From 19884630c37ae9de2f65a88ea2cda5630a551bad Mon Sep 17 00:00:00 2001 From: Georgios Pinitas Date: Mon, 16 Aug 2021 12:38:54 +0100 Subject: Rename [Cl|Cpu]GemmConvolution to [Cl|Gpu]GemmConv2d Renaming the gemm-based convolution operators to accomodate for new operators with higher convolution dimensonality Signed-off-by: Georgios Pinitas Change-Id: Id2f2cf11404221f0e87baa0e5d08ad5d63eaf78e Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6113 Tested-by: Arm Jenkins Comments-Addressed: Arm Jenkins --- src/runtime/cpu/operators/CpuGemmConv2d.cpp | 612 ++++++++++++++++++++++++++++ 1 file changed, 612 insertions(+) create mode 100644 src/runtime/cpu/operators/CpuGemmConv2d.cpp (limited to 'src/runtime/cpu/operators/CpuGemmConv2d.cpp') diff --git a/src/runtime/cpu/operators/CpuGemmConv2d.cpp b/src/runtime/cpu/operators/CpuGemmConv2d.cpp new file mode 100644 index 0000000000..a81dd8a661 --- /dev/null +++ b/src/runtime/cpu/operators/CpuGemmConv2d.cpp @@ -0,0 +1,612 @@ +/* + * Copyright (c) 2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "src/runtime/cpu/operators/CpuGemmConv2d.h" + +#include "arm_compute/core/Size2D.h" +#include "arm_compute/core/TensorInfo.h" +#include "arm_compute/core/Utils.h" +#include "arm_compute/core/Validate.h" +#include "arm_compute/core/utils/misc/ShapeCalculator.h" +#include "arm_compute/core/utils/quantization/AsymmHelpers.h" +#include "arm_compute/runtime/NEON/NEScheduler.h" + +#include "src/core/cpu/kernels/CpuCol2ImKernel.h" +#include "src/core/cpu/kernels/CpuIm2ColKernel.h" +#include "src/core/cpu/kernels/CpuReshapeKernel.h" +#include "src/core/cpu/kernels/CpuWeightsReshapeKernel.h" +#include "src/core/helpers/MemoryHelpers.h" +#include "src/runtime/cpu/operators/CpuGemm.h" +#include "src/runtime/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h" +#include "src/runtime/cpu/operators/CpuGemmLowpOutputStage.h" +#include "src/runtime/cpu/utils/CpuAuxTensorHandler.h" + +#include +#include + +using namespace arm_compute::misc::shape_calculator; +using namespace arm_compute::experimental; + +namespace arm_compute +{ +namespace cpu +{ +CpuGemmConv2d::CpuGemmConv2d() + : _weights_reshape_kernel(nullptr), _im2col_kernel(), _mm_gemm(), _mm_gemmlowp(), _col2im_kernel(), _reshape_kernel(), _im2col_output(), _weights_reshaped(), _gemm_output(), _gemm_output_3d(), + _data_layout(DataLayout::NCHW), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count) +{ +} +CpuGemmConv2d::~CpuGemmConv2d() = default; + +void CpuGemmConv2d::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act_info, + bool enable_fast_math, int gemm_3d_depth) +{ + ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights); + ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth, _skip_im2col)); + + // Create GEMMInfo structure + const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, + gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, + false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info); + + // Supported activations in GEMM + const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, + ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, + ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU + }; + + if(_is_quantized) + { + TensorInfo tmp_src{ *src }; + TensorInfo tmp_weights{ *weights }; + // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() + // Extract and negate input and weights offset + const QuantizationInfo iqinfo = src->quantization_info(); + const QuantizationInfo wqinfo = weights->quantization_info(); + const QuantizationInfo oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info(); + const UniformQuantizationInfo uiqinfo = iqinfo.uniform(); + const UniformQuantizationInfo uoqinfo = oqinfo.uniform(); + const DataType data_type = src->data_type(); + + tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset)); + if(!is_data_type_quantized_per_channel(tmp_weights.data_type())) + { + const UniformQuantizationInfo uwqinfo = wqinfo.uniform(); + tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset)); + } + + // Merge activation with output stage + PixelValue type_min{}; + PixelValue type_max{}; + std::tie(type_min, type_max) = get_min_max(data_type); + int32_t min_activation = type_min.get(); + int32_t max_activation = type_max.get(); + + if(supported_acts.count(act_info.activation()) != 0) + { + std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo); + } + + GEMMLowpOutputStageInfo output_info; + output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; + output_info.gemmlowp_offset = uoqinfo.offset; + output_info.gemmlowp_min_bound = min_activation; + output_info.gemmlowp_max_bound = max_activation; + output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL); + quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info); + + _mm_gemmlowp = std::make_unique(); + _mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false, enable_fast_math, false, act_info)); + + auto mm_mem_req = _mm_gemmlowp->workspace(); + for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont) + { + _aux_mem[cont] = mm_mem_req[cont]; + } + } + else + { + // Configure matrix multiply function + _mm_gemm = std::make_unique(); + _mm_gemm->configure(src, weights, biases, dst, 1.0f, 0.0f, gemm_info); + auto mm_mem_req = _mm_gemm->workspace(); + for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont) + { + _aux_mem[cont] = mm_mem_req[cont]; + } + } +} + +Status CpuGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, + const ActivationLayerInfo &act_info, bool enable_fast_math, int gemm_3d_depth, bool skip_im2col) +{ + const DataType data_type = src->data_type(); + const bool is_quantized = is_data_type_quantized_asymmetric(data_type); + const bool is_activation_enabled = act_info.enabled(); + + // Create GEMMInfo structure + const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, + gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, + false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info); + + if(is_quantized) + { + // Since we need negative offsets for computing convolution, we need to change QuantizationInfo() + // Extract and negate input and weights offset + const QuantizationInfo &iqinfo = src->quantization_info(); + const QuantizationInfo &wqinfo = weights->quantization_info(); + const QuantizationInfo &oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info(); + const UniformQuantizationInfo uoqinfo = oqinfo.uniform(); + + // Merge activation with output stage + PixelValue type_min{}; + PixelValue type_max{}; + std::tie(type_min, type_max) = get_min_max(data_type); + int32_t min_activation = type_min.get(); + int32_t max_activation = type_max.get(); + + const std::set supported_acts = { ActivationLayerInfo::ActivationFunction::RELU, + ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, + ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU + }; + if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0) + { + std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo); + } + + GEMMLowpOutputStageInfo output_info; + output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT; + output_info.gemmlowp_offset = uoqinfo.offset; + output_info.gemmlowp_min_bound = min_activation; + output_info.gemmlowp_max_bound = max_activation; + output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL); + ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info)); + + // Perform validation step on GEMMLowp + std::unique_ptr input_qa = src->clone(); + std::unique_ptr weights_qa = weights->clone(); + input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset)); + weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset)); + return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info, + false, enable_fast_math, false, act_info)); + } + else + { + // Perform validation step on Matrix multiply function + return CpuGemm::validate(src, weights, nullptr, dst, 1.0f, 0.0f, gemm_info); + } +} + +Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo *input_info, const ITensorInfo *weights_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col) +{ + const DataType data_type = input_info->data_type(); + const unsigned int mult_y = skip_im2col ? 1U : gemm_3d_depth; + const unsigned int mult_z = skip_im2col ? gemm_3d_depth : 1U; + + // Set dummy tensor shapes for the validation + const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info()); + const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info()); + const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info()); + + return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false, gemm_3d_depth, skip_im2col); +} + +void CpuGemmConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, + const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups) +{ + ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst); + ARM_COMPUTE_UNUSED(num_groups, weights_info); + ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src, + weights, + biases, + dst, + conv_info, + weights_info, + dilation, + act_info, + enable_fast_math, + num_groups)); + + const DataType data_type = src->data_type(); + const DataLayout data_layout = src->data_layout(); + const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); + const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); + const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); + + const unsigned int kernel_width = weights->dimension(idx_width); + const unsigned int kernel_height = weights->dimension(idx_height); + + _is_prepared = weights_info.retain_internal_weights(); + _is_quantized = is_data_type_quantized_asymmetric(src->data_type()); + _data_layout = data_layout; + _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); + + const ITensorInfo *gemm_input_to_use = src; + ITensorInfo *gemm_output_to_use = dst; + + // Get convolved dimensions + unsigned int conv_w = 0; + unsigned int conv_h = 0; + std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), + src->dimension(idx_height), + kernel_width, + kernel_height, + conv_info, + dilation); + ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h), + "Output shape does not match the expected one"); + + // Check if GEMM3D is supported + if(data_layout == DataLayout::NHWC) + { + _skip_col2im = bool(validate_gemm3d(src, weights, act_info, conv_h, true)); + // If not supported, we need to perform im2col and col2im (or reshape layer) + if(!