From a09de0c8b2ed0f1481502d3b023375609362d9e3 Mon Sep 17 00:00:00 2001 From: Moritz Pflanzer Date: Fri, 1 Sep 2017 20:41:12 +0100 Subject: COMPMID-415: Rename and move tests The boost validation is now "standalone" in validation_old and builds as arm_compute_validation_old. The new validation builds now as arm_compute_validation. Change-Id: Ib93ba848a25680ac60afb92b461d574a0757150d Reviewed-on: http://mpd-gerrit.cambridge.arm.com/86187 Tested-by: Kaizen Reviewed-by: Anthony Barbier --- tests/validation_old/FixedPoint.h | 986 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 986 insertions(+) create mode 100644 tests/validation_old/FixedPoint.h (limited to 'tests/validation_old/FixedPoint.h') diff --git a/tests/validation_old/FixedPoint.h b/tests/validation_old/FixedPoint.h new file mode 100644 index 0000000000..12ffcdfc3d --- /dev/null +++ b/tests/validation_old/FixedPoint.h @@ -0,0 +1,986 @@ +/* + * Copyright (c) 2017 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#ifndef __ARM_COMPUTE_TEST_VALIDATION_FIXEDPOINT_H__ +#define __ARM_COMPUTE_TEST_VALIDATION_FIXEDPOINT_H__ + +#include "Utils.h" +#include "support/ToolchainSupport.h" + +#include +#include +#include +#include +#include +#include + +namespace arm_compute +{ +namespace test +{ +namespace fixed_point_arithmetic +{ +namespace detail +{ +// Forward declare structs +struct functions; +template +struct constant_expr; +} + +/** Fixed point traits */ +namespace traits +{ +// Promote types +// *INDENT-OFF* +// clang-format off +template struct promote { }; +template <> struct promote { using type = uint16_t; }; +template <> struct promote { using type = int16_t; }; +template <> struct promote { using type = uint32_t; }; +template <> struct promote { using type = int32_t; }; +template <> struct promote { using type = uint64_t; }; +template <> struct promote { using type = int64_t; }; +template <> struct promote { using type = uint64_t; }; +template <> struct promote { using type = int64_t; }; +// clang-format on +// *INDENT-ON* +} + +/** Strongly typed enum class representing the overflow policy */ +enum class OverflowPolicy +{ + WRAP, /**< Wrap policy */ + SATURATE /**< Saturate policy */ +}; +/** Strongly typed enum class representing the rounding policy */ +enum class RoundingPolicy +{ + TO_ZERO, /**< Round to zero policy */ + TO_NEAREST_EVEN /**< Round to nearest even policy */ +}; + +/** Arbitrary fixed-point arithmetic class */ +template +class fixed_point +{ +public: + // Static Checks + static_assert(std::is_integral::value, "Type is not an integer"); + + // Friends + friend struct detail::functions; + friend struct detail::constant_expr; + + /** Constructor (from different fixed point type) + * + * @param[in] val Fixed point + * @param[in] p Fixed point precision + */ + template + fixed_point(fixed_point val, uint8_t p) + : _value(0), _fixed_point_position(p) + { + assert(p > 0 && p < std::numeric_limits::digits); + T v = 0; + + if(std::numeric_limits::digits < std::numeric_limits::digits) + { + val.rescale(p); + v = detail::constant_expr::saturate_cast(val.raw()); + } + else + { + auto v_cast = static_cast>(val); + v_cast.rescale(p); + v = v_cast.raw(); + } + _value = static_cast(v); + } + /** Constructor (from integer) + * + * @param[in] val Integer value to be represented as fixed point + * @param[in] p Fixed point precision + * @param[in] is_raw If true val is a raw fixed point value else an integer + */ + template ::value>::type> + fixed_point(U val, uint8_t p, bool is_raw = false) + : _value(val << p), _fixed_point_position(p) + { + if(is_raw) + { + _value = val; + } + } + /** Constructor (from float) + * + * @param[in] val Float value to be represented as fixed point + * @param[in] p Fixed point precision + */ + fixed_point(float val, uint8_t p) + : _value(detail::constant_expr::to_fixed(val, p)), _fixed_point_position(p) + { + assert(p > 0 && p < std::numeric_limits::digits); + } + /** Constructor (from float string) + * + * @param[in] str Float string to be represented as fixed point + * @param[in] p Fixed point precision + */ + fixed_point(std::string str, uint8_t