From b42d53c4c08d3aafaeb5b0b98f19e8a708710acf Mon Sep 17 00:00:00 2001 From: Gian Marco Date: Thu, 7 Dec 2017 10:09:07 +0000 Subject: COMPMID-732 - Remove padding requirements in NETranspose - Used left-over for loops to avoid padding requirements - Added support for transposing row-vector tensors - Extended validation for row-vector tensors Change-Id: I3271ff5828bbc747f7f157e3116630c415b875e2 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/112360 Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com Reviewed-by: Anthony Barbier --- src/core/NEON/kernels/NETransposeKernel.cpp | 436 +++++++++++++++++++++------- 1 file changed, 336 insertions(+), 100 deletions(-) (limited to 'src/core/NEON/kernels/NETransposeKernel.cpp') diff --git a/src/core/NEON/kernels/NETransposeKernel.cpp b/src/core/NEON/kernels/NETransposeKernel.cpp index e84beeeb36..fc22b05823 100644 --- a/src/core/NEON/kernels/NETransposeKernel.cpp +++ b/src/core/NEON/kernels/NETransposeKernel.cpp @@ -91,20 +91,23 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output) std::pair validate_and_configure_window(ITensorInfo *input, ITensorInfo *output) { - const unsigned int num_elems_processed_per_iteration = num_elems_processed(input->element_size()); + // Note: This kernel performs 16 elements per iteration. + // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory + // For this reason num_elems_processed_per_iteration_x is set to 1 + const unsigned int num_elems_processed_per_iteration_x = 1; + const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(input->element_size()); // Configure kernel window - Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration, num_elems_processed_per_iteration)); + Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); - AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration); + AccessWindowStatic input_access(input, 0, 0, input->dimension(0), input->dimension(1)); bool window_changed = update_window_and_padding(win, input_access); if(output->total_size() != 0) { // TODO (COMPMID-708): Replace AccessWindowStatic with AccessWindowTranspose - AccessWindowStatic output_access(output, 0, 0, ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration), ceil_to_multiple(output->dimension(1), - num_elems_processed_per_iteration)); + AccessWindowStatic output_access(output, 0, 0, output->dimension(0), output->dimension(1)); window_changed = window_changed || update_window_and_padding(win, output_access); @@ -117,133 +120,366 @@ std::pair validate_and_configure_window(ITensorInfo *input, ITen void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window) { + const int window_step_x = 8; + const int window_step_y = 8; + const int window_start_x = window.x().start(); + const int window_end_x = window.x().end(); + const int window_start_y = window.y().start(); + const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); + const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; + const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; + const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + + // Check if we need a left-over loop for the y dimension + bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); + + Window window_in(window); + window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); + if(left_over_loop_y) + { + // Check if window_end_y_multiple_of is greater than window_start_y + if(window_end_y_multiple_of > window_start_y) + { + window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); + } + else + { + window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); + } + } + Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); - Iterator input(in, window); Iterator output(out, window_out); - const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; - const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + // Run the NEON path if and only if the input is not a row-vector + if(in->info()->dimension(1) != 1) + { + Iterator input(in, window_in); + execute_window_loop(window_in, [&](const Coordinates & id) + { + // Compute 8x8 elements per iteration + int x = window_start_x; + for(; x <= (window_end_x - window_step_x); x += window_step_x) + { + const uint8x8_t row0 = vld1_u8(reinterpret_cast(input.ptr() + x + 0 * input_stride_in_bytes)); + const uint8x8_t row1 = vld1_u8(reinterpret_cast(input.ptr() + x + 1 * input_stride_in_bytes)); + const uint8x8_t row2 = vld1_u8(reinterpret_cast(input.ptr() + x + 2 * input_stride_in_bytes)); + const uint8x8_t row3 = vld1_u8(reinterpret_cast(input.ptr() + x + 3 * input_stride_in_bytes)); + const uint8x8_t row4 = vld1_u8(reinterpret_cast(input.ptr() + x + 4 * input_stride_in_bytes)); + const uint8x8_t row5 = vld1_u8(reinterpret_cast(input.ptr() + x + 5 * input_stride_in_bytes)); + const uint8x8_t row6 = vld1_u8(reinterpret_cast(input.ptr() + x + 6 * input_stride_in_bytes)); + const uint8x8_t row7 = vld1_u8(reinterpret_cast(input.ptr() + x + 7 * input_stride_in_bytes)); + + // Transpose 2x2 + const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); + const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); + const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); + const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); + + // Transpose 4x4 + const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); + const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); + const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); + const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); + + // Transpose 8x8 + const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); + const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); + const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); + const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; + + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); + vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); + } + + // Compute left-over elements along the x dimension (1x8) + for(; x < window_end_x; ++x) + { + const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes); + const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes); + const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes); + const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes); + const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes); + const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes); + const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes); + const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes); + + uint8x8_t result = vdup_n_u8(0); + result = vset_lane_u8(val0, result, 0); + result = vset_lane_u8(val1, result, 1); + result = vset_lane_u8(val2, result, 2); + result = vset_lane_u8(val3, result, 3); + result = vset_lane_u8(val4, result, 4); + result = vset_lane_u8(val5, result, 5); + result = vset_lane_u8(val6, result, 6); + result = vset_lane_u8(val7, result, 7); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes; + + vst1_u8(output.ptr() + dst_offset_in_bytes, result); + } + }, + input, output); + } - execute_window_loop(window, [&](const Coordinates & id) + if(left_over_loop_y) { - const uint8x8_t row0 = vld1_u8(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); - const uint8x8_t row1 = vld1_u8(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); - const uint8x8_t row2 = vld1_u8(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); - const uint8x8_t row3 = vld1_u8(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); - const uint8x8_t row4 = vld1_u8(reinterpret_cast(input.ptr() + 4 * input_stride_in_bytes)); - const uint8x8_t row5 = vld1_u8(reinterpret_cast(input.ptr() + 5 * input_stride_in_bytes)); - const uint8x8_t row6 = vld1_u8(reinterpret_cast(input.ptr() + 6 * input_stride_in_bytes)); - const uint8x8_t row7 = vld1_u8(reinterpret_cast(input.ptr() + 7 * input_stride_in_bytes)); - - // Transpose 2x2 - const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1); - const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3); - const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5); - const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7); - - // Transpose 4x4 - const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0])); - const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1])); - const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0])); - const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1])); - - // Transpose 8x8 - const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0])); - const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1])); - const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0])); - const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1])); - - // Compute destination address - const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; - - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1]))); - vst1_u8(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1]))); - }, - input, output); + window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); + window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); + + Iterator input(in, window_in); + Iterator output(out, window_out); + + // Compute left-over elements along the y dimension (1x1) + execute_window_loop(window_in, [&](const Coordinates & id) + { + const uint8_t val0 = *input.ptr(); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes; + + *(output.ptr() + dst_offset_in_bytes) = val0; + }, + input, output); + } } void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window) { + const int window_step_x = 4; + const int window_step_y = 4; + const int window_start_x = window.x().start(); + const int window_end_x = window.x().end(); + const int window_start_y = window.y().start(); + const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); + const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; + const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; + const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + + // Check if we need a left-over loop for the y dimension + bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); + + Window window_in(window); + window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); + if(left_over_loop_y) + { + // Check if window_end_y_multiple_of is greater than window_start_y + if(window_end_y_multiple_of > window_start_y) + { + window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); + } + else + { + window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); + } + } + Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); - Iterator input(in, window); Iterator output(out, window_out); - const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; - const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + // Run the NEON path if and only if the input is not a row-vector + if(in->info()->dimension(1) != 1) + { + Iterator input(in, window_in); + execute_window_loop(window_in, [&](const Coordinates & id) + { + // Compute 4x4 elements per iteration + int x = window_start_x; + for(; x <= (window_end_x - window_step_x); x += window_step_x) + { + const uint16x4_t row0 = vld1_u16(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); + const uint16x4_t row1 = vld1_u16(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); + const uint16x4_t row2 = vld1_u16(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); + const uint16x4_t row3 = vld1_u16(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); + + // Transpose 2x2 + const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); + const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); + + // Transpose 4x4 + const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); + const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; + + vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); + vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); + vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); + vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); + } + + // Compute left-over elements (1x4) + for(; x < window_end_x; ++x) + { + const uint16_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); + const uint16_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); + const uint16_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); + const uint16_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); + + uint16x4_t result = vdup_n_u16(0); + result = vset_lane_u16(val0, result, 0); + result = vset_lane_u16(val1, result, 1); + result = vset_lane_u16(val2, result, 2); + result = vset_lane_u16(val3, result, 3); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes; + + vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); + } + }, + input, output); + } - execute_window_loop(window, [&](const Coordinates & id) + if(left_over_loop_y) { - const uint16x4_t row0 = vld1_u16(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); - const uint16x4_t row1 = vld1_u16(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); - const uint16x4_t row2 = vld1_u16(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); - const uint16x4_t row3 = vld1_u16(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); - - // Transpose 2x2 - const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1); - const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3); - - // Transpose 4x4 - const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0])); - const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1])); - - // Compute destination address - const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; - - vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0])); - vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0])); - vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1])); - vst1_u16(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1])); - }, - input, output); + window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); + window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); + + Iterator input(in, window_in); + Iterator output(out, window_out); + + // Compute left-over elements along the y dimension (1x1) + execute_window_loop(window_in, [&](const Coordinates & id) + { + const uint16_t val0 = *(reinterpret_cast(input.ptr())); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes; + + *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; + }, + input, output); + } } void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window) { + const int window_step_x = 4; + const int window_step_y = 4; + const int window_start_x = window.x().start(); + const int window_end_x = window.x().end(); + const int window_start_y = window.y().start(); + const int window_end_y = std::min(window.y().end(), static_cast(in->info()->dimension(1))); + const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y; + const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; + const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + + // Check if we need a left-over loop for the y dimension + bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0); + + Window window_in(window); + window_in.set(Window::DimX, Window::Dimension(0, 1, 1)); + if(left_over_loop_y) + { + // Check if window_end_y_multiple_of is greater than window_start_y + if(window_end_y_multiple_of > window_start_y) + { + window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y)); + } + else + { + window_in.set(Window::DimY, Window::Dimension(0, 0, 1)); + } + } + Window window_out(window); window_out.set(Window::DimX, Window::Dimension(0, 0, 0)); window_out.set(Window::DimY, Window::Dimension(0, 0, 0)); - Iterator input(in, window); Iterator output(out, window_out); - const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1]; - const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1]; + // Run the NEON path if and only if the input is not a row-vector + if(in->info()->dimension(1) != 1) + { + Iterator input(in, window_in); + execute_window_loop(window_in, [&](const Coordinates & id) + { + // Compute 4x4 elements per iteration + int x = window_start_x; + for(; x <= (window_end_x - window_step_x); x += window_step_x) + { + const uint32x4_t row0 = vld1q_u32(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); + const uint32x4_t row1 = vld1q_u32(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); + const uint32x4_t row2 = vld1q_u32(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); + const uint32x4_t row3 = vld1q_u32(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); + + // Transpose 2x2 + const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); + const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); + const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); + const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; + + // Swap block 01 with block 10 and store + vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); + vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); + vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); + vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); + } + + // Compute left-over elements (1x4) + for(; x < window_end_x; ++x) + { + const uint32_t val0 = *(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes) + x); + const uint32_t val1 = *(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes) + x); + const uint32_t val2 = *(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes) + x); + const uint32_t val3 = *(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes) + x); + + uint32x4_t result = vdupq_n_u32(0); + result = vsetq_lane_u32(val0, result, 0); + result = vsetq_lane_u32(val1, result, 1); + result = vsetq_lane_u32(val2, result, 2); + result = vsetq_lane_u32(val3, result, 3); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes; + + vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes), result); + } + }, + input, output); + } - execute_window_loop(window, [&](const Coordinates & id) + if(left_over_loop_y) { - const uint32x4_t row0 = vld1q_u32(reinterpret_cast(input.ptr() + 0 * input_stride_in_bytes)); - const uint32x4_t row1 = vld1q_u32(reinterpret_cast(input.ptr() + 1 * input_stride_in_bytes)); - const uint32x4_t row2 = vld1q_u32(reinterpret_cast(input.ptr() + 2 * input_stride_in_bytes)); - const uint32x4_t row3 = vld1q_u32(reinterpret_cast(input.ptr() + 3 * input_stride_in_bytes)); - - // Transpose 2x2 - const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1)); - const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3)); - const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1)); - const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3)); - - // Compute destination address - const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; - - // Swap block 01 with block 10 and store - vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0])); - vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1])); - vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0])); - vst1q_u32(reinterpret_cast(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1])); - }, - input, output); + window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1)); + window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1)); + + Iterator input(in, window_in); + Iterator output(out, window_out); + + // Compute left-over elements along the y dimension (1x1) + execute_window_loop(window_in, [&](const Coordinates & id) + { + const uint32_t val0 = *(reinterpret_cast(input.ptr())); + + // Compute destination address + const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes; + + *(reinterpret_cast(output.ptr() + dst_offset_in_bytes)) = val0; + }, + input, output); + } } } // namespace -- cgit v1.2.1