From 7891a73ef36f4ad7b71069b3c57694f85bb79454 Mon Sep 17 00:00:00 2001 From: Georgios Pinitas Date: Fri, 20 Aug 2021 21:39:25 +0100 Subject: Move CPU/GPU files from Core/Runtime to the respective backend folders Legacy structure contained two libraries core/runtime with two backends in each. We reduce the core/runtime libraries to a single library thus merging the backend files Signed-off-by: Georgios Pinitas Change-Id: I69545765fe7a730368105cdbd067d3135ec7a174 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6155 Comments-Addressed: Arm Jenkins Reviewed-by: Michele Di Giorgio Tested-by: Arm Jenkins --- src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp | 1174 +++++++++++++++++++++++ 1 file changed, 1174 insertions(+) create mode 100644 src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp (limited to 'src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp') diff --git a/src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp b/src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp new file mode 100644 index 0000000000..93ae90436a --- /dev/null +++ b/src/cpu/kernels/CpuGemmMatrixMultiplyKernel.cpp @@ -0,0 +1,1174 @@ +/* + * Copyright (c) 2017-2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "src/cpu/kernels/CpuGemmMatrixMultiplyKernel.h" + +#include "arm_compute/core/Helpers.h" +#include "arm_compute/core/TensorInfo.h" +#include "arm_compute/core/Types.h" +#include "arm_compute/core/Validate.h" +#include "arm_compute/core/utils/misc/ShapeCalculator.h" +#include "src/core/CPP/Validate.h" +#include "src/core/helpers/AutoConfiguration.h" +#include "src/core/helpers/WindowHelpers.h" +#include "src/core/utils/helpers/float_ops.h" + +#include + +namespace arm_compute +{ +namespace cpu +{ +namespace kernels +{ +namespace +{ +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC +void vector_matrix_multiply_f16(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) +{ + const auto width_matrix_b = static_cast(dst->info()->dimension(0)); + const auto in_b_stride = static_cast(rhs->info()->strides_in_bytes()[1] / rhs->info()->element_size()); + const auto num_elems_vec_a = static_cast(lhs->info()->dimension(0)); + + // The implementation computes 32 elements per iteration + const int window_start_x = 32 * info.thread_id; + const int window_step_x = 32 * info.num_threads; + const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; + ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x, " (window_end_x - window_start_x) must be multiple of window_step_x"); + + Window win_out(window); + win_out.set(Window::DimX, Window::Dimension(0, 1, 1)); + win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); + + Window win_a(window); + win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); + win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); + + Window win_b; + // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 + // This scenario can happen when the the matrix multiplication is used to perform a convolution operation + if(rhs->info()->num_dimensions() >= 3) + { + win_b = window; + } + win_b.set(Window::DimX, Window::Dimension(0, 1, 1)); + win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); + + Iterator ina(lhs, win_a); + Iterator inb(rhs, win_b); + Iterator out(dst, win_out); + + const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); + + const float16x8_t alpha_f16 = vdupq_n_f16(alpha); + + execute_window_loop(win_out, [&](const Coordinates &) + { + int x = window_start_x; + // Here we don't check for x lower equal than (window_end_x - window_step_x) because of + // window_end_x is computed above which may cause out-of-bound writes to the dst. + for(; x < (window_end_x - window_step_x); x += window_step_x) + { + if(x > width_matrix_b) + { + return; + } + + auto matrix_b = reinterpret_cast(inb.ptr()) + x; + + float16x8_t acc0 = vdupq_n_f16(0.f); + float16x8_t acc1 = vdupq_n_f16(0.f); + float16x8_t acc2 = vdupq_n_f16(0.f); + float16x8_t acc3 = vdupq_n_f16(0.f); + + auto vec_a = reinterpret_cast(ina.ptr()); + const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; + for(; vec_a <= (vec_a_end_addr - 4);) + { + const float16x4_t a0l = vld1_f16(vec_a); + + float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); + float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); + float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); + float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); + float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); + float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); + float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); + float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); + + acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0)); + acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0)); + acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0)); + acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0)); + acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1)); + acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1)); + acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1)); + acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1)); + + matrix_b += 2 * in_b_stride; + + b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); + b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); + b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); + b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); + b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride); + b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride); + b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride); + b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride); + + acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2)); + acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2)); + acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2)); + acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2)); + acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3)); + acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3)); + acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3)); + acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3)); + + vec_a += 4; + matrix_b += 2 * in_b_stride; + } + + for(; vec_a < vec_a_end_addr; ++vec_a) + { + const float16_t a0 = *vec_a; + const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride); + const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride); + const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride); + const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride); + + acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0)); + acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0)); + acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0)); + acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0)); + + matrix_b += in_b_stride; + } + + // Multiply by the weight of matrix product (alpha) + if(multiply_alpha) + { + acc0 = vmulq_f16(acc0, alpha_f16); + acc1 = vmulq_f16(acc1, alpha_f16); + acc2 = vmulq_f16(acc2, alpha_f16); + acc3 = vmulq_f16(acc3, alpha_f16); + } + + auto vec_out = reinterpret_cast(out.ptr()) + x; + + vst1q_f16(vec_out + 0, acc0); + vst1q_f16(vec_out + 8, acc1); + vst1q_f16(vec_out + 16, acc2); + vst1q_f16(vec_out + 24, acc3); + } + + for(; x < window_end_x; ++x) + { + if(x > width_matrix_b) + { + return; + } + + auto matrix_b = reinterpret_cast(inb.ptr()) + x; + + float16x4_t vacc = vdup_n_f16(0.f); + + auto vec_a = reinterpret_cast(ina.ptr()); + const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a; + for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4) + { + const float16x4_t a0l = vld1_f16(vec_a); + + const float16x4_t b_col = + { + *(matrix_b + 0 * in_b_stride), + *(matrix_b + 1 * in_b_stride), + *(matrix_b + 2 * in_b_stride), + *(matrix_b + 3 * in_b_stride), + }; + + vacc = vadd_f16(vacc, vmul_f16(a0l, b_col)); + + matrix_b += 4 * in_b_stride; + } + + float16_t acc = vget_lane_f16(vacc, 0) + vget_lane_f16(vacc, 1) + vget_lane_f16(vacc, 2) + vget_lane_f16(vacc, 3); + + for(; vec_a < vec_a_end_addr; ++vec_a) + { + const float16_t a0 = *vec_a; + const float16_t b00 = *matrix_b; + + acc += b00 * a0; + + matrix_b += in_b_stride; + } + + // Multiply by the weight of matrix product (alpha) + if(multiply_alpha) + { + acc *= static_cast(alpha); + } + + auto vec_out = reinterpret_cast(out.ptr()) + x; + + *(vec_out) = acc; + } + }, + ina, inb, out); +} +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + +void vector_matrix_multiply_f32(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) +{ + const auto width_matrix_b = static_cast(dst->info()->dimension(0)); + const auto in_b_stride = static_cast(rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type())); + const auto num_elems_vec_a = static_cast(lhs->info()->dimension(0)); + + // The implementation computes 16 elements per iteration + const int window_start_x = 16 * info.thread_id; + const int window_step_x = 16 * info.num_threads; + // Make sure (window_end_x - window_start_x) is a multiple of window_step_x + const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; + + Window win_out(window); + win_out.set(Window::DimX, Window::Dimension(0, 1, 1)); + win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); + + Window win_a(window); + win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); + win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); + + Window