From d6ca478a7e410f8f529c2e505305b46d9fe21a9b Mon Sep 17 00:00:00 2001 From: Pablo Tello Date: Tue, 23 Jan 2018 09:36:04 +0000 Subject: COMPMID-784: Added support for biases in WinogradLayer. 1) Updated to the latest code from the RSH repo. 2) Moved winograd transforms into kernels. 3) Added support for biases Change-Id: I7f39f34a599b49d7d9b549cc10a4f4d4a8007ab8 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/117474 Tested-by: Jenkins Reviewed-by: Anthony Barbier --- .../winograd/transforms/weights_2x2_5x5_fp32.cpp | 408 +++++++++++++++++++++ 1 file changed, 408 insertions(+) create mode 100644 src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp (limited to 'src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp') diff --git a/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp b/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp new file mode 100644 index 0000000000..acf6b913f8 --- /dev/null +++ b/src/core/NEON/kernels/winograd/transforms/weights_2x2_5x5_fp32.cpp @@ -0,0 +1,408 @@ +/* + * Copyright (c) 2017 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "arm.hpp" +#include "winograd_gemm.hpp" +#include "transforms/kernel.hpp" + +namespace winograd +{ + template <> + template <> + void WinogradGEMM<2, 2, 5, 5>::WeightsTransform::execute( + const int n_output_channels, + const int n_input_channels, + const float* const input, + float* const output, + const int matrix_stride, + const int matrix_row_stride + ) + { + // Get pointers to each cell of the weight tensor + const auto weight_col_stride = n_input_channels * n_output_channels; + const auto weight_row_stride = 5 * weight_col_stride; + const float *inptrs[5][5]; + for (int i = 0; i < 5; i++) + { + for (int j = 0; j < 5; j++) + { + inptrs[i][j] = input + i*weight_row_stride + j*weight_col_stride; + } + } + + // For each input channel + for (int ic = 0; ic < n_input_channels; ic++) + { + float *outptr = output + ic * matrix_row_stride; + + // For each output channel + int channels_remaining = n_output_channels; +#ifdef __aarch64__ + for (; channels_remaining >= 4; channels_remaining -= 4) + { + // Matrices used and computed in this kernel + float32x4_t w[5][5], Ww[6][5], V[6][6]; + + // Read weights + for (int i = 0; i < 5; i++) + { + for (int j = 0; j < 5; j++) + { + w[i][j] = vld1q_f32(inptrs[i][j]); + inptrs[i][j] += 4; + } + } + + // Compute the matrix W w + for (int j = 0; j < 5; j++) + { + // Ww[0][j] = w[0][j]/4.0f; + Ww[0][j] = vmulq_n_f32(w[0][j], 1.0f/4.0f); + + // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; + Ww[1][j] = vmulq_n_f32( + vaddq_f32( + vaddq_f32( + vaddq_f32(w[1][j], w[0][j]), + vaddq_f32(w[3][j], w[2][j]) + ), + w[4][j] + ), + -1.0f/6.0f + ); + + // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; + // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f; + Ww[2][j] = vmulq_n_f32( + vsubq_f32( + vaddq_f32( + vsubq_f32(w[1][j], w[0][j]), + vsubq_f32(w[3][j], w[2][j]) + ), + w[4][j] + ), + 1.0f/6.0f + ); + + // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; + Ww[3][j] = vmulq_n_f32( + vmlaq_n_f32( + vaddq_f32( + vaddq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)), + vaddq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) + ), + w[4][j], 2.0f + ), + 