From ceaa0bfe219631b5a4e638613f90f9fa47a3defe Mon Sep 17 00:00:00 2001 From: Manuel Bottini Date: Tue, 16 Feb 2021 15:15:19 +0000 Subject: Remove OpenGL ES support Remove the following: - Relevant backend kernels - Relevant backend functions - Relevant backend validation tests - Relevant backend specific examples - Remove backend support from Graph API - Remove backend support from build system Update documentation Resolves: COMPMID-4149 Change-Id: Id0621d6ee35169754de458103907aaba4ef770c0 Signed-off-by: Manuel Bottini Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5097 Tested-by: Arm Jenkins Reviewed-by: Michele Di Giorgio Reviewed-by: Georgios Pinitas --- src/core/GLES_COMPUTE/cs_shaders/gemm.cs | 1130 ------------------------------ 1 file changed, 1130 deletions(-) delete mode 100644 src/core/GLES_COMPUTE/cs_shaders/gemm.cs (limited to 'src/core/GLES_COMPUTE/cs_shaders/gemm.cs') diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs deleted file mode 100644 index d41b48c2a7..0000000000 --- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs +++ /dev/null @@ -1,1130 +0,0 @@ -/* - * Copyright (c) 2017-2018 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in; -#include "helpers_cs.h" - -#if defined(DATA_TYPE_FP16) -precision mediump float; -#endif // DATA_TYPE_FP16 - -#if defined(DATA_TYPE_FP32) -#ifdef GEMM_TRANSPOSE1xW -/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix - * - * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); -TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); - -void main(void) -{ - /* Compute address for Matrix B - source */ - ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); - - /* Compute address for Matrix B transposed - destination. X and Y are swapped */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y); - - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter); - VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, b0); -} -#endif /* GEMM_TRANSPOSE1xW */ - -#ifdef GEMM_INTERLEAVE4x4 -/** This OpenGLES kernel reshapes the input matrix interleaving the values - * - * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); -TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); - -void main(void) -{ - /* Compute source and destination addresses */ - ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int i; - int j; - - for(i = 0; i < 4; ++i) - { - for(j = 0; j < 4; ++j) - { - float res = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, j)); - STORE(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, (i * 4 + j)), res); - } - } -} -#endif /* GEMM_INTERLEAVE4x4 */ - -#ifdef GEMM_ACCUMULATE_BIASES -/** This kernel accumulates each row with the biases vector - * - * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32 - * @param[in] accum_attrs The attributes of the accumulate tensor - * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr - * @param[in] biases_attrs The attributes of the biases tensor - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes accum_attrs; - VectorAttributes biases_attrs; -}; -TENSOR_DECLARATION(1, accumBuffer, float, accum_ptr, accum_shift, 2, restrict); -TENSOR_DECLARATION(2, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly); - -void main(void) -{ - ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); - VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); - - for(int i = 0; i < 16; ++i) - { - float accum_value = LOAD(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i)); - float biases_value = LOAD(biases_ptr, TENSOR_OFFSET_ADVANCE(biases_iter, i)); - accum_value = biases_value + accum_value; - - // Store result in the accummulate buffer - STORE(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i), accum_value); - } -} -#endif /* GEMM_ACCUMULATE_BIASES */ - -#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */ -/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1) - * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication - * - * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha - * - * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src0_attrs The attributes of the source matrix - * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr - * @param[in] src1_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src0_attrs; - ImageAttributes src1_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); -TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); -TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - /* Compute address for matrix A and B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y)); - /* Compute end row address for matrix B */ - int end_row_mtx_b = int(TENSOR_OFFSET_ADVANCE(src1_iter, COLS_B)); - - /* Reset accumulators */ - vec4 c00 = vec4(0.0f); - vec4 c10 = vec4(0.0f); - vec4 c20 = vec4(0.0f); - vec4 c30 = vec4(0.0f); - - // FIXME: loop unrolling really needed for GLES? - for(; int(CURRENT_ITEM_OFFSET(src1_iter)) <= (end_row_mtx_b - 8); TENSOR_ITERATOR_ADVANCE(src0_iter, 8), TENSOR_ITERATOR_ADVANCE(src1_iter, 8)) - { - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - - c00 += vec4(a0.x) * b0; - c10 += vec4(a0.y) * b0; - c20 += vec4(a0.z) * b0; - c30 += vec4(a0.w) * b0; - - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - a0 = VLOAD4(vec4, src0_ptr, TENSOR_OFFSET_ADVANCE(src0_iter, 4)); - b0 = VLOAD4(vec4, src1_ptr, TENSOR_OFFSET_ADVANCE(src1_iter, 4)); - - c00 += vec4(a0.x) * b0; - c10 += vec4(a0.y) * b0; - c20 += vec4(a0.z) * b0; - c30 += vec4(a0.w) * b0; - } - - for(; int(CURRENT_ITEM_OFFSET(src1_iter)) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE(src0_iter, 