From 05398a948a2b43584b16d91f6efdda9eb361ec74 Mon Sep 17 00:00:00 2001 From: George Wort Date: Fri, 25 Jan 2019 15:38:33 +0000 Subject: COMPMID-1843: Implement NECrop Change-Id: I27e8b1a00c2315c72106e8e596f84ad48fb770e3 Signed-off-by: George Wort Reviewed-on: https://review.mlplatform.org/c/648 Tested-by: Arm Jenkins Reviewed-by: Pablo Marquez --- src/core/NEON/kernels/NECropKernel.cpp | 400 ++++++++++++++++++++++++++++++++ src/core/NEON/kernels/NEScaleKernel.cpp | 137 ++++++----- 2 files changed, 485 insertions(+), 52 deletions(-) create mode 100644 src/core/NEON/kernels/NECropKernel.cpp (limited to 'src/core') diff --git a/src/core/NEON/kernels/NECropKernel.cpp b/src/core/NEON/kernels/NECropKernel.cpp new file mode 100644 index 0000000000..b6fe5819e4 --- /dev/null +++ b/src/core/NEON/kernels/NECropKernel.cpp @@ -0,0 +1,400 @@ +/* + * Copyright (c) 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "arm_compute/core/NEON/kernels/NECropKernel.h" + +#include "arm_compute/core/CPP/Validate.h" +#include "arm_compute/core/IAccessWindow.h" +#include "arm_compute/core/ITensor.h" +#include "arm_compute/core/TensorInfo.h" +#include "arm_compute/core/Window.h" + +#include "arm_compute/core/NEON/wrapper/wrapper.h" +#include "arm_compute/core/Types.h" +#include "arm_compute/core/utils/helpers/bit_ops.h" +#include "arm_compute/core/utils/helpers/tensor_transform.h" +#include "arm_compute/core/utils/misc/ShapeCalculator.h" + +#include + +namespace arm_compute +{ +namespace +{ +template +inline float32x4_t load_as_f32(T *ptr) +{ + ARM_COMPUTE_UNUSED(ptr); + ARM_COMPUTE_ERROR("Type not supported."); +} + +template <> +inline float32x4_t load_as_f32(float *ptr) +{ + return wrapper::vloadq(ptr); +} + +template <> +inline float32x4_t load_as_f32(int32_t *ptr) +{ + return vcvtq_f32_s32(wrapper::vloadq(ptr)); +} + +template <> +inline float32x4_t load_as_f32(uint32_t *ptr) +{ + return vcvtq_f32_u32(wrapper::vloadq(ptr)); +} + +template <> +inline float32x4_t load_as_f32(int16_t *ptr) +{ + return vcvtq_f32_s32(vmovl_s16(wrapper::vload(ptr))); +} + +template <> +inline float32x4_t load_as_f32(uint16_t *ptr) +{ + return vcvtq_f32_u32(vmovl_u16(wrapper::vload(ptr))); +} + +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC +template <> +inline float32x4_t load_as_f32(float16_t *ptr) +{ + return vcvt_f32_f16(wrapper::vload(ptr)); +} +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + +template +inline void in_bounds_crop_window(const ITensor *input, const ITensor *output, float *output_ptr, Coordinates input_offset, + int32_t window_step_x, int32_t output_width_start, int32_t output_width_limit) +{ + // Reverse elements if width flipped. + if(is_width_flipped) + { + // Collapse first dimension if possible. + if(input_has_single_channel) + { + int32_t x = output_width_start; + Coordinates negative_offset(input_offset); + negative_offset.set(1, negative_offset[1] - window_step_x + 1); + for(; x <= output_width_limit - window_step_x; x += window_step_x, negative_offset[1] -= window_step_x) + { + auto in = load_as_f32(reinterpret_cast(input->ptr_to_element(negative_offset))); + + in = wrapper::vrev64(in); + in = wrapper::vcombine(wrapper::vgethigh(in), wrapper::vgetlow(in)); + + wrapper::vstore(output_ptr + x, in); + } + input_offset[1] = negative_offset[1] + window_step_x - 1; + for(; x < output_width_limit; ++x, --input_offset[1]) + { + *(output_ptr + x) = static_cast(*reinterpret_cast(input->ptr_to_element(input_offset))); + } + } + else + { + for(int32_t x = output_width_start; x < output_width_limit; ++x, --input_offset[1]) + { + input_offset.set(0, 0); + int32_t c = 0; + for(; c <= static_cast(input->info()->dimension(0)) - window_step_x; c += window_step_x, input_offset[0] += window_step_x) + { + auto in = load_as_f32(reinterpret_cast(input->ptr_to_element(input_offset))); + wrapper::vstore(output_ptr + x * output->info()->dimension(0) + c, in); + } + for(; c < static_cast(input->info()->dimension(0)); ++c, ++input_offset[0]) + { + *(output_ptr + x * output->info()->dimension(0) + c) = static_cast(*reinterpret_cast(input->ptr_to_element(input_offset))); + } + } + } + } + else + { + // Use memcpy if the elements don't need converting to float. + if(std::is_same::value) + { + memcpy(static_cast(output_ptr + output_width_start * output->info()->dimension(0)), + reinterpret_cast(input->ptr_to_element(input_offset)), + (output_width_limit - output_width_start) * output->info()->dimension(0) * output->info()->element_size()); + } + else + { + int32_t x = 0; + int32_t limit = (output_width_limit - output_width_start) * static_cast(output->info()->dimension(0)); + float *output_start_ptr = output_ptr + output_width_start * output->info()->dimension(0); + for(; x <= limit - window_step_x; x += window_step_x, input_offset[0] += window_step_x) + { + auto in = load_as_f32(reinterpret_cast(input->ptr_to_element(input_offset))); + wrapper::vstore(output_start_ptr + x, in); + } + for(; x < limit; ++x, ++input_offset[0]) + { + *(output_start_ptr + x) = static_cast(*reinterpret_cast(input->ptr_to_element(input_offset))); + } + } + } +} + +inline void out_of_bounds_crop_window(const ITensor *output, float *output_ptr, float extrapolation_value, + int32_t window_step_x, int32_t output_width_start, int32_t output_width_limit) +{ + auto in = wrapper::vdup_n(extrapolation_value, wrapper::traits::vector_128_tag()); + int32_t x = 0; + int32_t limit = (output_width_limit - output_width_start) * static_cast(output->info()->dimension(0)); + float *output_start_ptr = output_ptr + output_width_start * output->info()->dimension(0); + for(; x <= limit - window_step_x; x += window_step_x) + { + wrapper::vstore(output_start_ptr + x, in); + } + for(; x < limit; ++x) + { + *(output_start_ptr + x) = extrapolation_value; + } +} + +template +inline void execute_window(const ITensor *input, const ITensor *output, Coordinates input_offset, float extrapolation_value, + const uint32_t rows_out_of_bounds[], const uint32_t cols_out_of_bounds[], NECropKernel::InBoundsCropFunction *in_bounds_crop_function) +{ + // Output is always float. + const int window_step_x = 16 / sizeof(float); + auto *output_ptr = reinterpret_cast(output->buffer()); + // Output window: + // -------------------------------- + // | Out of bounds | + // | rows before | + // |------------------------------| + // | Out of | In | Out of | + // | bounds | bounds | bounds | + // | cols | elements | cols | + // | before | copied | after | + // | | from input | | + // -------------------------------- + // | Out of bounds | + // | rows after | + // |------------------------------| + // Fill all output rows that have no elements that are within the input bounds with the extrapolation value. + // First for the rows before the in bounds rows. + out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, rows_out_of_bounds[0] * output->info()->dimension(1)); + output_ptr += rows_out_of_bounds[0] * output->info()->dimension(1) * output->info()->dimension(0); + // Iterate through each row that has any elements within the input bounds. + for(uint32_t row = rows_out_of_bounds[0]; static_cast(row) < static_cast(output->info()->dimension(2) - rows_out_of_bounds[1]); + ++row, is_height_flipped ? --input_offset[2] : ++input_offset[2]) + { + // Fill all elements in the row that are out of bounds with the extrapolation value. + // First for the elements before the in bounds elements. + if(has_cols_out_of_bounds_before) + { + out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, cols_out_of_bounds[0]); + } + // Copy all elements within the input bounds from the input tensor. + if(has_cols_in_bounds) + { + (*in_bounds_crop_function)(input, output, output_ptr, input_offset, window_step_x, cols_out_of_bounds[0], output->info()->dimension(1) - cols_out_of_bounds[1]); + } + // Fill all