p) + : _value(detail::constant_expr::to_fixed(support::cpp11::stof(str), p)), _fixed_point_position(p) + { + assert(p > 0 && p < std::numeric_limits::digits); + } + /** Default copy constructor */ + fixed_point &operator=(const fixed_point &) = default; + /** Default move constructor */ + fixed_point &operator=(fixed_point &&) = default; + /** Default copy assignment operator */ + fixed_point(const fixed_point &) = default; + /** Default move assignment operator */ + fixed_point(fixed_point &&) = default; + + /** Float conversion operator + * + * @return Float representation of fixed point + */ + operator float() const + { + return detail::constant_expr::to_float(_value, _fixed_point_position); + } + /** Integer conversion operator + * + * @return Integer representation of fixed point + */ + template ::value>::type> + operator U() const + { + return detail::constant_expr::to_int(_value, _fixed_point_position); + } + /** Convert to different fixed point of different type but same precision + * + * @note Down-conversion might fail. + */ + template + operator fixed_point() + { + U val = static_cast(_value); + if(std::numeric_limits::digits < std::numeric_limits::digits) + { + val = detail::constant_expr::saturate_cast(_value); + } + return fixed_point(val, _fixed_point_position, true); + } + + /** Arithmetic += assignment operator + * + * @param[in] rhs Fixed point operand + * + * @return Reference to this fixed point + */ + template + fixed_point &operator+=(const fixed_point &rhs) + { + fixed_point val(rhs, _fixed_point_position); + _value += val.raw(); + return *this; + } + /** Arithmetic -= assignment operator + * + * @param[in] rhs Fixed point operand + * + * @return Reference to this fixed point + */ + template + fixed_point &operator-=(const fixed_point &rhs) + { + fixed_point val(rhs, _fixed_point_position); + _value -= val.raw(); + return *this; + } + + /** Raw value accessor + * + * @return Raw fixed point value + */ + T raw() const + { + return _value; + } + /** Precision accessor + * + * @return Precision of fixed point + */ + uint8_t precision() const + { + return _fixed_point_position; + } + /** Rescale a fixed point to a new precision + * + * @param[in] p New fixed point precision + */ + void rescale(uint8_t p) + { + assert(p > 0 && p < std::numeric_limits::digits); + + using promoted_T = typename traits::promote::type; + promoted_T val = _value; + if(p > _fixed_point_position) + { + val <<= (p - _fixed_point_position); + } + else if(p < _fixed_point_position) + { + uint8_t pbar = _fixed_point_position - p; + val += (pbar != 0) ? (1 << (pbar - 1)) : 0; + val >>= pbar; + } + + _value = detail::constant_expr::saturate_cast(val); + _fixed_point_position = p; + } + +private: + T _value; /**< Fixed point raw value */ + uint8_t _fixed_point_position; /**< Fixed point precision */ +}; + +namespace detail +{ +/** Count the number of leading zero bits in the given value. + * + * @param[in] value Input value. + * + * @return Number of leading zero bits. + */ +template +constexpr int clz(T value) +{ + using unsigned_T = typename std::make_unsigned::type; + // __builtin_clz is available for int. Need to correct reported number to + // match the original type. + return __builtin_clz(value) - (32 - std::numeric_limits::digits); +} + +template +struct constant_expr +{ + /** Calculate representation of 1 in fixed point given a fixed point precision + * + * @param[in] p Fixed point precision + * + * @return Representation of value 1 in fixed point. + */ + static constexpr T fixed_one(uint8_t p) + { + return (1 << p); + } + /** Calculate fixed point precision step given a fixed point precision + * + * @param[in] p Fixed point precision + * + * @return Fixed point precision step + */ + static constexpr float fixed_step(uint8_t p) + { + return (1.0f / static_cast(1 << p)); + } + + /** Convert a fixed point value to float given its precision. + * + * @param[in] val Fixed point value + * @param[in] p Fixed point precision + * + * @return Float representation of the fixed point number + */ + static constexpr float to_float(T val, uint8_t p) + { + return static_cast(val * fixed_step(p)); + } + /** Convert a fixed point value to integer given its precision. + * + * @param[in] val Fixed point value + * @param[in] p Fixed point precision + * + * @return Integer of the fixed point number + */ + static constexpr T to_int(T val, uint8_t p) + { + return val >> p; + } + /** Convert a single precision floating point value to a fixed point representation given its precision. + * + * @param[in] val Floating point value + * @param[in] p Fixed point precision + * + * @return The raw fixed point representation + */ + static constexpr T to_fixed(float val, uint8_t p) + { + return static_cast(saturate_cast(val * fixed_one(p) + ((val >= 0) ? 