win_b; + // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 + // This scenario can happen when the the matrix multiplication is used to perform a convolution operation + if(rhs->info()->num_dimensions() >= 3) + { + win_b = window; + } + win_b.set(Window::DimX, Window::Dimension(0, 1, 1)); + win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); + + Iterator ina(lhs, win_a); + Iterator inb(rhs, win_b); + Iterator out(dst, win_out); + + const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); + + const float32x4_t alpha_f32 = vdupq_n_f32(alpha); + + execute_window_loop(win_out, [&](const Coordinates &) + { + int x = window_start_x; + // Here we don't check for x lower equal than (window_end_x - window_step_x) because of + // window_end_x is computed above which may cause out-of-bound writes to the dst. + for(; x < (window_end_x - window_step_x); x += window_step_x) + { + if(x > width_matrix_b) + { + return; + } + + float32x4_t acc0 = vdupq_n_f32(0.f); + float32x4_t acc1 = vdupq_n_f32(0.f); + float32x4_t acc2 = vdupq_n_f32(0.f); + float32x4_t acc3 = vdupq_n_f32(0.f); + + auto vec_a = reinterpret_cast(ina.ptr()); + auto matrix_b = reinterpret_cast(inb.ptr()) + x; + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b + in_b_stride))); +#endif /* __arm__ */ + + auto vec_a_end_addr = vec_a + num_elems_vec_a; + for(; vec_a <= (vec_a_end_addr - 4);) + { + float32x2_t a0l = vld1_f32(vec_a); + + float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); + float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); + float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); + float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); + + float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); + float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); + float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); + float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 1 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 2 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 3 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 4 * in_b_stride))); +#endif /* __arm__ */ + + acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); + acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); + acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); + acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); + + acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); + acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); + acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); + acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); + + vec_a += 2; + matrix_b += 2 * in_b_stride; + + a0l = vld1_f32(vec_a); + + b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); + b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); + b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); + b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); + + b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride); + b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride); + b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride); + b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride); + + acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0); + acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0); + acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0); + acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0); + + acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1); + acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1); + acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1); + acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1); + + vec_a += 2; + matrix_b += 2 * in_b_stride; + } + + for(; vec_a < vec_a_end_addr; ++vec_a) + { + const float a0 = *vec_a; + + const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride); + const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride); + const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride); + const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride); + + acc0 = vmlaq_n_f32(acc0, b00, a0); + acc1 = vmlaq_n_f32(acc1, b01, a0); + acc2 = vmlaq_n_f32(acc2, b02, a0); + acc3 = vmlaq_n_f32(acc3, b03, a0); + + matrix_b += in_b_stride; + } + + // Multiply by the weight of matrix product (alpha) + if(multiply_alpha) + { + acc0 = vmulq_f32(acc0, alpha_f32); + acc1 = vmulq_f32(acc1, alpha_f32); + acc2 = vmulq_f32(acc2, alpha_f32); + acc3 = vmulq_f32(acc3, alpha_f32); + } + + const auto vec_out = reinterpret_cast(out.ptr()) + x; + + vst1q_f32(vec_out + 0, acc0); + vst1q_f32(vec_out + 4, acc1); + vst1q_f32(vec_out + 8, acc2); + vst1q_f32(vec_out + 12, acc3); + } + + // Left-over loop + for(; x < window_end_x; ++x) + { + if(x > width_matrix_b) + { + return; + } + + float32x4_t vacc = vdupq_n_f32(0.f); + + auto vec_a = reinterpret_cast(ina.ptr()); + auto matrix_b = reinterpret_cast(inb.ptr()) + x; + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(matrix_b + in_b_stride))); +#endif /* __arm__ */ + + auto vec_a_end_addr = vec_a + num_elems_vec_a; + for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4) + { + const float32x4_t a0l = vld1q_f32(vec_a); + + const float32x4_t b_col = + { + *(matrix_b + 0 * in_b_stride), + *(matrix_b + 1 * in_b_stride), + *(matrix_b + 2 * in_b_stride), + *(matrix_b + 3 * in_b_stride), + }; + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(vec_a))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 1 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 2 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 3 * in_b_stride))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(matrix_b + 4 * in_b_stride))); +#endif /* __arm__ */ + + vacc = vmlaq_f32(vacc, b_col, a0l); + + matrix_b += 4 * in_b_stride; + } + + float acc = vgetq_lane_f32(vacc, 0) + vgetq_lane_f32(vacc, 1) + vgetq_lane_f32(vacc, 2) + vgetq_lane_f32(vacc, 3); + + for(; vec_a < vec_a_end_addr; ++vec_a) + { + const float a0 = *vec_a; + + const float b00 = *matrix_b; + + acc += b00 * a0; + + matrix_b += in_b_stride; + } + + // Multiply by the weight of matrix product (alpha) + if(multiply_alpha) + { + acc *= alpha; + } + + const auto vec_out = reinterpret_cast(out.ptr()) + x; + + *vec_out = acc; + } + }, + ina, inb, out); +} + +void matrix_matrix_multiply_f32(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) +{ + ARM_COMPUTE_UNUSED(info); + const int out_width = static_cast(dst->info()->dimension(0)); + const int out_height = static_cast(dst->info()->dimension(1)); + const size_t in_b_stride = rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type()); + const size_t out_stride1 = dst->info()->strides_in_bytes()[1] / data_size_from_type(dst->info()->data_type()); + const size_t out_stride2 = out_stride1 * 2; + const size_t out_stride3 = out_stride1 * 3; + const int num_elems_matrix_b_x = rhs->info()->dimension(0); + + // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the dst matrix + Window win_a(window); + win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); + win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1)); + + Window win_b; + // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 + // This scenario can happen when the the matrix multiplication is used to perform a convolution operation + if(rhs->info()->num_dimensions() >= 3) + { + win_b = window; + } + // Set step_x and step_y for matrix B. Scale by a factor of 4 the X range as the input transposed matrix A has 4 times less the cols of the dst matrix + // The step along the x direction is 2 times the in_b_stride because for each iteration we compute 2 blocks of size 4x4 + win_b.set(Window::DimX, Window::Dimension(window.x().start() / 4, window.x().end() / 4, 2 * in_b_stride)); + win_b.set(Window::DimY, Window::Dimension(0, 0, 0)); + + Iterator ina(lhs, win_a); + Iterator inb(rhs, win_b); + Iterator out(dst, window); + + const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); + + const float32x4_t alpha_f32 = vdupq_n_f32(alpha); + + // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW + // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration + // All the values needed for computing a single 4x4 block will be read from consecutive memory positions + execute_window_loop(window, [&](const Coordinates & id) + { + auto mtx_a0 = reinterpret_cast(ina.ptr()); + auto mtx_b0 = reinterpret_cast(inb.ptr()); + auto mtx_b1 = mtx_b0 + in_b_stride; + + float32x4_t acc00 = vdupq_n_f32(0.f); + float32x4_t acc10 = vdupq_n_f32(0.f); + float32x4_t acc20 = vdupq_n_f32(0.f); + float32x4_t acc30 = vdupq_n_f32(0.f); + + float32x4_t acc01 = vdupq_n_f32(0.f); + float32x4_t acc11 = vdupq_n_f32(0.f); + float32x4_t acc21 = vdupq_n_f32(0.f); + float32x4_t acc31 = vdupq_n_f32(0.f); + +#if __arm__ + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_a0))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_b0))); + asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast(mtx_b1))); +#endif /* __arm__ */ + + auto mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x; + for(; mtx_b0 <= (mtx_b0_end_addr - 32);) + { + float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0); + float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1); + float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2); + float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3); + + float32x4_t b00 = vld1q_f32(mtx_b0); + float32x4_t b10 = vld1q_f32(mtx_b1); + float32x4_t b01 = vld1q_f32(mtx_b0 + 4); + float32x4_t b11 = vld1q_f32(mtx_b1 + 4); + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_a0))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b0))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b1))); +#endif /* __arm__ */ + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b00, a0); + acc10 = vmlaq_f32(acc10, b00, a1); + acc20 = vmlaq_f32(acc20, b00, a2); + acc30 = vmlaq_f32(acc30, b00, a3); + + float32x4_t a4 = vld1q_dup_f32(mtx_a0 + 4); + float32x4_t a5 = vld1q_dup_f32(mtx_a0 + 5); + float32x4_t a6 = vld1q_dup_f32(mtx_a0 + 6); + float32x4_t a7 = vld1q_dup_f32(mtx_a0 + 7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b10, a0); + acc11 = vmlaq_f32(acc11, b10, a1); + acc21 = vmlaq_f32(acc21, b10, a2); + acc31 = vmlaq_f32(acc31, b10, a3); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b01, a4); + acc10 = vmlaq_f32(acc10, b01, a5); + acc20 = vmlaq_f32(acc20, b01, a6); + acc30 = vmlaq_f32(acc30, b01, a7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b11, a4); + acc11 = vmlaq_f32(acc11, b11, a5); + acc21 = vmlaq_f32(acc21, b11, a6); + acc31 = vmlaq_f32(acc31, b11, a7); + + mtx_a0 += 8; + mtx_b0 += 8; + mtx_b1 += 8; + + a0 = vld1q_dup_f32(mtx_a0 + 0); + a1 = vld1q_dup_f32(mtx_a0 + 1); + a2 = vld1q_dup_f32(mtx_a0 + 2); + a3 = vld1q_dup_f32(mtx_a0 + 3); + + b00 = vld1q_f32(mtx_b0); + b10 = vld1q_f32(mtx_b1); + b01 = vld1q_f32(mtx_b0 + 4); + b11 = vld1q_f32(mtx_b1 + 4); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b00, a0); + acc10 = vmlaq_f32(acc10, b00, a1); + acc20 = vmlaq_f32(acc20, b00, a2); + acc30 = vmlaq_f32(acc30, b00, a3); + + a4 = vld1q_dup_f32(mtx_a0 + 4); + a5 = vld1q_dup_f32(mtx_a0 + 5); + a6 = vld1q_dup_f32(mtx_a0 + 6); + a7 = vld1q_dup_f32(mtx_a0 + 7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b10, a0); + acc11 = vmlaq_f32(acc11, b10, a1); + acc21 = vmlaq_f32(acc21, b10, a2); + acc31 = vmlaq_f32(acc31, b10, a3); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b01, a4); + acc10 = vmlaq_f32(acc10, b01, a5); + acc20 = vmlaq_f32(acc20, b01, a6); + acc30 = vmlaq_f32(acc30, b01, a7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b11, a4); + acc11 = vmlaq_f32(acc11, b11, a5); + acc21 = vmlaq_f32(acc21, b11, a6); + acc31 = vmlaq_f32(acc31, b11, a7); + + mtx_a0 += 8; + mtx_b0 += 8; + mtx_b1 += 8; + + a0 = vld1q_dup_f32(mtx_a0 + 0); + a1 = vld1q_dup_f32(mtx_a0 + 1); + a2 = vld1q_dup_f32(mtx_a0 + 2); + a3 = vld1q_dup_f32(mtx_a0 + 3); + b00 = vld1q_f32(mtx_b0); + b10 = vld1q_f32(mtx_b1); + b01 = vld1q_f32(mtx_b0 + 4); + b11 = vld1q_f32(mtx_b1 + 4); + +#if __arm__ + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_a0))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b0))); + asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast(mtx_b1))); +#endif /* __arm__ */ + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b00, a0); + acc10 = vmlaq_f32(acc10, b00, a1); + acc20 = vmlaq_f32(acc20, b00, a2); + acc30 = vmlaq_f32(acc30, b00, a3); + + a4 = vld1q_dup_f32(mtx_a0 + 4); + a5 = vld1q_dup_f32(mtx_a0 + 5); + a6 = vld1q_dup_f32(mtx_a0 + 6); + a7 = vld1q_dup_f32(mtx_a0 + 7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b10, a0); + acc11 = vmlaq_f32(acc11, b10, a1); + acc21 = vmlaq_f32(acc21, b10, a2); + acc31 = vmlaq_f32(acc31, b10, a3); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b01, a4); + acc10 = vmlaq_f32(acc10, b01, a5); + acc20 = vmlaq_f32(acc20, b01, a6); + acc30 = vmlaq_f32(acc30, b01, a7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b11, a4); + acc11 = vmlaq_f32(acc11, b11, a5); + acc21 = vmlaq_f32(acc21, b11, a6); + acc31 = vmlaq_f32(acc31, b11, a7); + + mtx_a0 += 8; + mtx_b0 += 8; + mtx_b1 += 8; + + a0 = vld1q_dup_f32(mtx_a0 + 0); + a1 = vld1q_dup_f32(mtx_a0 + 1); + a2 = vld1q_dup_f32(mtx_a0 + 2); + a3 = vld1q_dup_f32(mtx_a0 + 3); + b00 = vld1q_f32(mtx_b0); + b10 = vld1q_f32(mtx_b1); + b01 = vld1q_f32(mtx_b0 + 4); + b11 = vld1q_f32(mtx_b1 + 4); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b00, a0); + acc10 = vmlaq_f32(acc10, b00, a1); + acc20 = vmlaq_f32(acc20, b00, a2); + acc30 = vmlaq_f32(acc30, b00, a3); + + a4 = vld1q_dup_f32(mtx_a0 + 4); + a5 = vld1q_dup_f32(mtx_a0 + 5); + a6 = vld1q_dup_f32(mtx_a0 + 6); + a7 = vld1q_dup_f32(mtx_a0 + 7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b10, a0); + acc11 = vmlaq_f32(acc11, b10, a1); + acc21 = vmlaq_f32(acc21, b10, a2); + acc31 = vmlaq_f32(acc31, b10, a3); + + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b01, a4); + acc10 = vmlaq_f32(acc10, b01, a5); + acc20 = vmlaq_f32(acc20, b01, a6); + acc30 = vmlaq_f32(acc30, b01, a7); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b11, a4); + acc11 = vmlaq_f32(acc11, b11, a5); + acc21 = vmlaq_f32(acc21, b11, a6); + acc31 = vmlaq_f32(acc31, b11, a7); + + mtx_a0 += 8; + mtx_b0 += 8; + mtx_b1 += 8; + } + + for(; mtx_b0 < mtx_b0_end_addr;) + { + float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0); + float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1); + float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2); + float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3); + float32x4_t b00 = vld1q_f32(mtx_b0); + float32x4_t b10 = vld1q_f32(mtx_b1); + +#if __arm__ + asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_a0))); + asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_b0))); + asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast(mtx_b1))); +#endif /* __arm__ */ + // 4x4 block 0 + acc00 = vmlaq_f32(acc00, b00, a0); + acc10 = vmlaq_f32(acc10, b00, a1); + acc20 = vmlaq_f32(acc20, b00, a2); + acc30 = vmlaq_f32(acc30, b00, a3); + + // 4x4 block 1 + acc01 = vmlaq_f32(acc01, b10, a0); + acc11 = vmlaq_f32(acc11, b10, a1); + acc21 = vmlaq_f32(acc21, b10, a2); + acc31 = vmlaq_f32(acc31, b10, a3); + + mtx_a0 += 4; + mtx_b0 += 4; + mtx_b1 += 4; + } + + // Multiply by the weight of matrix product (alpha) + if(multiply_alpha) + { + acc00 = vmulq_f32(acc00, alpha_f32); + acc10 = vmulq_f32(acc10, alpha_f32); + acc20 = vmulq_f32(acc20, alpha_f32); + acc30 = vmulq_f32(acc30, alpha_f32); + acc01 = vmulq_f32(acc01, alpha_f32); + acc11 = vmulq_f32(acc11, alpha_f32); + acc21 = vmulq_f32(acc21, alpha_f32); + acc31 = vmulq_f32(acc31, alpha_f32); + } + + const auto mtx_out0 = reinterpret_cast(out.ptr()); + const auto mtx_out1 = mtx_out0 + 4; + + if(id.x() < (out_width - 8)) + { + vst1q_f32(mtx_out0, acc00); + vst1q_f32(mtx_out1, acc01); + if(id.y() + 1 < out_height) + { + vst1q_f32(mtx_out0 + out_stride1, acc10); + vst1q_f32(mtx_out1 + out_stride1, acc11); + if(id.y() + 2 < out_height) + { + vst1q_f32(mtx_out0 + out_stride2, acc20); + vst1q_f32(mtx_out1 + out_stride2, acc21); + if(id.y() + 3 < out_height) + { + vst1q_f32(mtx_out0 + out_stride3, acc30); + vst1q_f32(mtx_out1 + out_stride3, acc31); + } + } + } + } + else if(id.x() < (out_width - 4)) + { + vst1q_f32(mtx_out0, acc00); + if(id.y() + 1 < out_height) + { + vst1q_f32(mtx_out0 + out_stride1, acc10); + if(id.y() + 2 < out_height) + { + vst1q_f32(mtx_out0 + out_stride2, acc20); + if(id.y() + 3 < out_height) + { + vst1q_f32(mtx_out0 + out_stride3, acc30); + } + } + } + // Left-over columns + const int columns_left = out_width - id.x() - 4; + for(auto x = 0; x < columns_left; ++x) + { + *(mtx_out1 + x) = acc01[x]; + if(id.y() + 1 < out_height) + { + *(mtx_out1 + x + out_stride1) = acc11[x]; + if(id.y() + 2 < out_height) + { + *(mtx_out1 + x + out_stride2) = acc21[x]; + if(id.y() + 3 < out_height) + { + *(mtx_out1 + x + out_stride3) = acc31[x]; + } + } + } + } + } + else + { + // Left-over columns + const int columns_left = out_width - id.x(); + for(int x = 0; x < columns_left; ++x) + { + *(mtx_out0 + x) = acc00[x]; + if(id.y() + 1 < out_height) + { + *(mtx_out0 + x + out_stride1) = acc10[x]; + if(id.y() + 2 < out_height) + { + *(mtx_out0 + x + out_stride2) = acc20[x]; + if(id.y() + 3 < out_height) + { + *(mtx_out0 + x + out_stride3) = acc30[x]; + } + } + } + } + } + }, + ina, inb, out); +} + +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC +void matrix_matrix_multiply_f16(const ITensor *lhs, const ITensor *rhs, ITensor *dst, const Window &window, const ThreadInfo &info, float alpha) +{ + ARM_COMPUTE_UNUSED(info); + const int out_width = static_cast(dst->info()->dimension(0)); + const int out_height = static_cast(dst->info()->dimension(1)); + const size_t in_b_stride = rhs->info()->strides_in_bytes()[1] / data_size_from_type(rhs->info()->data_type()); + const size_t out_stride = dst->info()->strides_in_bytes()[1] / data_size_from_type(dst->info()->data_type()); + const int num_elems_matrix_b_x = rhs->info()->dimension(0); + + // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the dst matrix + Window win_a(window); + win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); + win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1)); + + Window win_b; + // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 + // This scenario can happen when the the matrix multiplication is used to perform a convolution operation + if(rhs->info()->num_dimensions() >= 3) + { + win_b = window; + } + // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the dst matrix + win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride)); + win_b.set(Window::DimY, Window::Dimension(0, 1, 0)); + + Iterator ina(lhs, win_a); + Iterator inb(rhs, win_b); + Iterator out(dst, window); + + const bool multiply_alpha = !