4), TENSOR_ITERATOR_ADVANCE(src1_iter, 4)) - { - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - - c00 += vec4(a0.x) * b0; - c10 += vec4(a0.y) * b0; - c20 += vec4(a0.z) * b0; - c30 += vec4(a0.w) * b0; - } - - /* Multiply by the weight of matrix product */ - c00 = c00 * vec4(ALPHA); - c10 = c10 * vec4(ALPHA); - c20 = c20 * vec4(ALPHA); - c30 = c30 * vec4(ALPHA); - - /* Store 4x4 block */ - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30); -} -#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */ - -#ifdef GEMM_MM_FLOATING_POINT -/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) - * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication - * - * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y. - * @note The number of matrix A columns must be passed at compile time using -DCOLS_A. - * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha - * - * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src0_attrs The attributes of the source matrix - * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr - * @param[in] src1_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src0_attrs; - ImageAttributes src1_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); -TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); -TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); - /* Compute the address for the vector A and matrix B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4); - - /* Compute end row address for matrix A */ - int end_row_vec_a = int(TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, COLS_A * 4)); - - /* Reset accumulators */ - vec4 acc0 = vec4(0.0f); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 acc1 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 acc2 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 acc3 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - for(; int(CURRENT_ITEM_OFFSET(src0_iter)) <= (end_row_vec_a - 2); TENSOR_ITERATOR_ADVANCE(src0_iter, 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y)) - { - vec2 a0 = VLOAD2_CURRENT_ITEM(vec2, src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec2 a1 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec2 a2 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec2 a3 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - vec4 b1 = VLOAD4(vec4, src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1)); - - acc0 += b0 * vec4(a0.x); - acc0 += b1 * vec4(a0.y); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.x); - acc1 += b1 * vec4(a1.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.x); - acc2 += b1 * vec4(a2.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.x); - acc3 += b1 * vec4(a3.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - - for(; int(CURRENT_ITEM_OFFSET(src0_iter)) < end_row_vec_a; TENSOR_ITERATOR_ADVANCE(src0_iter, 1), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y)) - { - // Load values from matrix A - float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); - //float a1 = 0; -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - - acc0 += b0 * vec4(a0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - - /* Multiply by the weight of vector-matrix product */ - acc0 = acc0 * vec4(ALPHA); - VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 = acc1 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 = acc2 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 = acc3 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 -} -#endif /* GEMM_MM_FLOATING_POINT */ - -#ifdef GEMM_MM_FLOATING_POINT_BIFROST -/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) - * Matrix A and matrix B in case both matrices have not been reshaped - * - * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y. - * @note The number of matrix A columns must be passed at compile time using -DCOLS_A. - * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha - * - * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src0_attrs The attributes of the source matrix - * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr - * @param[in] src1_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src0_attrs; - ImageAttributes src1_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly); -TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly); -TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); - /* Compute the address for the vector A and matrix B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4); - - /* Reset accumulators */ - vec4 acc0 = vec4(0.0f); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 acc1 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 acc2 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 acc3 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - // A and B src indices get incremented at the same time. - int i = 0; - for(; i <= (COLS_A - 4); i += 4) - { - // Load values from matrix A and matrix B - vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 a1 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 a2 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 a3 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); - - // Multiply and accumulate - acc0 += b0 * vec4(a0.x); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - // Load values from matrix B - b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); - - // Multiply and accumulate - acc0 += b0 * vec4(a0.y); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - // Load values from matrix B - b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); - - // Multiply