From cfac51c779f9bf05e8b2d386fbfb4022767d1d30 Mon Sep 17 00:00:00 2001 From: Manuel Bottini Date: Fri, 18 Jun 2021 15:47:28 +0100 Subject: Port NEGEMMLowp Part 2 Details: Extend NEConvertQuantizedSignednessKernel Port NEGEMMInterleave4x4Kernel to CpuGemmInterleave4x4Kernel Port NEGEMMTranspose1xWKernel to CpuGemmTranspose1xWKernel Port NEGEMMLowpMatrixAReductionKernel to CpuGemmLowpMatrixAReductionKernel Port NEGEMMLowpMatrixBReductionKernel to CpuGemmLowpMatrixBReductionKernel Port NEGEMMLowpOffsetContributionOutputStageKernel to CpuGemmLowpOffsetContributionOutputStageKernel Port NEGEMMLowpOffsetContributionKernel to CpuGemmLowpOffsetContributionKernel Resolves: COMPMID-4403 Change-Id: I3227f052f25e7b41d073bbea1da8a881fcd78b8e Signed-off-by: Manuel Bottini Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5875 Comments-Addressed: Arm Jenkins Tested-by: Arm Jenkins Reviewed-by: Michele Di Giorgio --- .../kernels/NEGEMMLowpMatrixMultiplyKernel.cpp | 1052 -------------------- 1 file changed, 1052 deletions(-) delete mode 100644 src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp (limited to 'src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp') diff --git a/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp deleted file mode 100644 index 6bcf59ee96..0000000000 --- a/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp +++ /dev/null @@ -1,1052 +0,0 @@ -/* - * Copyright (c) 2017-2021 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h" - -#include "arm_compute/core/Error.h" -#include "arm_compute/core/Helpers.h" -#include "arm_compute/core/ITensor.h" -#include "arm_compute/core/TensorInfo.h" -#include "arm_compute/core/Types.h" -#include "arm_compute/core/Utils.h" -#include "arm_compute/core/Validate.h" -#include "arm_compute/core/Window.h" -#include "src/core/helpers/AutoConfiguration.h" -#include "src/core/helpers/WindowHelpers.h" - -#include - -using namespace arm_compute; - -namespace arm_compute -{ -namespace -{ -void inline vector_matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window) -{ - execute_window_loop(window, [&](const Coordinates & id) - { - if(id.x() > width_b) - { - return; - } - - // Note: Since the input are all positives, we can use uint32_t - // Accumulators for the block 0 - uint32x4x4_t c0 = - { - { - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0) - } - }; - - auto vec_a = reinterpret_cast(ina.ptr()); - auto matrix_b = reinterpret_cast(inb.ptr()); - auto vec_a_end_addr = vec_a + width_a; - - // This for loop performs 8 accumulations - for(; vec_a <= (vec_a_end_addr - 8);) - { - const uint8x8_t a00_u8 = vld1_u8(vec_a); - const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b); - const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b); - const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b); - const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b); - const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b); - const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b); - const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b); - const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b); - - // Convert a00_u8 to uint16_t and get the lower part - const uint16x4x2_t a00_u16 = - { - { - vget_low_u16(vmovl_u8(a00_u8)), - vget_high_u16(vmovl_u8(a00_u8)) - } - }; - - const uint16x4x4_t b00_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b00_u8))) - } - }; - - const uint16x4x4_t b10_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b10_u8))) - } - }; - - const uint16x4x4_t b20_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b20_u8))) - } - }; - - const uint16x4x4_t b30_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b30_u8))) - } - }; - - const uint16x4x4_t b40_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b40_u8))) - } - }; - - const uint16x4x4_t b50_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b50_u8))) - } - }; - - const uint16x4x4_t b60_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b60_u8))) - } - }; - - const uint16x4x4_t b70_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b70_u8))) - } - }; - - // Accumulate 0: - c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0); - c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0); - c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0); - c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0); - - // Accumulate 1: - c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1); - c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1); - c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1); - c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1); - - // Accumulate 2: - c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2); - c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2); - c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2); - c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2); - - // Accumulate 3: - c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3); - c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3); - c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3); - c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3); - - // Accumulate 4: - c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0); - c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0); - c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0); - c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0); - - // Accumulate 5: - c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1); - c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1); - c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1); - c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1); - - // Accumulate 6: - c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2); - c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2); - c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2); - c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2); - - // Accumulate 7: - c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3); - c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3); - c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3); - c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3); - - vec_a += 8; - matrix_b += 8 * stride_b; - } - - // This for loop performs the left-over accumulations - for(; vec_a < vec_a_end_addr;) - { - const uint8x8_t a00_u8 = vld1_dup_u8(vec_a); - const uint8x16_t b00_u8 = vld1q_u8(matrix_b); - - const uint16x4x4_t b00_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b00_u8))) - } - }; - - // Convert a00_u8 to uint16_t and get the lower part - const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8)); - - // Accumulate 0: - c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0); - c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0); - c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0); - c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0); - - vec_a += 1; - matrix_b += stride_b; - } - - auto vec_out = reinterpret_cast(out.ptr()); - if(id.x() < (width_out - 16)) - { - vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0])); - vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1])); - vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2])); - vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3])); - } - else - { - auto left_over = width_out - id.x(); - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(vec_out + k * 4 + j) = c0.val[k][j]; - } - } - } - }, - ina, inb, out); -} - -void inline vector_matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window) -{ - execute_window_loop(window, [&](const Coordinates & id) - { - if(id.x() > width_b) - { - return; - } - - // Accumulators for the block 0 - int32x4x4_t c0 = - { - { - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0) - } - }; - - auto vec_a = reinterpret_cast(ina.ptr()); - auto matrix_b = reinterpret_cast(inb.ptr()); - auto vec_a_end_addr = vec_a + width_a; - - // This for loop performs 8 accumulations - for(; vec_a <= (vec_a_end_addr - 8);) - { - const int8x8_t a00_s8 = vld1_s8(vec_a); - const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b); - const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b); - const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b); - const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b); - const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b); - const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b); - const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b); - const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b); - - // Convert a00_s8 to int16_t and get the lower part - const int16x4x2_t a00_s16 = - { - { - vget_low_s16(vmovl_s8(a00_s8)), - vget_high_s16(vmovl_s8(a00_s8)) - } - }; - - const int16x4x4_t b00_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b00_s8))) - } - }; - - const int16x4x4_t b10_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b10_s8))) - } - }; - - const int16x4x4_t b20_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b20_s8))) - } - }; - - const int16x4x4_t b30_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b30_s8))) - } - }; - - const int16x4x4_t b40_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b40_s8))) - } - }; - - const int16x4x4_t b50_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b50_s8))) - } - }; - - const int16x4x4_t b60_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b60_s8))) - } - }; - - const int16x4x4_t b70_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b70_s8))) - } - }; - - // Accumulate 0: - c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0); - c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0); - c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0); - c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0); - - // Accumulate 1: - c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1); - c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1); - c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1); - c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1); - - // Accumulate 2: - c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2); - c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2); - c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2); - c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2); - - // Accumulate 3: - c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3); - c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3); - c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3); - c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3); - - // Accumulate 4: - c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0); - c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0); - c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0); - c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0); - - // Accumulate 5: - c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1); - c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1); - c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1); - c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1); - - // Accumulate 6: - c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2); - c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2); - c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2); - c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2); - - // Accumulate 7: - c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3); - c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3); - c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3); - c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3); - - vec_a += 8; - matrix_b += 8 * stride_b; - } - - // This for loop performs the left-over accumulations - for(; vec_a < vec_a_end_addr;) - { - const int8x8_t a00_s8 = vld1_dup_s8(vec_a); - const int8x16_t b00_s8 = vld1q_s8(matrix_b); - - const int16x4x4_t b00_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b00_s8))) - } - }; - - // Convert a00_s8 to uint16_t and get the lower part - const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8)); - - // Accumulate 0: - c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0); - c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0); - c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0); - c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0); - - vec_a += 1; - matrix_b += stride_b; - } - - auto vec_out = reinterpret_cast(out.ptr()); - if(id.x() < (width_out - 16)) - { - vst1q_s32(vec_out + 0, c0.val[0]); - vst1q_s32(vec_out + 4, c0.val[1]); - vst1q_s32(vec_out + 8, c0.val[2]); - vst1q_s32(vec_out + 12, c0.val[3]); - } - else - { - auto left_over = width_out - id.x(); - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(vec_out + k * 4 + j) = c0.val[k][j]; - } - } - } - }, - ina, inb, out); -} - -void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window) -{ - const auto width_out = static_cast(out_info.dimension(0)); - const auto height_out = static_cast(out_info.dimension(1)); - const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size(); - execute_window_loop(window, [&](const Coordinates & id) - { - const uint8_t *mtx_a0 = ina.ptr(); - const uint8_t *mtx_b0 = inb.ptr(); - - // Note: Since the input are all positives, we can use uint32_t - // Accumulators for the block 0 - uint32x4x4_t c0 = - { - { - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0) - } - }; - - // Accumulators for the block 1 - uint32x4x4_t c1 = - { - { - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0) - } - }; - - // Accumulators for the block 2 - uint32x4x4_t c2 = - { - { - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0) - } - }; - - // Accumulators