(helpers::float_ops::is_one(alpha)); + + const float16x8_t alpha_f16 = vdupq_n_f16(alpha); + + execute_window_loop(window, [&](const Coordinates & id) + { + const auto *mtx_a0 = reinterpret_cast(ina.ptr()); + const auto *mtx_b0 = reinterpret_cast(inb.ptr()); + auto *mtx_out = reinterpret_cast(out.ptr()); + float16x8x4_t c = + { + { + vdupq_n_f16(0.f), + vdupq_n_f16(0.f), + vdupq_n_f16(0.f), + vdupq_n_f16(0.f) + } + }; + + /* + This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values) + |a00 a01 a02 a03 | a04 a05 a06 a07| + |a10 a11 a12 a13 | a14 a15 a16 a17| + |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ... + |a30 a31 a32 a33 | a34 a35 a36 a37| | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ... + |a40 a41 a42 a43 | a44 a45 a46 a47| + |a50 a51 a52 a53 | a54 a55 a56 a57| + |a60 a61 a62 a63 | a64 a65 a66 a67| + |a70 a71 a72 a73 | a74 a75 a76 a77| + + After this operation, the dst matrix will have the following shape: [ height * 4, width / 4 ] + + B Matrix has been transposed as shown below + + |b00 b01 b02 b03 b04 b05 b06 b07| + |b10 b11 b12 b13 b14 b15 b16 b17| + |b20 b21 b22 b23 b24 b25 b26 b27| + |b30 b31 b32 b33 b34 b35 b36 b37| + -------------------> + + |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37| + + c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30 + c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31 + + The size of the dst tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size. + */ + const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x; + + for(; mtx_b0 <= (mtx_b0_end_addr - 32);) + + { + const float16x8_t p00 = vld1q_f16(mtx_a0); + const float16x8_t p02 = vld1q_f16(mtx_a0 + 8); + + const float16x8_t q00 = vld1q_f16(mtx_b0); + const float16x8_t q02 = vld1q_f16(mtx_b0 + 8); + const float16x8_t q04 = vld1q_f16(mtx_b0 + 16); + const float16x8_t q06 = vld1q_f16(mtx_b0 + 24); + + c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0))); + c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1))); + c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2))); + c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3))); + + c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4))); + c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5))); + c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6))); + c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7))); + + c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0))); + c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1))); + c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2))); + c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3))); + + c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4))); + c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5))); + c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6))); + c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7))); + + mtx_a0 += 16; + mtx_b0 += 32; + } + + for(; mtx_b0 < mtx_b0_end_addr;) + + { + const float16x4_t p00 = vld1_f16(mtx_a0); + const float16x8_t q00 = vld1q_f16(mtx_b0); + + c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0))); + c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1))); + c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2))); + c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3))); + + mtx_a0 += 4; + mtx_b0 += 8; + } + + if(multiply_alpha) + { + c.val[0] = vmulq_f16(c.val[0], alpha_f16); + c.val[1] = vmulq_f16(c.val[1], alpha_f16); + c.val[2] = vmulq_f16(c.val[2], alpha_f16); + c.val[3] = vmulq_f16(c.val[3], alpha_f16); + } + + if(id.x() < (out_width - 8)) + { + vst1q_f16(mtx_out, c.val[0]); + if(id.y() + 1 < out_height) + { + vst1q_f16(mtx_out + 1 * out_stride, c.val[1]); + if(id.y() + 2 < out_height) + { + vst1q_f16(mtx_out + 2 * out_stride, c.val[2]); + if(id.y() + 3 < out_height) + { + vst1q_f16(mtx_out + 3 * out_stride, c.val[3]); + } + } + } + } + else + { + // Left-over columns + const int columns_left = out_width - id.x(); + for(int x = 0; x < columns_left; ++x) + { + *(mtx_out + x) = c.val[0][x]; + if(id.y() + 1 < out_height) + { + *(mtx_out + x + 1 * out_stride) = c.val[1][x]; + if(id.y() + 2 < out_height) + { + *(mtx_out + x + 2 * out_stride) = c.val[2][x]; + if(id.y() + 3 < out_height) + { + *(mtx_out + x + 3 * out_stride) = c.val[3][x]; + } + } + } + } + } + }, + ina, inb, out); +} +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + +inline Status validate_arguments(const ITensorInfo *lhs, const ITensorInfo *rhs, const ITensorInfo *dst, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info) +{ + ARM_COMPUTE_UNUSED(alpha); + + ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(lhs); + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lhs, 