0.5 : -0.5))); + } + /** Clamp value between two ranges + * + * @param[in] val Value to clamp + * @param[in] min Minimum value to clamp to + * @param[in] max Maximum value to clamp to + * + * @return clamped value + */ + static constexpr T clamp(T val, T min, T max) + { + return std::min(std::max(val, min), max); + } + /** Saturate given number + * + * @param[in] val Value to saturate + * + * @return Saturated value + */ + template + static constexpr T saturate_cast(U val) + { + return static_cast(std::min(std::max(val, static_cast(std::numeric_limits::min())), static_cast(std::numeric_limits::max()))); + } +}; +struct functions +{ + /** Output stream operator + * + * @param[in] s Output stream + * @param[in] x Fixed point value + * + * @return Reference output to updated stream + */ + template + static std::basic_ostream &write(std::basic_ostream &s, fixed_point &x) + { + return s << static_cast(x); + } + /** Signbit of a fixed point number. + * + * @param[in] x Fixed point number + * + * @return True if negative else false. + */ + template + static bool signbit(fixed_point x) + { + return ((x._value >> std::numeric_limits::digits) != 0); + } + /** Checks if two fixed point numbers are equal + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed points are equal else false + */ + template + static bool isequal(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + return (x._value == y._value); + } + /** Checks if two fixed point number are not equal + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed points are not equal else false + */ + template + static bool isnotequal(fixed_point x, fixed_point y) + { + return !isequal(x, y); + } + /** Checks if one fixed point is greater than the other + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed point is greater than other + */ + template + static bool isgreater(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + return (x._value > y._value); + } + /** Checks if one fixed point is greater or equal than the other + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed point is greater or equal than other + */ + template + static bool isgreaterequal(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + return (x._value >= y._value); + } + /** Checks if one fixed point is less than the other + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed point is less than other + */ + template + static bool isless(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + return (x._value < y._value); + } + /** Checks if one fixed point is less or equal than the other + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed point is less or equal than other + */ + template + static bool islessequal(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + return (x._value <= y._value); + } + /** Checks if one fixed point is less or greater than the other + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return True if fixed point is less or greater than other + */ + template + static bool islessgreater(fixed_point x, fixed_point y) + { + return isnotequal(x, y); + } + /** Clamp fixed point to specific range. + * + * @param[in] x Fixed point operand + * @param[in] min Minimum value to clamp to + * @param[in] max Maximum value to clamp to + * + * @return Clamped result + */ + template + static fixed_point clamp(fixed_point x, T min, T max) + { + return fixed_point(constant_expr::clamp(x._value, min, max), x._fixed_point_position, true); + } + /** Negate number + * + * @param[in] x Fixed point operand + * + * @return Negated fixed point result + */ + template + static fixed_point negate(fixed_point x) + { + using promoted_T = typename traits::promote::type; + promoted_T val = -x._value; + if(OP == OverflowPolicy::SATURATE) + { + val = constant_expr::saturate_cast(val); + } + return fixed_point(static_cast(val), x._fixed_point_position, true); + } + /** Perform addition among two fixed point numbers + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return Result fixed point with precision equal to minimum precision of both operands + */ + template + static fixed_point add(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + if(OP == OverflowPolicy::SATURATE) + { + using type = typename traits::promote::type; + type val = static_cast(x._value) + static_cast(y._value); + val = constant_expr::saturate_cast(val); + return fixed_point(static_cast(val), p, true); + } + else + { + return fixed_point(x._value + y._value, p, true); + } + } + /** Perform subtraction among two fixed point numbers + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return Result fixed point with precision equal to minimum precision of both operands + */ + template + static fixed_point sub(fixed_point x, fixed_point y) + { + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + x.rescale(p); + y.rescale(p); + if(OP == OverflowPolicy::SATURATE) + { + using type = typename traits::promote::type; + type val = static_cast(x._value) - static_cast(y._value); + val = constant_expr::saturate_cast(val); + return fixed_point(static_cast(val), p, true); + } + else + { + return fixed_point(x._value - y._value, p, true); + } + } + /** Perform multiplication among two fixed point numbers + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return Result fixed point with precision equal to minimum precision of both operands + */ + template + static fixed_point mul(fixed_point x, fixed_point y) + { + using promoted_T = typename traits::promote::type; + uint8_t p_min = std::min(x._fixed_point_position, y._fixed_point_position); + uint8_t p_max = std::max(x._fixed_point_position, y._fixed_point_position); + promoted_T round_factor = (1 << (p_max - 1)); + promoted_T val = ((static_cast(x._value) * static_cast(y._value)) + round_factor) >> p_max; + if(OP == OverflowPolicy::SATURATE) + { + val = constant_expr::saturate_cast(val); + } + return fixed_point(static_cast(val), p_min, true); + } + /** Perform division among two fixed point numbers + * + * @param[in] x First fixed point operand + * @param[in] y Second fixed point operand + * + * @return Result fixed point with precision equal to minimum precision of both operands + */ + template + static fixed_point div(fixed_point x, fixed_point y) + { + using promoted_T = typename traits::promote::type; + uint8_t p = std::min(x._fixed_point_position, y._fixed_point_position); + promoted_T denom = static_cast(y._value); + if(denom != 0) + { + promoted_T val = (static_cast(x._value) << std::max(x._fixed_point_position, y._fixed_point_position)) / denom; + if(OP == OverflowPolicy::SATURATE) + { + val = constant_expr::saturate_cast(val); + } + return fixed_point(static_cast(val), p, true); + } + else + { + T val = (x._value < 0) ? std::numeric_limits::min() : std::numeric_limits::max(); + return fixed_point(val, p, true); + } + } + /** Shift left + * + * @param[in] x Fixed point operand + * @param[in] shift Shift value + * + * @return Shifted value + */ + template + static fixed_point shift_left(fixed_point x, size_t shift) + { + using promoted_T = typename traits::promote::type; + promoted_T val = static_cast(x._value) << shift; + if(OP == OverflowPolicy::SATURATE) + { + val = constant_expr::saturate_cast(val); + } + return fixed_point(static_cast(val), x._fixed_point_position, true); + } + /** Shift right + * + * @param[in] x Fixed point operand + * @param[in] shift Shift value + * + * @return Shifted value + */ + template + static fixed_point shift_right(fixed_point x, size_t shift) + { + return fixed_point(x._value >> shift, x._fixed_point_position, true); + } + /** Calculate absolute value + * + * @param[in] x Fixed point operand + * + * @return Absolute value of operand + */ + template + static fixed_point abs(fixed_point x) + { + using promoted_T = typename traits::promote::type; + T val = (x._value < 0) ? constant_expr::saturate_cast(-static_cast(x._value)) : x._value; + return fixed_point(val, x._fixed_point_position, true); + } + /** Calculate the logarithm of a fixed point number + * + * @param[in] x Fixed point operand + * + * @return Logarithm value of operand + */ + template + static fixed_point log(fixed_point x) + { + uint8_t p = x._fixed_point_position; + auto const_one = fixed_point(static_cast(1), p); + + // Logarithm of 1 is zero and logarithm of negative values is not defined in R, so return 0. + // Also, log(x) == -log(1/x) for 0 < x < 1. + if(isequal(x, const_one) || islessequal(x, fixed_point(static_cast(0), p))) + { + return fixed_point(static_cast(0), p, true); + } + else if(isless(x, const_one)) + { + return mul(log(div(const_one, x)), fixed_point(-1, p)); + } + + // Remove even powers of 2 + T shift_val = 31 - __builtin_clz(x._value >> p); + x = shift_right(x, shift_val); + x = sub(x, const_one); + + // Constants + auto ln2 = fixed_point(0.6931471, p); + auto A = fixed_point(1.4384189, p); + auto B = fixed_point(-0.67719, p); + auto C = fixed_point(0.3218538, p); + auto D = fixed_point(-0.0832229, p); + + // Polynomial expansion + auto sum = add(mul(x, D), C); + sum = add(mul(x, sum), B); + sum = add(mul(x, sum), A); + sum = mul(x, sum); + + return mul(add(sum, fixed_point(static_cast(shift_val), p)), ln2); + } + /** Calculate the exponential of a fixed point number. + * + * exp(x) = exp(floor(x)) * exp(x - floor(x)) + * = pow(2, floor(x) / ln(2)) * exp(x - floor(x)) + * = exp(x - floor(x)) << (floor(x) / ln(2)) + * + * @param[in] x Fixed point operand + * + * @return Exponential value of operand + */ + template + static fixed_point exp(fixed_point x) + { + uint8_t p = x._fixed_point_position; + // Constants + auto const_one = fixed_point(1, p); + auto ln2 = fixed_point(0.6931471, p); + auto inv_ln2 = fixed_point(1.442695, p); + auto A = fixed_point(0.9978546, p); + auto B = fixed_point(0.4994721, p); + auto C = fixed_point(0.1763723, p); + auto D = fixed_point(0.0435108, p); + + T scaled_int_part = detail::constant_expr::to_int(mul(x, inv_ln2)._value, p); + + // Polynomial expansion + auto frac_part = sub(x, mul(ln2, fixed_point(scaled_int_part, p))); + auto taylor = add(mul(frac_part, D), C); + taylor = add(mul(frac_part, taylor), B); + taylor = add(mul(frac_part, taylor), A); + taylor = mul(frac_part, taylor); + taylor = add(taylor, const_one); + + // Saturate value + if(static_cast(clz(taylor.raw())) <= scaled_int_part) + { + return fixed_point(std::numeric_limits::max(), p, true); + } + + return (scaled_int_part < 0) ? shift_right(taylor, -scaled_int_part) : shift_left(taylor, scaled_int_part); + } + /** Calculate the inverse square root of a fixed point number + * + * @param[in] x Fixed point operand + * + * @return Inverse square root value of operand + */ + template + static fixed_point inv_sqrt(fixed_point x) + { + const uint8_t p = x._fixed_point_position; + int8_t shift = std::numeric_limits::digits - (p + detail::clz(x._value)); + + shift += std::numeric_limits::is_signed ? 1 : 0; + + // Use volatile to restrict compiler optimizations on shift as compiler reports maybe-uninitialized error on Android + volatile int8_t *shift_ptr = &shift; + + auto const_three = fixed_point(3, p); + auto a = (*shift_ptr < 0) ? shift_left(x, -(shift)) : shift_right(x, shift); + fixed_point x2 = a; + + // We need three iterations to find the result for QS8 and five for QS16 + constexpr int num_iterations = std::is_same::value ? 