and accumulate - acc0 += b0 * vec4(a0.z); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.z); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.z); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.z); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - // Load values from matrix B - b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); - - // Multiply and accumulate - acc0 += b0 * vec4(a0.w); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.w); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.w); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.w); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - TENSOR_ITERATOR_ADVANCE(src0_iter, 4); - } - - for(; i < COLS_A; ++i) - { - // Load values from matrix A - float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter); - - // Multiply and accumulate - acc0 += b0 * vec4(a0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y); - TENSOR_ITERATOR_ADVANCE(src0_iter, 1); - } - - /* Multiply by the weight of vector-matrix product */ - acc0 = acc0 * vec4(ALPHA); - VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 = acc1 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 = acc2 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 = acc3 * vec4(ALPHA); - VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 -} -#endif /* GEMM_MM_FLOATING_POINT_BIFROST */ - -#ifdef GEMM_MATRIXADDITION -/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: - * - * @attention The beta's value need to be passed at compile time using BETA - * - * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32 - * @param[in] src_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly); -TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict); - -void main(void) -{ - /* Compute source and destination addresses */ - ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - /* Load values from A x B */ - vec4 alpha_ab = VLOAD4_CURRENT_ITEM(vec4, dst_ptr, dst_iter); - vec4 c = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter); - - /* Computes alpha * axb + beta * c */ - vec4 out1 = alpha_ab + vec4(float(BETA) * c); - - /* Store final result in axb matrix */ - VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, out1); -} -#endif /* GEMM_MATRIXADDITION */ - -#elif defined(DATA_TYPE_FP16) - -#ifdef GEMM_TRANSPOSE1xW -/** This OpenGL ES kernel computes the "vector" 1x8 transposition of input matrix - * - * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16 - * @param[in] src_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); -TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); - -void main(void) -{ - /* Compute address for Matrix B - source */ - ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift); - - /* Compute address for Matrix B transposed - destination. X and Y are swapped */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y); - - STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter)); -} -#endif /* GEMM_TRANSPOSE1xW */ - -#ifdef GEMM_INTERLEAVE4x4 -/** This OpenGLES kernel reshapes the input matrix interleaving the values - * - * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16 - * @param[in] src_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly); -TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); - -void main(void) -{ - /* Compute source and destination addresses */ - ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - vec4 s0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter); - vec4 s1[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 1)); - vec4 s2[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 2)); - vec4 s3[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 3)); - - vec4 s[2]; - s[0] = vec4(s0[0].x, s1[0].x, s2[0].x, s3[0].x); - s[1] = vec4(s0[0].y, s1[0].y, s2[0].y, s3[0].y); - STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s); - - s[0] = vec4(s0[0].z, s1[0].z, s2[0].z, s3[0].z); - s[1] = vec4(s0[0].w, s1[0].w, s2[0].w, s3[0].w); - STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 1u), s); - - s[0] = vec4(s0[1].x, s1[1].x, s2[1].x, s3[1].x); - s[1] = vec4(s0[1].y, s1[1].y, s2[1].y, s3[1].y); - STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 2u), s); - - s[0] = vec4(s0[1].z, s1[1].z, s2[1].z, s3[1].z); - s[1] = vec4(s0[1].w, s1[1].w, s2[1].w, s3[1].w); - STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 3u), s); -} -#endif /* GEMM_INTERLEAVE4x4 */ - -#ifdef GEMM_MM_FLOATING_POINT -/** This OpenGL ES kernel computes the matrix multiplication between matrix A(src0) and matrix B(src1) - * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x4 before running the matrix multiplication - * - * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha - * - * @param[in] src0_ptr Pointer to the source matrix.Supported data types: F16 - * @param[in] src0_attrs The attributes of the source matrix - * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr - * @param[in] src1_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src0_attrs; - ImageAttributes src1_attrs; - ImageAttributes dst_attrs; -}; - -#if defined(MM_PROCESS_4X) -TENSOR_DECLARATION(1, src0Buffer, uint, src0_ptr, src0_shift, 2, readonly); -TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly); -TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); - /* Compute the address for the vector A and matrix B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); - - /* Compute end row address for matrix A */ - uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); - - /* Reset accumulators */ - vec4 acc0 = vec4(0.0f); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 acc1 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 acc2 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 acc3 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(4)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y)) - { - vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter); - vec4 b1 = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1)); - - acc0 += b0 * vec4(a0.x); - acc0 += b1 * vec4(a0.y); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * vec4(a1.x); - acc1 += b1 * vec4(a1.