for the block 3 - uint32x4x4_t c3 = - { - { - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0), - vdupq_n_u32(0) - } - }; - - for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16) - { - const uint8x8_t a00_u8 = vld1_u8(mtx_a0); - const uint8x16_t b00_u8 = vld1q_u8(mtx_b0); - - // Convert a00_u8 to uint16_t and get the lower part - const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8)); - - // Convert b00_s8 to uint16_t - const uint16x4x4_t b00_u16 = - { - { - vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))), - vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), - vget_high_u16(vmovl_u8(vget_high_u8(b00_u8))) - } - }; - - // 4x4 block 0 - c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0); - c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0); - c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0); - c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0); - - // 4x4 block 1 - c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1); - c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1); - c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1); - c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1); - - // 4x4 block 2 - c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2); - c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2); - c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2); - c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2); - - // 4x4 block 3 - c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3); - c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3); - c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3); - c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3); - } - - auto mtx_out = reinterpret_cast(out.ptr()); - - if(id.y() < height_out && id.x() < (width_out - 16)) - { - vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0])); - vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1])); - vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2])); - vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3])); - if(id.y() + 1 < height_out) - { - vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0])); - vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1])); - vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2])); - vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3])); - if(id.y() + 2 < height_out) - { - vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0])); - vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1])); - vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2])); - vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3])); - if(id.y() + 3 < height_out) - { - vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0])); - vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1])); - vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2])); - vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3])); - } - } - } - } - else - { - const auto left_over_value = width_out - id.x(); - auto left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + k * 4 + j) = c0.val[k][j]; - } - } - if(id.y() + 1 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j]; - } - } - if(id.y() + 2 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j]; - } - } - if(id.y() + 3 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j]; - } - } - } - } - } - } - }, - ina, inb, out); -} - -void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window) -{ - const auto width_out = static_cast(out_info.dimension(0)); - const auto height_out = static_cast(out_info.dimension(1)); - const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size(); - // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW - // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration - // All the values needed for computing a single 4x4 block will be read from consecutive memory positions - execute_window_loop(window, [&](const Coordinates & id) - { - auto *mtx_a0 = reinterpret_cast(ina.ptr()); - auto *mtx_b0 = reinterpret_cast(inb.ptr()); - - // Note: Since the input are all positives, we can use uint32_t - // Accumulators for the block 0 - int32x4x4_t c0 = - { - { - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0) - } - }; - - // Accumulators for the block 1 - int32x4x4_t c1 = - { - { - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0) - } - }; - - // Accumulators for the block 2 - int32x4x4_t c2 = - { - { - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0) - } - }; - - // Accumulators for the block 3 - int32x4x4_t c3 = - { - { - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0), - vdupq_n_s32(0) - } - }; - - for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16) - { - const int8x8_t a00_s8 = vld1_s8(mtx_a0); - const int8x16_t b00_s8 = vld1q_s8(mtx_b0); - - // Convert a00_s8 to uint16_t and get the lower part - const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8)); - - // Convert b00_s8 to int16_t - const int16x4x4_t b00_s16 = - { - { - vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))), - vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), - vget_high_s16(vmovl_s8(vget_high_s8(b00_s8))) - } - }; - - // 4x4 block 0 - c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0); - c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0); - c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0); - c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0); - - // 4x4 block 1 - c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1); - c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1); - c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1); - c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1); - - // 4x4 block 2 - c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2); - c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2); - c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2); - c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2); - - // 4x4 block 3 - c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3); - c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3); - c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3); - c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3); - } - auto mtx_out = reinterpret_cast(out.ptr()); - if(id.y() < height_out && id.x() < (width_out - 16)) - { - vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]); - vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]); - vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]); - vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]); - if(id.y() + 1 < height_out) - { - vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]); - vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]); - vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]); - vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]); - if(id.y() + 