1, DataType::F16, DataType::F32); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, rhs, dst); + + if(!is_interleaved) + { + ARM_COMPUTE_RETURN_ERROR_ON(lhs->dimension(0) != rhs->dimension(1)); + + if(dst->total_size() != 0) + { + ARM_COMPUTE_RETURN_ERROR_ON(rhs->dimension(0) != dst->dimension(0)); + ARM_COMPUTE_RETURN_ERROR_ON(lhs->dimension(1) != dst->dimension(1)); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, dst); + } + } + else + { + const int m = reshape_info.m(); + const int n = reshape_info.n(); + const int k = reshape_info.k(); + const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width(); + const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height(); + + /* Interleave */ + TensorShape tensor_shape0{ lhs->tensor_shape() }; + tensor_shape0.set(0, k); + tensor_shape0.set(1, m); + + const TensorInfo tensor_info0 = lhs->clone()->set_tensor_shape(tensor_shape0); + const TensorInfo tensor_info_reshaped0 = lhs->clone()->set_tensor_shape(misc::shape_calculator::compute_interleaved_shape(tensor_info0, mult_interleave4x4_height)); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lhs, &tensor_info_reshaped0); + + if(n != 0) /* Transpose */ + { + TensorShape tensor_shape1{ rhs->tensor_shape() }; + tensor_shape1.set(0, n); + tensor_shape1.set(1, k); + + const TensorInfo tensor_info1 = rhs->clone()->set_tensor_shape(tensor_shape1); + const TensorInfo tensor_info_reshaped1 = rhs->clone()->set_tensor_shape(misc::shape_calculator::compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width)); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(rhs, &tensor_info_reshaped1); + } + + if(dst->total_size() != 0) + { + if(n != 0) + { + ARM_COMPUTE_RETURN_ERROR_ON(dst->dimension(0) != static_cast(n)); + } + ARM_COMPUTE_RETURN_ERROR_ON(dst->dimension(1) != static_cast(m)); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lhs, dst); + } + } + + return Status{}; +} +} // namespace + +void CpuGemmMatrixMultiplyKernel::configure(const ITensorInfo *lhs, const ITensorInfo *rhs, ITensorInfo *dst, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info) +{ + ARM_COMPUTE_ERROR_ON_NULLPTR(lhs, rhs, dst); + + // dst tensor auto inizialitation if not yet initialized + TensorShape tensor_shape{ lhs->tensor_shape() }; + tensor_shape.set(0, is_interleaved ? reshape_info.n() : rhs->dimension(0)); + tensor_shape.set(1, is_interleaved ? reshape_info.m() : lhs->dimension(1)); + + auto_init_if_empty(*dst, lhs->clone()->set_tensor_shape(tensor_shape)); + + // Perform validate step + ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(lhs, rhs, dst, alpha, is_interleaved, reshape_info)); + + _alpha = alpha; + + // Configure kernel window + Window win{}; + + // Check if the dst tensor is a vector. If so,the kernel runs the vector-matrix multiplication + const bool is_dst_vector = (dst->dimension(1) == 1); + if(is_dst_vector) + { + const unsigned int num_elems_processed_per_iteration_x = (lhs->data_type() == DataType::F32) ? 16 : 32; + + win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x)); + } + else + { + constexpr unsigned int num_elems_processed_per_iteration_x = 8; + constexpr unsigned int num_elems_processed_per_iteration_y = 4; + + win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); + } + + switch(lhs->data_type()) + { + case DataType::F32: + { + _func = (is_dst_vector) ? vector_matrix_multiply_f32 : matrix_matrix_multiply_f32; + break; + } +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + case DataType::F16: + { + _func = (is_dst_vector) ? vector_matrix_multiply_f16 : matrix_matrix_multiply_f16; + break; + } +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + default: + { + ARM_COMPUTE_ERROR("Data type not supported"); + break; + } + } + ICPPKernel::configure(win); +} + +Status CpuGemmMatrixMultiplyKernel::validate(const ITensorInfo *lhs, const ITensorInfo *rhs, const ITensorInfo *dst, float alpha, bool is_interleaved, + const GEMMReshapeInfo &reshape_info) +{ + ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(lhs, rhs, dst, alpha, is_interleaved, reshape_info)); + + return Status{}; +} + +void CpuGemmMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) +{ + ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); + ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window); + ARM_COMPUTE_ERROR_ON(tensors.empty()); + ARM_COMPUTE_ERROR_ON(_func == nullptr); + + const ITensor *lhs = tensors.get_const_tensor(TensorType::ACL_SRC_0); + const ITensor *rhs = tensors.get_const_tensor(TensorType::ACL_SRC_1); + ITensor *dst = tensors.get_tensor(TensorType::ACL_DST); + + (*_func)(lhs, rhs, dst, window, info, _alpha); +} + +const char *CpuGemmMatrixMultiplyKernel::name() const +{ + return "CpuGemmMatrixMultiplyKernel"; +} +} // namespace kernels +} // namespace cpu +} // namespace arm_compute -- cgit v1.2.1