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * vec4(a2.x); - acc2 += b1 * vec4(a2.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * vec4(a3.x); - acc3 += b1 * vec4(a3.y); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y)) - { - vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter); - - acc0 += b0 * (a0.x); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b0 * (a1.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b0 * (a2.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b0 * (a3.x); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - - /* Multiply by the weight of vector-matrix product */ - acc0 = acc0 * vec4(ALPHA); - - STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 -} -#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */ -TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly); -TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly); -TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); - /* Compute the address for the vector A and matrix B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); - - /* Compute end row address for matrix A */ - uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); - - /* Reset accumulators */ - vec4 acc0 = vec4(0.0f); - -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 acc1 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 acc2 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 acc3 = vec4(0.0f); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) - { - vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b; - - for(int i = 0; i < 8; i++) - { - int j = i >> 2; - int k = i % 4; - - b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); - - acc0 += b * vec4(a0[j][k]); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b * vec4(a1[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b * vec4(a2[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b * vec4(a3[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - } - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) - { - vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3)); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - - vec4 b; - - int leftover = COLS_A % 8; - - for(int i = 0; i < leftover; i++) - { - int j = i >> 2; - int k = i % 4; - - b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); - - acc0 += b * vec4(a0[j][k]); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - acc1 += b * vec4(a1[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - acc2 += b * vec4(a2[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - acc3 += b * vec4(a3[j][k]); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - } - } - - /* Multiply by the weight of vector-matrix product */ - acc0 = acc0 * vec4(ALPHA); - - STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0); -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 -#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3); -#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 -} -#elif defined(MM_PROCESS_8X) /* PROCESS_8X */ -TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly); -TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly); -TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); - /* Compute the address for the vector A and matrix B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x); - - /* Compute end row address for matrix A */ - uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1); - - /* Reset accumulators */ - vec4 acc[2]; - - acc[0] = vec4(0.0f); - acc[1] = vec4(0.0f); - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) - { - vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - vec4 b[2]; - - for(int i = 0; i < 8; i++) - { - int j = i >> 2; - int k = i % 4; - - b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); - - acc[0] += b[0] * vec4(a[j][k]); - acc[1] += b[1] * vec4(a[j][k]); - } - } - - for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * uint(2)), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y)) - { - vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - vec4 b[2]; - - int leftover = COLS_A % 8; - - for(int i = 0; i < leftover; i++) - { - int j = i >> 2; - int k = i % 4; - - b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i)); - - acc[0] += b[0] * vec4(a[j][k]); - acc[1] += b[1] * vec4(a[j][k]); - } - } - - /* Multiply by the weight of vector-matrix product */ - acc[0] = acc[0] * vec4(ALPHA); - acc[1] = acc[1] * vec4(ALPHA); - - STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc); -} -#endif /* PROCESS_8X */ -#endif /* GEMM_MM_FLOATING_POINT */ - -#ifdef GEMM_ACCUMULATE_BIASES -#if defined(ACCUM_PROCESS_4X) -/** This kernel accumulates each row with the biases vector - * - * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16 - * @param[in] accum_attrs The attributes of the accumulate tensor - * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr - * @param[in] biases_attrs The attributes of the biases tensor - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes accum_attrs; - VectorAttributes biases_attrs; -}; - -TENSOR_DECLARATION(1, accumBuffer, uvec2, accum_ptr, accum_shift, 3, restrict); -TENSOR_DECLARATION(2, biasesBuffer, uvec2, biases_ptr, biases_shift, 3, readonly); - -void main(void) -{ - ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); - VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); - - vec4 u[2]; - u[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter); - u[1] = LOAD_UNPACK4_CURRENT_ITEM_HALF(biases_ptr, biases_iter); - - vec4 tmp; - tmp = u[0] + u[1]; - STORE_PACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter, tmp); -} -#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_8X */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes accum_attrs; - VectorAttributes biases_attrs; -}; - -TENSOR_DECLARATION(1, accumBuffer, uvec4, accum_ptr, accum_shift, 4, restrict); -TENSOR_DECLARATION(2, biasesBuffer, uvec4, biases_ptr, biases_shift, 4, readonly); - -void main(void) -{ - ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift); - VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift); - - vec4 u[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter); - vec4 v[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(biases_ptr, biases_iter); - - vec4 r[2]; - r[0] = u[0] + v[0]; - r[1] = u[1] + v[1]; - STORE_PACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter, r); -} -#endif /* ACCUM_PROCESS_8X */ -#endif /* GEMM_ACCUMULATE_BIASES */ - -#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED -/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1) - * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication - * - * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha - * - * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16 - * @param[in] src0_attrs The attributes of the source matrix - * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr - * @param[in] src1_attrs The attributes of the source matrix - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr - * @param[in] dst_attrs The attributes of the destination matrix - */ -SHADER_PARAMS_DECLARATION -{ - ImageAttributes src0_attrs; - ImageAttributes src1_attrs; - ImageAttributes dst_attrs; -}; -TENSOR_DECLARATION(1, src0Buffer, uvec2, src0_ptr, src0_shift, 3, readonly); -TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly); -TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly); - -void main() -{ - ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift); - ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift); - ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift); - - /* Compute address for matrix A and B */ - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y)); - TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y)); - /* Compute end row address for matrix B */ - int end_row_mtx_b = (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) + int(COLS_B); - - /* Reset accumulators */ - vec4 c00[2]; - vec4 c10[2]; - vec4 c20[2]; - vec4 c30[2]; - c00[0] = vec4(0.0f); - c00[1] = vec4(0.0f); - c10[0] = vec4(0.0f); - c10[1] = vec4(0.0f); - c20[0] = vec4(0.0f); - c20[1] = vec4(0.0f); - c30[0] = vec4(0.0f); - c30[1] = vec4(0.0f); - - // FIXME: loop unrolling really needed for GLES? - for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) <= (end_row_mtx_b - 16); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 16), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 32)) - { - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter); - - c00[0] += vec4(a0.x) * b0[0]; - c00[1] += vec4(a0.x) * b0[1]; - c10[0] += vec4(a0.y) * b0[0]; - c10[1] += vec4(a0.y) * b0[1]; - c20[0] += vec4(a0.z) * b0[0]; - c20[1] += vec4(a0.z) * b0[1]; - c30[0] += vec4(a0.w) * b0[0]; - c30[1] += vec4(a0.w) * b0[1]; - - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - a0 = LOAD_UNPACK4_HALF(src0_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, 8)); - b0 = LOAD_UNPACK8_HALF(src1_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src1_iter, 16)); - - c00[0] += vec4(a0.x) * b0[0]; - c00[1] += vec4(a0.x) * b0[1]; - c10[0] += vec4(a0.y) * b0[0]; - c10[1] += vec4(a0.y) * b0[1]; - c20[0] += vec4(a0.z) * b0[0]; - c20[1] += vec4(a0.z) * b0[1]; - c30[0] += vec4(a0.w) * b0[0]; - c30[1] += vec4(a0.w) * b0[1]; - } - - for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 16)) - { - /* Load values from matrix A (interleaved) and matrix B (transposed) */ - vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter); - vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter); - - c00[0] += vec4(a0.x) * b0[0]; - c00[1] += vec4(a0.x) * b0[1]; - c10[0] += vec4(a0.y) * b0[0]; - c10[1] += vec4(a0.y) * b0[1]; - c20[0] += vec4(a0.z) * b0[0]; - c20[1] += vec4(a0.z) * b0[1]; - c30[0] += vec4(a0.w) * b0[0]; - c30[1] += vec4(a0.w) * b0[1]; - } - - /* Multiply by the weight of matrix product */ - c00[0] = c00[0] * vec4(ALPHA); - c00[1] = c00[1] * vec4(ALPHA); - c10[0] = c10[0] * vec4(ALPHA); - c10[1] = c10[1] * vec4(ALPHA); - c20[0] = c20[0] * vec4(ALPHA); - c20[1] = c20[1] * vec4(ALPHA); - c30[0] = c30[0] * vec4(ALPHA); - c30[1] = c30[1] * vec4(ALPHA); - - /* Store 4x8 block */ - STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00); - STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10); - STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20); - STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30); -} -#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */ -#else /* DATA_TYPE_FP16 */ -#error Data type not supported -#endif /* DATA_TYPE_FP32 */ -- cgit v1.2.1