2 < height_out) - { - vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]); - vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]); - vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]); - vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]); - if(id.y() + 3 < height_out) - { - vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]); - vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]); - vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]); - vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]); - } - } - } - } - else if(id.y() < height_out) - { - const auto left_over_value = width_out - id.x(); - auto left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + k * 4 + j) = c0.val[k][j]; - } - } - if(id.y() + 1 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j]; - } - } - if(id.y() + 2 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j]; - } - } - if(id.y() + 3 < height_out) - { - left_over = left_over_value; - for(auto k = 0; k < 4 && left_over; ++k) - { - for(auto j = 0; j < 4 && left_over; ++j, --left_over) - { - *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j]; - } - } - } - } - } - } - - }, - ina, inb, out); -} -} // namespace - -namespace -{ -Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) -{ - ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8, DataType::U8); - ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8); - ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32); - - TensorShape in0_shape = input0->tensor_shape(); - TensorShape in1_shape = input1->tensor_shape(); - TensorShape out_shape = output->tensor_shape(); - - // Check vector-by-matrix case - if(out_shape[1] == 1) - { - ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1], "The number of input0's columns must be equal to input1's rows"); - } - else - { - in0_shape.collapse(2); - in1_shape.collapse(2); - out_shape.collapse(2); - - ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor"); - ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1"); - ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16"); - } - - return Status{}; -} -} // namespace - -NEGEMMLowpMatrixMultiplyKernel::NEGEMMLowpMatrixMultiplyKernel() - : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true) -{ -} - -void NEGEMMLowpMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output) -{ - ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output); - ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info())); - - TensorShape in1_shape = input1->info()->tensor_shape(); - in1_shape.collapse(2); - - _input0 = input0; - _input1 = input1; - _output = output; - _slide_matrix_b = in1_shape[2] != 1; - - constexpr unsigned int num_elems_processed_per_iteration_x = 16; - constexpr unsigned int num_elems_processed_per_iteration_y = 4; - - Window win; - - // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication - if((output->info()->dimension(1) == 1)) - { - // Configure kernel window - win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x)); - } - else - { - win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); - } - - INEKernel::configure(win); -} - -Status NEGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output) -{ - ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output)); - - return Status{}; -} - -void NEGEMMLowpMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info) -{ - ARM_COMPUTE_UNUSED(info); - ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this); - ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window); - - // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path - if((_output->info()->dimension(1) == 1)) - { - const auto width_matrix_a = static_cast(_input0->info()->dimension(0)); - const auto width_matrix_b = static_cast(_input1->info()->dimension(0)); - const auto width_out = static_cast(_output->info()->dimension(0)); - const auto in_b_stride = static_cast(_input1->info()->strides_in_bytes()[1] / data_size_from_type(_input1->info()->data_type())); - - // The implementation computes 16 elements per iteration - const int window_start_x = 16 * info.thread_id; - const int window_step_x = 16 * info.num_threads; - // Make sure (window_end_x - window_start_x) is a multiple of window_step_x - const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x; - - Window win_out(window); - win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x)); - win_out.set(Window::DimY, Window::Dimension(0, 1, 1)); - - Window win_a(window); - win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); - win_a.set(Window::DimY, Window::Dimension(0, 0, 0)); - - Window win_b; - // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 - // This scenario can happen when the the matrix multiplication is used to perform a convolution operation - if(_input1->info()->num_dimensions() >= 3) - { - win_b = window; - } - win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x)); - win_b.set(Window::DimY, Window::Dimension(0, 1, 1)); - - Iterator ina(_input0, win_a); - Iterator inb(_input1, win_b); - Iterator out(_output, win_out); - - switch(_input0->info()->data_type()) - { - case DataType::S8: - case DataType::QASYMM8_SIGNED: - { - vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window); - break; - } - case DataType::U8: - case DataType::QASYMM8: - { - vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window); - break; - } - default: - { - ARM_COMPUTE_ERROR("Not supported"); - break; - } - } - } - else - { - const size_t in_b_stride = _input1->info()->strides_in_bytes()[1]; - const int width_b = _input1->info()->dimension(0); - - // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix - Window win_a(window); - win_a.set(Window::DimX, Window::Dimension(0, 0, 0)); - win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1)); - - // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix - Window win_b; - // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2 - // This scenario can happen when the the matrix multiplication is used to perform a convolution operation - if(_slide_matrix_b) - { - win_b = window; - } - win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride)); - win_b.set(Window::DimY, Window::Dimension(0, 0, 0)); - - // The step x and step y for the output matrix has been already set using in configure() - Iterator ina(_input0, win_a); - Iterator inb(_input1, win_b); - Iterator out(_output, window); - - switch(_input0->info()->data_type()) - { - case DataType::S8: - case DataType::QASYMM8_SIGNED: - { - matrix_multiply_s8(ina, inb, out, width_b, *_output->info(), window); - break; - } - case DataType::U8: - case DataType::QASYMM8: - { - matrix_multiply_u8(ina, inb, out, width_b, *_output->info(), window); - break; - } - default: - { - ARM_COMPUTE_ERROR("Not supported"); - break; - } - } - } -} -} // namespace arm_compute -- cgit v1.2.1