_skip_col2im) + { + _skip_im2col = false; + } + } + else + { + _skip_col2im = false; + } + + // Get parameters from conv_info + unsigned int stride_x = 0; + unsigned int stride_y = 0; + std::tie(stride_x, stride_y) = conv_info.stride(); + + unsigned int mat_weights_cols = weights->dimension(idx_kernels); + + // _weights_reshaped will be auto configured in the kernel. + // Just append biases and do not transpose 1xW as it will be reshaped in CpuGemm + _weights_reshape_kernel = std::make_unique(); + _weights_reshape_kernel->configure(weights, nullptr, &_weights_reshaped); + _weights_reshaped.set_quantization_info(weights->quantization_info()); + + // Create tensor to store im2col reshaped inputs + if(!_skip_im2col) + { + // Configure + _im2col_kernel = std::make_unique(); + _im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation); + + // Update GEMM input + gemm_input_to_use = &_im2col_output; + } + + // Create temporary GEMM output tensor in case we cannot skip col2im + const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type; + if(!_skip_col2im) + { + TensorShape shape_gemm; + + // Calculate GEMM output shape + shape_gemm = _im2col_output.tensor_shape(); + shape_gemm.set(0, mat_weights_cols); + shape_gemm.set(1, conv_w * conv_h); + + _gemm_output = TensorInfo(shape_gemm, 1, output_data_type); + _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout()); + _gemm_output_3d = TensorInfo(_gemm_output); + + // Update GEMM output + gemm_output_to_use = &_gemm_output; + } + else + { + _gemm_output_3d = TensorInfo(*dst); + _gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true); + _gemm_output = TensorInfo(_gemm_output_3d); + + // Update GEMM output + gemm_output_to_use = &_gemm_output_3d; + } + + // Configure GEMM + // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix + const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0; + configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math, gemm_3d_depth); + + if(!_skip_col2im && _data_layout == DataLayout::NCHW) + { + // Configure col2im + _col2im_kernel = std::make_unique(); + _col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h)); + } + else + { + // Configure reshape layer + _reshape_kernel = std::make_unique(); + _reshape_kernel->configure(gemm_output_to_use, dst); + } + + // Check if GEMM transforms weights + // Modernise through COMPMID-4535 + bool gemm_trans_wei = _aux_mem[1].size > 0; // Asm Pretranspose + gemm_trans_wei = _mm_gemm != nullptr ? _aux_mem[3].size > 0 : gemm_trans_wei; // Tranpose RHS + gemm_trans_wei = _mm_gemmlowp != nullptr ? _aux_mem[5].size > 0 : gemm_trans_wei; // Transpose RHS + + // Check lifetime + _aux_mem[Im2ColOutput] = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size()); + _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _weights_reshaped.total_size()); + _aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size()); +} + +Status CpuGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info, + const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups) +{ + ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst); + ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!"); + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32); + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights); + ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported"); + + const DataLayout data_layout = src->data_layout(); + const DataType data_type = src->data_type(); + const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); + const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); + const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL); + const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES); + + const unsigned int kernel_width = weights->dimension(idx_width); + const unsigned int kernel_height = weights->dimension(idx_height); + + TensorInfo im2col_reshaped_info{}; + TensorInfo info_gemm{}; + TensorInfo tmp_info{}; + TensorInfo weights_reshaped_info{}; + const ITensorInfo *gemm_input_to_use = src; + const ITensorInfo *gemm_output_to_use = dst; + const ITensorInfo *weights_to_use = weights; + + const bool append_bias = false; + const bool is_quantized = is_data_type_quantized_asymmetric(data_type); + const bool is_bf16 = data_type == DataType::BFLOAT16; + bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1); + + // Get convolved dimensions + unsigned int conv_w = 0; + unsigned int conv_h = 0; + + std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), + src->dimension(idx_height), + kernel_width, + kernel_height, + conv_info, + dilation); + + // Check if GEMM3D is supported + bool skip_col2im = false; + if(data_layout == DataLayout::NHWC) + { + skip_col2im = bool(validate_gemm3d(src, weights, act_info, conv_h, true)); + // If not supported, we need to perform im2col and col2im (or reshape layer) + if(!skip_col2im) + { + skip_im2col = false; + } + } + + if(skip_col2im) + { + // If not supported, we need to perform im2col and col2im (or reshape layer) + if(!bool(validate_gemm3d(src, weights, act_info, conv_h, skip_im2col))) + { + skip_im2col = false; + skip_col2im = false; + } + } + + ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel)); + ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4); + + // Validate biases + if(biases != nullptr) + { + if(is_quantized) + { + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32); + } + else