3 : 5; + for(int i = 0; i < num_iterations; ++i) + { + fixed_point three_minus_dx = sub(const_three, mul(a, mul(x2, x2))); + x2 = shift_right(mul(x2, three_minus_dx), 1); + } + + return (shift < 0) ? shift_left(x2, (-shift) >> 1) : shift_right(x2, shift >> 1); + } + /** Calculate the hyperbolic tangent of a fixed point number + * + * @param[in] x Fixed point operand + * + * @return Hyperbolic tangent of the operand + */ + template + static fixed_point tanh(fixed_point x) + { + uint8_t p = x._fixed_point_position; + // Constants + auto const_one = fixed_point(1, p); + auto const_two = fixed_point(2, p); + + auto exp2x = exp(const_two * x); + auto num = exp2x - const_one; + auto den = exp2x + const_one; + auto tanh = num / den; + + return tanh; + } + /** Calculate the a-th power of a fixed point number. + * + * The power is computed as x^a = e^(log(x) * a) + * + * @param[in] x Fixed point operand + * @param[in] a Fixed point exponent + * + * @return a-th power of the operand + */ + template + static fixed_point pow(fixed_point x, fixed_point a) + { + return exp(log(x) * a); + } +}; + +template +bool operator==(const fixed_point &lhs, const fixed_point &rhs) +{ + return functions::isequal(lhs, rhs); +} +template +bool operator!=(const fixed_point &lhs, const fixed_point &rhs) +{ + return !operator==(lhs, rhs); +} +template +bool operator<(const fixed_point &lhs, const fixed_point &rhs) +{ + return functions::isless(lhs, rhs); +} +template +bool operator>(const fixed_point &lhs, const fixed_point &rhs) +{ + return operator<(rhs, lhs); +} +template +bool operator<=(const fixed_point &lhs, const fixed_point &rhs) +{ + return !operator>(lhs, rhs); +} +template +bool operator>=(const fixed_point &lhs, const fixed_point &rhs) +{ + return !operator<(lhs, rhs); +} +template +fixed_point operator+(const fixed_point &lhs, const fixed_point &rhs) +{ + return functions::add(lhs, rhs); +} +template +fixed_point operator-(const fixed_point &lhs, const fixed_point &rhs) +{ + return functions::sub(lhs, rhs); +} +template +fixed_point operator-(const fixed_point &rhs) +{ + return functions::negate(rhs); +} +template +fixed_point operator*(fixed_point x, fixed_point y) +{ + return functions::mul(x, y); +} +template +fixed_point operator/(fixed_point x, fixed_point y) +{ + return functions::div(x, y); +} +template +fixed_point operator>>(fixed_point x, size_t shift) +{ + return functions::shift_right(x, shift); +} +template +fixed_point operator<<(fixed_point x, size_t shift) +{ + return functions::shift_left(x, shift); +} +template +std::basic_ostream &operator<<(std::basic_ostream &s, fixed_point x) +{ + return functions::write(s, x); +} +template +inline fixed_point min(fixed_point x, fixed_point y) +{ + return x > y ? y : x; +} +template +inline fixed_point max(fixed_point x, fixed_point y) +{ + return x > y ? x : y; +} +template +inline fixed_point add(fixed_point x, fixed_point y) +{ + return functions::add(x, y); +} +template +inline fixed_point sub(fixed_point x, fixed_point y) +{ + return functions::sub(x, y); +} +template +inline fixed_point mul(fixed_point x, fixed_point y) +{ + return functions::mul(x, y); +} +template +inline fixed_point div(fixed_point x, fixed_point y) +{ + return functions::div(x, y); +} +template +inline fixed_point abs(fixed_point x) +{ + return functions::abs(x); +} +template +inline fixed_point clamp(fixed_point x, T min, T max) +{ + return functions::clamp(x, min, max); +} +template +inline fixed_point exp(fixed_point x) +{ + return functions::exp(x); +} +template +inline fixed_point log(fixed_point x) +{ + return functions::log(x); +} +template +inline fixed_point inv_sqrt(fixed_point x) +{ + return functions::inv_sqrt(x); +} +template +inline fixed_point tanh(fixed_point x) +{ + return functions::tanh(x); +} +template +inline fixed_point pow(fixed_point x, fixed_point a) +{ + return functions::pow(x, a); +} +} // namespace detail + +// Expose operators +using detail::operator==; +using detail::operator!=; +using detail::operator<; +using detail::operator>; +using detail::operator<=; +using detail::operator>=; +using detail::operator+; +using detail::operator-; +using detail::operator*; +using detail::operator/; +using detail::operator>>; +using detail::operator<<; + +// Expose additional functions +using detail::min; +using detail::max; +using detail::add; +using detail::sub; +using detail::mul; +using detail::div; +using detail::abs; +using detail::clamp; +using detail::exp; +using detail::log; +using detail::inv_sqrt; +using detail::tanh; +using detail::pow; +// TODO: floor +// TODO: ceil +// TODO: sqrt +} // namespace fixed_point_arithmetic +} // namespace test +} // namespace arm_compute +#endif /*__ARM_COMPUTE_TEST_VALIDATION_FIXEDPOINT_H__ */ -- cgit v1.2.1