1.0f/3.0f + ); + + // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; + Ww[4][j] = vmulq_n_f32( + vmlaq_n_f32( + vaddq_f32( + vsubq_f32(vmulq_n_f32(w[0][j], 1.0f/8.0f), vmulq_n_f32(w[1][j], 1.0f/4.0f)), + vsubq_f32(vmulq_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) + ), + w[4][j], 2.0f + ), + 1.0f/3.0f + ); + + // Ww[5][j] = w[4][j]; + Ww[5][j] = w[4][j]; + } + + // Compute V = W w WT + for (int i = 0; i < 6; i++) + { + // V[i][0] = Ww[i][0]/4.0f; + V[i][0] = vmulq_n_f32(Ww[i][0], 1.0f/4.0f); + + // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; + V[i][1] = vmulq_n_f32( + vaddq_f32( + vaddq_f32( + vaddq_f32(Ww[i][1], Ww[i][0]), + vaddq_f32(Ww[i][3], Ww[i][2]) + ), + Ww[i][4] + ), + -1.0f/6.0f + ); + + // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; + // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f; + V[i][2] = vmulq_n_f32( + vsubq_f32( + vaddq_f32( + vsubq_f32(Ww[i][1], Ww[i][0]), + vsubq_f32(Ww[i][3], Ww[i][2]) + ), + Ww[i][4] + ), + 1.0f/6.0f + ); + + // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][3] = vmulq_n_f32( + vmlaq_n_f32( + vaddq_f32( + vaddq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)), + vaddq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) + ), + Ww[i][4], 2.0f + ), + 1.0f/3.0f + ); + + // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][4] = vmulq_n_f32( + vmlaq_n_f32( + vaddq_f32( + vsubq_f32(vmulq_n_f32(Ww[i][0], 1.0f/8.0f), vmulq_n_f32(Ww[i][1], 1.0f/4.0f)), + vsubq_f32(vmulq_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) + ), + Ww[i][4], 2.0f + ), + 1.0f/3.0f + ); + + // V[i][5] = Ww[i][4]; + V[i][5] = Ww[i][4]; + } + + // Store the transformed weights + for (int i = 0, m = 0; i < 6; i++) + { + for (int j = 0; j < 6; j++, m++) + { + vst1q_f32(outptr + m*matrix_stride, V[i][j]); + } + } + outptr += 4; + } +#endif // __aarch64__ +#ifdef __arm_any__ + for (; channels_remaining >= 2; channels_remaining -= 2) + { + // Matrices used and computed in this kernel + float32x2_t w[5][5], Ww[6][5], V[6][6]; + + // Read weights + for (int i = 0; i < 5; i++) + { + for (int j = 0; j < 5; j++) + { + w[i][j] = vld1_f32(inptrs[i][j]); + inptrs[i][j] += 2; + } + } + + // Compute the matrix W w + for (int j = 0; j < 5; j++) + { + // Ww[0][j] = w[0][j]/4.0f; + Ww[0][j] = vmul_n_f32(w[0][j], 1.0f/4.0f); + + // Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; + Ww[1][j] = vmul_n_f32( + vadd_f32( + vadd_f32( + vadd_f32(w[1][j], w[0][j]), + vadd_f32(w[3][j], w[2][j]) + ), + w[4][j] + ), + -1.0f/6.0f + ); + + // Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; + // Ww[2][j] = ((w[1][j] - w[0][j]) + (w[3][j] - w[2][j]) - w[4][j])/6.0f; + Ww[2][j] = vmul_n_f32( + vsub_f32( + vadd_f32( + vsub_f32(w[1][j], w[0][j]), + vsub_f32(w[3][j], w[2][j]) + ), + w[4][j] + ), + 1.0f/6.0f + ); + + // Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; + Ww[3][j] = vmul_n_f32( + vmla_n_f32( + vadd_f32( + vadd_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)), + vadd_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) + ), + w[4][j], 2.0f + ), + 1.0f/3.0f + ); + + // Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; + Ww[4][j] = vmul_n_f32( + vmla_n_f32( + vadd_f32( + vsub_f32(vmul_n_f32(w[0][j], 