if(is_bf16) + { + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32); + } + else + { + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases); + } + ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels)); + ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1); + } + + unsigned int mat_weights_cols = weights->dimension(idx_kernels); + unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel); + + weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, append_bias), 1, data_type); + weights_reshaped_info.set_quantization_info(weights->quantization_info()); + weights_to_use = &weights_reshaped_info; + + if(!skip_im2col) + { + // Create tensor info for im2col reshaped inputs + // For CPU, the batch size is on the fourth dimension + TensorShape shape_im2col = src->tensor_shape(); + shape_im2col.set(0, mat_weights_rows); + shape_im2col.set(1, conv_w * conv_h); + shape_im2col.set(2, 1); + + im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type); + im2col_reshaped_info.set_quantization_info(src->quantization_info()); + ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation)); + gemm_input_to_use = &im2col_reshaped_info; + } + + // Create temporary GEMM output tensor in case we cannot skip col2im + const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type; + if(!skip_col2im) + { + TensorShape shape_gemm = gemm_input_to_use->tensor_shape(); + shape_gemm.set(0, mat_weights_cols); + shape_gemm.set(1, conv_w * conv_h); + info_gemm = TensorInfo(shape_gemm, 1, output_data_type); + } + else + { + info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type); + } + info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout()); + gemm_output_to_use = &info_gemm; + ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col)); + + // Validate Col2Im/ReshapeLayer + if(!skip_col2im && (data_layout == DataLayout::NCHW)) + { + ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h))); + } + + return Status{}; +} + +void CpuGemmConv2d::run(ITensorPack &tensors) +{ + prepare(tensors); + + auto src = tensors.get_const_tensor(ACL_SRC_0); + auto dst = tensors.get_tensor(ACL_DST); + auto gemm_input_to_use = src; + + CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false); + CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false); + CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false); + + bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0); + if(!_skip_im2col) + { + // Run input reshaping + unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT); + ITensorPack pack = + { + { TensorType::ACL_SRC, src }, + { TensorType::ACL_DST, im2col_output.get() } + }; + NEScheduler::get().schedule_op(_im2col_kernel.get(), y_dim, _im2col_kernel->window(), pack); + gemm_input_to_use = im2col_output.get(); + } + + // Handle the case where output has top/bottom padding + const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst; + Tensor gemm3d; + _gemm_output_3d.extend_padding(out_to_use->info()->padding()); + gemm3d.allocator()->soft_init(_gemm_output_3d); + gemm3d.allocator()->import_memory(out_to_use->buffer()); + auto gemm_output_to_use = gemm_output.get(); + + if(_skip_im2col) + { + gemm_output_to_use = &gemm3d; + } + if(_skip_col2im && !out_has_padding) + { + gemm_output_to_use = dst; + } + + // Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions + ITensorPack pack_mm = tensors; + pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use); + pack_mm.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get()); + pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use); + if(_is_quantized) + { + // Run gemmlowp + _mm_gemmlowp->run(pack_mm); + } + else + { + // Run gemm + _mm_gemm->run(pack_mm); + } + + // Reshape output matrix + if(!_skip_col2im) + { + if(_data_layout == DataLayout::NCHW) + { + ITensorPack pack = + { + { TensorType::ACL_SRC, gemm_output.get() }, + { TensorType::ACL_DST, dst } + }; + NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack); + } + else + { + ITensorPack pack = + { + { TensorType::ACL_SRC, gemm_output_to_use }, + { TensorType::ACL_DST, dst } + }; + NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack); + } + } + else if(out_has_padding) + { + ITensorPack pack = + { + { TensorType::ACL_SRC, gemm_output_to_use }, + { TensorType::ACL_DST, dst } + }; + NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack); + } +} + +void CpuGemmConv2d::prepare(ITensorPack &tensors) +{ + if(!_is_prepared) + { + // Run weights reshaping and mark original weights tensor as unused + CpuAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors); + auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1); + ITensorPack pack = + { + { TensorType::ACL_SRC, weights }, + { TensorType::ACL_DST, weights_reshaped.get() } + }; + NEScheduler::get().schedule_op(_weights_reshape_kernel.get(), 3, _weights_reshape_kernel->window(), pack); + weights->mark_as_unused(); + + // Prepare GEMM + ITensorPack gemm_pack = tensors; + gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get()); + _is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack); + + _is_prepared = true; + } +} +experimental::MemoryRequirements CpuGemmConv2d::workspace() const +{ + return _aux_mem; +} +} // namespace cpu +} // namespace arm_compute \ No newline at end of file -- cgit v1.2.1