elements after the in bounds elements with the extrapolation value. + if(has_cols_out_of_bounds_after) + { + out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, output->info()->dimension(1) - cols_out_of_bounds[1], output->info()->dimension(1)); + } + output_ptr += output->info()->dimension(1) * output->info()->dimension(0); + } + // Fill all rows after the in bounds elements with the extrapolation value. + out_of_bounds_crop_window(output, output_ptr, extrapolation_value, window_step_x, 0, rows_out_of_bounds[1] * output->info()->dimension(1)); +} +} // namespace + +NECropKernel::NECropKernel() + : _input(nullptr), _crop_boxes(nullptr), _box_ind(nullptr), _output(nullptr), _start(), _end(), _crop_box_ind(0), _extrapolation_value(0), _rows_out_of_bounds(), _cols_out_of_bounds(), + _in_bounds_crop_functions(), _in_bounds_crop_function(nullptr), _crop_function(nullptr) +{ +} + +void NECropKernel::configure(const ITensor *input, const ITensor *crop_boxes, const ITensor *box_ind, ITensor *output, uint32_t crop_box_ind, float extrapolation_value) +{ + ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); + ARM_COMPUTE_ERROR_THROW_ON(validate(input->info(), crop_boxes->info(), box_ind->info(), output->info(), crop_box_ind, extrapolation_value)); + + _input = input; + _crop_boxes = crop_boxes; + _box_ind = box_ind; + _output = output; + _crop_box_ind = crop_box_ind; + _extrapolation_value = extrapolation_value; + + const static std::map, std::pair> in_map_function = + { + { { DataType::F32, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::F32, true }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::U16, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::U16, true }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::S16, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::S16, true }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::U32, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::U32, true }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::S32, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::S32, true }, { &in_bounds_crop_window, &in_bounds_crop_window } }, +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + { { DataType::F16, false }, { &in_bounds_crop_window, &in_bounds_crop_window } }, + { { DataType::F16, false }, { &in_bounds_crop_window, &in_bounds_crop_window } } +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + }; + + auto in_it = in_map_function.find({ input->info()->data_type(), input->info()->dimension(0) == 1 }); + + if(in_it != in_map_function.end()) + { + _in_bounds_crop_functions = in_it->second; + } +} + +Status NECropKernel::validate(const ITensorInfo *input, const ITensorInfo *crop_boxes, const ITensorInfo *box_ind, const ITensorInfo *output, uint32_t crop_box_ind, float extrapolation_value) +{ + ARM_COMPUTE_UNUSED(extrapolation_value); + ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U16, DataType::S16, DataType::F16, DataType::U32, DataType::S32, DataType::F32); + ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC); + ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape().num_dimensions() > 4); + ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[0] != 4); + ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] != box_ind->tensor_shape()[0]); + ARM_COMPUTE_RETURN_ERROR_ON(crop_boxes->tensor_shape()[1] <= crop_box_ind); + ARM_COMPUTE_RETURN_ERROR_ON(box_ind->tensor_shape()[0] <= crop_box_ind); + if(output->total_size() > 0) + { + ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(output, DataType::F32); + ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output); + ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() != 3); + ARM_COMPUTE_RETURN_ERROR_ON(output->has_padding()); + } + return Status{}; +} + +void NECropKernel::configure_output_shape() +{ + // _crop_box_ind is used to index _crop_boxes and retrieve the appropriate crop box. + // The