1.0f/8.0f), vmul_n_f32(w[1][j], 1.0f/4.0f)), + vsub_f32(vmul_n_f32(w[2][j], 1.0f/2.0f), w[3][j]) + ), + w[4][j], 2.0f + ), + 1.0f/3.0f + ); + + // Ww[5][j] = w[4][j]; + Ww[5][j] = w[4][j]; + } + + // Compute V = W w WT + for (int i = 0; i < 6; i++) + { + // V[i][0] = Ww[i][0]/4.0f; + V[i][0] = vmul_n_f32(Ww[i][0], 1.0f/4.0f); + + // V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; + V[i][1] = vmul_n_f32( + vadd_f32( + vadd_f32( + vadd_f32(Ww[i][1], Ww[i][0]), + vadd_f32(Ww[i][3], Ww[i][2]) + ), + Ww[i][4] + ), + -1.0f/6.0f + ); + + // V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; + // V[i][2] = ((Ww[i][1] - Ww[i][0]) + (Ww[i][3] - Ww[i][2]) - Ww[i][4])/6.0f; + V[i][2] = vmul_n_f32( + vsub_f32( + vadd_f32( + vsub_f32(Ww[i][1], Ww[i][0]), + vsub_f32(Ww[i][3], Ww[i][2]) + ), + Ww[i][4] + ), + 1.0f/6.0f + ); + + // V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][3] = vmul_n_f32( + vmla_n_f32( + vadd_f32( + vadd_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)), + vadd_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) + ), + Ww[i][4], 2.0f + ), + 1.0f/3.0f + ); + + // V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][4] = vmul_n_f32( + vmla_n_f32( + vadd_f32( + vsub_f32(vmul_n_f32(Ww[i][0], 1.0f/8.0f), vmul_n_f32(Ww[i][1], 1.0f/4.0f)), + vsub_f32(vmul_n_f32(Ww[i][2], 1.0f/2.0f), Ww[i][3]) + ), + Ww[i][4], 2.0f + ), + 1.0f/3.0f + ); + + // V[i][5] = Ww[i][4]; + V[i][5] = Ww[i][4]; + } + + // Store the transformed weights + for (int i = 0, m = 0; i < 6; i++) + { + for (int j = 0; j < 6; j++, m++) + { + vst1_f32(outptr + m*matrix_stride, V[i][j]); + } + } + outptr += 2; + } +#endif // __arm_any__ + for (; channels_remaining; channels_remaining--) + { + // Matrices used and computed in this kernel + float w[5][5], Ww[6][5], V[6][6]; + + // Read weights + for (int i = 0; i < 5; i++) + { + for (int j = 0; j < 5; j++) + { + w[i][j] = *(inptrs[i][j]++); + } + } + + // Compute the matrix W w + for (int j = 0; j < 5; j++) + { + Ww[0][j] = w[0][j]/4.0f; + Ww[1][j] = -( w[0][j] + w[1][j] + w[2][j] + w[3][j] + w[4][j])/6.0f; + Ww[2][j] = +(-w[0][j] + w[1][j] - w[2][j] + w[3][j] - w[4][j])/6.0f; + Ww[3][j] = (w[0][j]/8.0f + w[1][j]/4.0f + w[2][j]/2.0f + w[3][j] + 2*w[4][j])/3.0f; + Ww[4][j] = (w[0][j]/8.0f - w[1][j]/4.0f + w[2][j]/2.0f - w[3][j] + 2*w[4][j])/3.0f; + Ww[5][j] = w[4][j]; + } + + // Compute V = W w WT + for (int i = 0; i < 6; i++) + { + V[i][0] = Ww[i][0]/4.0f; + V[i][1] = -( Ww[i][0] + Ww[i][1] + Ww[i][2] + Ww[i][3] + Ww[i][4])/6.0f; + V[i][2] = +(-Ww[i][0] + Ww[i][1] - Ww[i][2] + Ww[i][3] - Ww[i][4])/6.0f; + V[i][3] = (Ww[i][0]/8.0f + Ww[i][1]/4.0f + Ww[i][2]/2.0f + Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][4] = (Ww[i][0]/8.0f - Ww[i][1]/4.0f + Ww[i][2]/2.0f - Ww[i][3] + 2*Ww[i][4])/3.0f; + V[i][5] = Ww[i][4]; + } + + // Store the transformed weights + for (int i = 0, m = 0; i < 6; i++) + { + for (int j = 0; j < 6; j++, m++) + { + *(outptr + m*matrix_stride) = V[i][j]; + } + } + outptr++; + } + } + } + + template <> + template <> + int WinogradGEMM<2, 2, 5, 5>::WeightsTransform::ops_performed(const KernelShape &shape) + { + return 0; // TODO + } + + template class WinogradGEMM<2, 2, 5, 5>::WeightsTransform; +} // namespace winograd -- cgit v1.2.1