range 0 <= x < m * * @param[in] x Input value * @param[in] m Range * * @return the wrapped-around number */ template inline T wrap_around(T x, T m) { return x >= 0 ? x % m : (x % m + m) % m; } /** Given an integer value, this function returns the next power of two * * @param[in] x Input value * * @return the next power of two */ inline unsigned int get_next_power_two(unsigned int x) { // Decrement by 1 x--; // Shift right by 1 x |= x >> 1u; // Shift right by 2 x |= x >> 2u; // Shift right by 4 x |= x >> 4u; // Shift right by 8 x |= x >> 8u; // Shift right by 16 x |= x >> 16u; // Increment by 1 x++; return x; } } // namespace arm_compute #include "arm_compute/core/Helpers.inl" #endif /*__ARM_COMPUTE_HELPERS_H__ */