crop box is specified by normalized coordinates [y0, x0, y1, x1]. + const float x0 = *reinterpret_cast(_crop_boxes->ptr_to_element(Coordinates(1, _crop_box_ind))); + const float y0 = *reinterpret_cast(_crop_boxes->ptr_to_element(Coordinates(0, _crop_box_ind))); + const float x1 = *reinterpret_cast(_crop_boxes->ptr_to_element(Coordinates(3, _crop_box_ind))); + const float y1 = *reinterpret_cast(_crop_boxes->ptr_to_element(Coordinates(2, _crop_box_ind))); + // The normalized coordiantes are scaled to retrieve the floating point image coordinates which are rounded to integers. + _start = Coordinates(std::floor(x0 * (_input->info()->tensor_shape()[1] - 1) + 0.5f), + std::floor(y0 * (_input->info()->tensor_shape()[2] - 1) + 0.5f)); + _end = Coordinates(std::floor(x1 * (_input->info()->tensor_shape()[1] - 1) + 0.5f), + std::floor(y1 * (_input->info()->tensor_shape()[2] - 1) + 0.5f)); + const TensorShape out_shape(_input->info()->tensor_shape()[0], abs(_end[0] - _start[0]) + 1, abs(_end[1] - _start[1]) + 1); + _output->info()->set_tensor_shape(out_shape); + + _in_bounds_crop_function = _start[0] <= _end[0] ? _in_bounds_crop_functions.first : _in_bounds_crop_functions.second; + + bool is_width_flipped = _end[0] < _start[0]; + bool is_height_flipped = _end[1] < _start[1]; + if(is_height_flipped) + { + _rows_out_of_bounds[0] = _start[1] >= static_cast(_input->info()->dimension(2)) ? std::min(static_cast(_start[1] - _input->info()->dimension(2) + 1), + static_cast(_output->info()->dimension(2))) : + 0; + _rows_out_of_bounds[1] = _end[1] < 0 ? std::min(static_cast(-_end[1]), + static_cast(_output->info()->dimension(2))) : + 0; + } + else + { + _rows_out_of_bounds[0] = _start[1] < 0 ? std::min(static_cast(-_start[1]), + static_cast(_output->info()->dimension(2))) : + 0; + _rows_out_of_bounds[1] = _end[1] >= static_cast(_input->info()->dimension(2)) ? std::min(static_cast(_end[1] - _input->info()->dimension(2) + 1), + static_cast(_output->info()->dimension(2))) : + 0; + } + if(is_width_flipped) + { + _cols_out_of_bounds[0] = _start[0] >= static_cast(_input->info()->dimension(1)) ? std::min(static_cast(_start[0] - _input->info()->dimension(1) + 1), + static_cast(_output->info()->dimension(1))) : + 0; + _cols_out_of_bounds[1] = _end[0] < 0 ? std::min(static_cast(-_end[0]), + static_cast(_output->info()->dimension(1))) : + 0; + } + else + { + _cols_out_of_bounds[0] = _start[0] < 0 ? std::min(static_cast(-_start[0]), + static_cast(_output->info()->dimension(1))) : + 0; + _cols_out_of_bounds[1] = _end[0] >= static_cast(_input->info()->dimension(1)) ? std::min(static_cast(_end[0] - _input->info()->dimension(1) + 1), + static_cast(_output->info()->dimension(1))) : + 0; + } + + const static std::map, NECropKernel::CropFunction *> map_function = + { + { std::make_tuple(false, false, false, false), &execute_window }, + { std::make_tuple(false, false, false, true), &execute_window }, + { std::make_tuple(false, false, true, false), &execute_window }, + { std::make_tuple(false, false, true, true), &execute_window }, + { std::make_tuple(false, true, false, false), &execute_window }, + { std::make_tuple(false, true, false, true), &execute_window }, + { std::make_tuple(false, true, true, false), &execute_window }, + { std::make_tuple(false, true, true, true), &execute_window }, + { std::make_tuple(true, false, false, false), &execute_window }, + { std::make_tuple(true, false, false, true), &execute_window }, + { std::make_tuple(true, false, true, false), &execute_window }, + { std::make_tuple(true, false, true, true), &execute_window }, + { std::make_tuple(true, true, false, false), &execute_window }, + { std::make_tuple(true, true, false, true), &execute_window }, + { std::make_tuple(true, true, true, false), &execute_window }, + { std::make_tuple(true, true, true, true), &execute_window }, + }; + + auto it = map_function.find(std::make_tuple(is_height_flipped, + _cols_out_of_bounds[0] + _cols_out_of_bounds[1] < _output->info()->dimension(1), + _cols_out_of_bounds[0] > 0, + _cols_out_of_bounds[1] > 0)); + + if(it != map_function.end()) + { + _crop_function = it->second; + } + + INEKernel::configure(calculate_max_window(*_output->info())); +} + +void NECropKernel::run(const Window &window, const ThreadInfo &info) +{ + ARM_COMPUTE_UNUSED(window, info); + ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); + ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); + + ARM_COMPUTE_ERROR_ON(_input->info()->has_padding()); + ARM_COMPUTE_ERROR_ON(_output->info()->has_padding()); + + uint32_t batch_index = *(reinterpret_cast(_box_ind->ptr_to_element(Coordinates(_crop_box_ind)))); + Coordinates input_offset(0, _end[0] < _start[0] ? _start[0] - _cols_out_of_bounds[0] : _start[0] + _cols_out_of_bounds[0], + _end[1] < _start[1] ? _start[1] - _rows_out_of_bounds[0] : _start[1] + _rows_out_of_bounds[0], batch_index); + (*_crop_function)(_input, _output, input_offset, _extrapolation_value, _rows_out_of_bounds, _cols_out_of_bounds, _in_bounds_crop_function); +} +} // namespace arm_compute diff --git a/src/core/NEON/kernels/NEScaleKernel.cpp b/src/core/NEON/kernels/NEScaleKernel.cpp index 3d300ef26b..64f35290ba 100644 --- a/src/core/NEON/kernels/NEScaleKernel.cpp +++ b/src/core/NEON/kernels/NEScaleKernel.cpp @@ -45,7 +45,7 @@ namespace { Status validate_arguments(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *output, InterpolationPolicy policy, - BorderMode border_mode, SamplingPolicy sampling_policy) + BorderMode border_mode, PixelValue constant_border_value, SamplingPolicy sampling_policy, bool use_padding) { ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input); ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8, DataType::S16, DataType::F16, DataType::F32, DataType::QASYMM8); @@ -53,7 +53,8 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *dx, const ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output); ARM_COMPUTE_RETURN_ERROR_ON(output == input); ARM_COMPUTE_RETURN_ERROR_ON(sampling_policy != SamplingPolicy::CENTER && sampling_policy != SamplingPolicy::TOP_LEFT); - ARM_COMPUTE_UNUSED(border_mode); + ARM_COMPUTE_RETURN_ERROR_ON(!use_padding && border_mode != BorderMode::CONSTANT); + ARM_COMPUTE_UNUSED(constant_border_value); const DataLayout data_layout = input->data_layout(); ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)) == 0); @@ -121,40 +122,44 @@ std::pair validate_and_configure_window_nchw(ITensorInfo *input, std::pair validate_and_configure_window_nhwc(ITensorInfo *input, ITensorInfo *output, InterpolationPolicy policy, bool border_undefined, - SamplingPolicy sampling_policy, BorderSize border_size) + SamplingPolicy sampling_policy, BorderSize border_size, bool use_padding) { bool window_changed{ false }; Window win{}; - const unsigned int num_elems_processed_per_iteration = (policy == InterpolationPolicy::NEAREST_NEIGHBOR) ? 16 / input->element_size() : 1; + const unsigned int num_elems_processed_per_iteration = (use_padding && policy == InterpolationPolicy::NEAREST_NEIGHBOR) ? 16 / input->element_size() : 1; // Configure kernel window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration)); - AccessWindowStatic input_access(input, 0, -border_size.top, - ceil_to_multiple(input->tensor_shape()[0], num_elems_processed_per_iteration), - input->tensor_shape()[1]); - AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); - - window_changed = update_window_and_padding(win, input_access, output_access); - output->set_valid_region(calculate_valid_region_scale(*input, output->tensor_shape(), - policy, sampling_policy, border_undefined)); + if(use_padding) + { + AccessWindowStatic input_access(input, 0, -border_size.top, use_padding ? ceil_to_multiple(input->tensor_shape()[0], num_elems_processed_per_iteration) : num_elems_processed_per_iteration, + input->tensor_shape()[1]); + AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration); + window_changed = update_window_and_padding(win, input_access, output_access); + output->set_valid_region(calculate_valid_region_scale(*input, output->tensor_shape(), policy, sampling_policy, border_undefined)); + } Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; return std::make_pair(err, win); } std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *dx, ITensorInfo *dy, ITensorInfo *offsets, ITensorInfo *output, - InterpolationPolicy policy, bool border_undefined, SamplingPolicy sampling_policy, BorderSize border_size) + InterpolationPolicy policy, bool border_undefined, SamplingPolicy sampling_policy, BorderSize border_size, bool use_padding) { std::pair win_config; switch(input->data_layout()) { case DataLayout::NCHW: + if(!use_padding) + { + return std::make_pair(ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Padding required for NCHW"), Window{}); + } win_config = validate_and_configure_window_nchw(input, dx, dy, offsets, output, policy, border_undefined, sampling_policy, border_size); break; case DataLayout::NHWC: - win_config = validate_and_configure_window_nhwc(input, output, policy, border_undefined, sampling_policy, border_size); + win_config = validate_and_configure_window_nhwc(input, output, policy, border_undefined, sampling_policy, border_size, use_padding); break; default: win_config = std::make_pair(ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported data layout!"), Window{}); @@ -167,6 +172,12 @@ template inline void scale_nearest_nhwc_core(const ITensor *input, const ITensor *offsets, ITensor *output, float hr, Window window, const Window &win_in, size_t stride_w, size_t stride_h, size_t stride_c) { + const int window_step_x = 16 / sizeof(T); + const auto window_start_x = static_cast(window.x().start()); + const auto window_end_x = static_cast(window.x().end()); + + window.set(Window::DimX, Window::Dimension(0, 1, 1)); + Iterator in(input, win_in); Iterator out(output, window); @@ -174,18 +185,28 @@ inline void scale_nearest_nhwc_core(const ITensor *input, const ITensor *offsets execute_window_loop(window, [&](const Coordinates & id) { - const auto offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); - const int in_yi = (id.z() + 0.5f) * hr; - const int offset_row = in_yi * stride_h + id.x() * stride_c; - wrapper::vstore(reinterpret_cast(out.ptr()), - wrapper::vloadq(reinterpret_cast(in.ptr() + offset * offsets_stride + offset_row))); + const int32_t offset = *reinterpret_cast(offsets->ptr_to_element(Coordinates(id.y(), id.z()))); + const int in_yi = (id.z() + 0.5f) * hr; + const int offset_row = in_yi * stride_h; + int32_t x = window_start_x; + for(; x < window_end_x - window_step_x; x += window_step_x) + { + wrapper::vstore(reinterpret_cast(out.ptr()) + x, + wrapper::vloadq(reinterpret_cast(in.ptr() + offset * offsets_stride + offset_row + x * stride_c))); + } + for(; x < window_end_x; ++x) + { + *(reinterpret_cast(out.ptr()) + x) = + *(reinterpret_cast(in.ptr() + offset * offsets_stride + offset_row + x * stride_c)); + } }, in, out); } -template +template inline void scale_bilinear_nhwc_core(const ITensor *input, const ITensor *offsets, const ITensor *dx, const ITensor *dy, ITensor *output, - float hr, float sampling_offset, Window window, const Window &win_in, size_t stride_w, size_t stride_h, size_t stride_c, BorderMode border_mode) + float hr, float sampling_offset, Window window, const Window &win_in, size_t stride_w, size_t stride_h, + size_t stride_c, BorderMode border_mode, PixelValue constant_border_value, bool use_padding) { Iterator in(input, win_in); Iterator out(output, window); @@ -196,7 +217,15 @@ inline void scale_bilinear_nhwc_core(const ITensor *input, const ITensor *offset const int input_width = input->info()->dimension(1); const int input_height = input->info()->dimension(2); - const T *border_area = reinterpret_cast(input->buffer() + input->info()->offset_first_element_in_bytes() - stride_w); + T border_value; + if(use_padding) + { + border_value = *reinterpret_cast(input->buffer() + input->info()->offset_first_element_in_bytes() - stride_w); + } + else + { + border_value = static_cast(constant_border_value.get()); + } auto is_valid = [](int x, int low_x, int high_x, int y, int low_y, int high_y) { @@ -224,10 +253,10 @@ inline void scale_bilinear_nhwc_core(const ITensor *input, const ITensor *offset if(border_mode == BorderMode::CONSTANT) { - a00 = is_valid(offset, 0, input_width - 1, in_yi, 0, input_height - 1) ? *in_ptr : *border_area; - a01 = is_valid(offset + 1, 0, input_width - 1, in_yi, 0, input_height - 1) ? *(in_ptr + stride_w_elems) : *border_area; - a10 = is_valid(offset, 0, input_width - 1, in_yi + 1, 0, input_height - 1) ? *(in_ptr + stride_h_elems) : *border_area; - a11 = is_valid(offset + 1, 0, input_width - 1, in_yi + 1, 0, input_height - 1) ? *(in_ptr + stride_h_elems + stride_w_elems) : *border_area; + a00 = is_valid(offset, 0, input_width - 1, in_yi, 0, input_height - 1) ? *in_ptr : border_value; + a01 = is_valid(offset + 1, 0, input_width - 1, in_yi, 0, input_height - 1) ? *(in_ptr + stride_w_elems) : border_value; + a10 = is_valid(offset, 0, input_width - 1, in_yi + 1, 0, input_height - 1) ? *(in_ptr + stride_h_elems) : border_value; + a11 = is_valid(offset + 1, 0, input_width - 1, in_yi + 1, 0, input_height - 1) ? *(in_ptr + stride_h_elems + stride_w_elems) : border_value; } else if(border_mode == BorderMode::REPLICATE) { @@ -279,7 +308,7 @@ inline void scale_bilinear_nhwc_core(const ITensor *input, const ITensor *offset { if(border_mode == BorderMode::CONSTANT) { - *reinterpret_cast(out.ptr()) = *border_area; + *reinterpret_cast(out.ptr()) = border_value; } else if(border_mode == BorderMode::REPLICATE) { @@ -294,7 +323,8 @@ inline void scale_bilinear_nhwc_core(const ITensor *input, const ITensor *offset } // namespace NEScaleKernel::NEScaleKernel() - : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr), _policy(), _border_size(1), _border_mode(), _sampling_offset(0) + : _func(nullptr), _offsets(nullptr), _dx(nullptr), _dy(nullptr), _input(nullptr), _output(nullptr), _policy(), _border_size(1), _border_mode(), _constant_border_value(0), _sampling_offset(0), + _use_padding(true) { } @@ -304,31 +334,33 @@ BorderSize NEScaleKernel::border_size() const } void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITensor *dy, const ITensor *offsets, - ITensor *output, InterpolationPolicy policy, BorderMode border_mode, SamplingPolicy sampling_policy) + ITensor *output, InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, SamplingPolicy sampling_policy, + bool use_padding) { ARM_COMPUTE_ERROR_ON_NULLPTR(input, output); - // Perform validation step ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), dx != nullptr ? dx->info() : nullptr, dy != nullptr ? dy->info() : nullptr, offsets != nullptr ? offsets->info() : nullptr, output->info(), - policy, border_mode, sampling_policy)); + policy, border_mode, constant_border_value, sampling_policy, use_padding)); // Get data layout and width/height indices const DataLayout data_layout = input->info()->data_layout(); const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH); const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT); - _input = input; - _output = output; - _offsets = offsets; - _dx = dx; - _dy = dy; - _policy = policy; - _border_size = BorderSize(1); - _border_mode = border_mode; + _input = input; + _output = output; + _offsets = offsets; + _dx = dx; + _dy = dy; + _policy = policy; + _border_size = BorderSize(1); + _border_mode = border_mode; + _constant_border_value = constant_border_value; + _use_padding = use_padding; if(sampling_policy == SamplingPolicy::CENTER) { @@ -342,7 +374,7 @@ void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITe // Add constant border only on top in case of NHWC layout if(data_layout == DataLayout::NHWC) { - _border_size = (border_mode == BorderMode::CONSTANT && policy == InterpolationPolicy::BILINEAR) ? BorderSize(1, 0, 0, 0) : BorderSize(0); + _border_size = (border_mode == BorderMode::CONSTANT && policy == InterpolationPolicy::BILINEAR && use_padding) ? BorderSize(1, 0, 0, 0) : BorderSize(0); } // Area interpolation behaves as Nearest Neighbour in case of up-sampling @@ -379,7 +411,8 @@ void NEScaleKernel::configure(const ITensor *input, const ITensor *dx, const ITe dy != nullptr ? dy->info() : nullptr, offsets != nullptr ? offsets->info() : nullptr, output->info(), - policy, border_mode == BorderMode::UNDEFINED, sampling_policy, border_size()); + policy, border_mode == BorderMode::UNDEFINED, sampling_policy, border_size(), use_padding); + ARM_COMPUTE_ERROR_THROW_ON(win_config.first); INEKernel::configure(win_config.second); } @@ -904,8 +937,8 @@ void NEScaleKernel::scale_nhwc(const Window &window) } else { - scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, - window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode); + scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, + window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode, _constant_border_value, _use_padding); } break; } @@ -917,8 +950,8 @@ void NEScaleKernel::scale_nhwc(const Window &window) } else { - scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, - window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode); + scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, + window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode, _constant_border_value, _use_padding); } break; } @@ -932,8 +965,8 @@ void NEScaleKernel::scale_nhwc(const Window &window) } else { - scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, - window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode); + scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, + window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode, _constant_border_value, _use_padding); } break; } @@ -946,8 +979,8 @@ void NEScaleKernel::scale_nhwc(const Window &window) } else { - scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, - window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode); + scale_bilinear_nhwc_core(_input, _offsets, _dx, _dy, _output, hr, _sampling_offset, + window, win_in, input_stride_w, input_stride_h, input_stride_c, _border_mode, _constant_border_value, _use_padding); } break; } @@ -959,7 +992,7 @@ void NEScaleKernel::scale_nhwc(const Window &window) Status NEScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, const ITensorInfo *dy, const ITensorInfo *offsets, ITensorInfo *output, InterpolationPolicy policy, - BorderMode border_mode, SamplingPolicy sampling_policy) + BorderMode border_mode, PixelValue constant_border_value, SamplingPolicy sampling_policy, bool use_padding) { BorderSize border_size(1); if(input->data_layout() == DataLayout::NHWC) @@ -967,13 +1000,13 @@ Status NEScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *dx, border_size = (border_mode == BorderMode::CONSTANT && policy == InterpolationPolicy::BILINEAR) ? BorderSize(1, 0, 0, 0) : BorderSize(0); } - ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, policy, border_mode, sampling_policy)); + ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, dx, dy, offsets, output, policy, border_mode, constant_border_value, sampling_policy, use_padding)); ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), dx != nullptr ? dx->clone().get() : nullptr, dy != nullptr ? dy->clone().get() : nullptr, offsets != nullptr ? offsets->clone().get() : nullptr, output->clone().get(), - policy, border_mode == BorderMode::UNDEFINED, sampling_policy, border_size) + policy, border_mode == BorderMode::UNDEFINED, sampling_policy, border_size, use_padding) .first); return Status{}; -- cgit v1.2.1