From b9d38ee6378f3035f8dbad442223d3d9e2f3dc4f Mon Sep 17 00:00:00 2001 From: Frank Lei Date: Tue, 5 Dec 2017 10:43:33 +0800 Subject: APPBROWSER-312 Fully connected performance optimization Change-Id: Ie93fd630ebbad7b6ca8812cb5044b3f1908b45fd Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/111830 Reviewed-by: Stephen Li Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com Reviewed-by: Anthony Barbier --- src/core/GLES_COMPUTE/cs_shaders/gemm.cs | 458 ++++++++++++++++++++++++++++++- 1 file changed, 451 insertions(+), 7 deletions(-) mode change 100755 => 100644 src/core/GLES_COMPUTE/cs_shaders/gemm.cs (limited to 'src/core/GLES_COMPUTE/cs_shaders/gemm.cs') diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs old mode 100755 new mode 100644 index ffa0ebb2af..3ed27d5f00 --- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs +++ b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs @@ -475,6 +475,7 @@ void main(void) #elif defined(DATA_TYPE_FP16) precision mediump float; #ifdef GEMM_MM_FLOATING_POINT +#if defined(MM_PROCESS_4X) BUFFER_DECLARATION(src0, 1, uint, readonly); BUFFER_DECLARATION(src1, 2, uvec2, readonly); BUFFER_DECLARATION(dst, 3, uvec2, writeonly); @@ -526,14 +527,41 @@ void main() /* Reset accumulators */ vec4 acc0 = vec4(0.0f); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec4 acc1 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec4 acc2 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec4 acc3 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 - for(; src0.current_offset < (end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y) + for(; int(src0.current_offset) < int(end_row_vec_a - uint(2)); src0.current_offset += uint(2 * 2), src1.current_offset += uint(2) * src1_stride_y) { - uint packed_a0; + uint packed_a; vec2 a0; - GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0); - a0 = vec2(unpackHalf2x16(packed_a0)); + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); + a0 = vec2(unpackHalf2x16(packed_a)); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec2 a1; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); + a1 = vec2(unpackHalf2x16(packed_a)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec2 a2; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); + a2 = vec2(unpackHalf2x16(packed_a)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec2 a3; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); + a3 = vec2(unpackHalf2x16(packed_a)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b0; uvec2 packed_b1; @@ -548,6 +576,18 @@ void main() acc0 += b0 * vec4(a0.x); acc0 += b1 * vec4(a0.y); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + acc1 += b0 * vec4(a1.x); + acc1 += b1 * vec4(a1.y); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + acc2 += b0 * vec4(a2.x); + acc2 += b1 * vec4(a2.y); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + acc3 += b0 * vec4(a3.x); + acc3 += b1 * vec4(a3.y); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 2), src1.current_offset += src1_stride_y) @@ -557,6 +597,24 @@ void main() GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 0); a0 = vec2(unpackHalf2x16(packed_a0)); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec2 a1; + + GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 1); + a1 = vec2(unpackHalf2x16(packed_a0)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec2 a2; + + GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 2); + a2 = vec2(unpackHalf2x16(packed_a0)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec2 a3; + + GC_LOAD1_2D_OFFSET(packed_a0, src0, 0, 3); + a3 = vec2(unpackHalf2x16(packed_a0)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 uvec2 packed_b0; vec4 b0; @@ -566,6 +624,15 @@ void main() b0 = vec4(unpackHalf2x16(packed_b0.x), unpackHalf2x16(packed_b0.y)); acc0 += b0 * (a0.x); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + acc1 += b0 * (a1.x); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + acc2 += b0 * (a2.x); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + acc3 += b0 * (a3.x); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } /* Multiply by the weight of vector-matrix product */ @@ -574,10 +641,340 @@ void main() uvec2 packed_d; packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw)); GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 } -#endif /* GEMM_MM_FLOATING_POINT */ +#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */ +BUFFER_DECLARATION(src0, 1, uvec4, readonly); +BUFFER_DECLARATION(src1, 2, uvec2, readonly); +BUFFER_DECLARATION(dst, 3, uvec2, writeonly); + +layout(std140) uniform shader_params +{ + IMAGE_PARAM_DECLARATION(src0); + IMAGE_PARAM_DECLARATION(src1); + IMAGE_PARAM_DECLARATION(dst); +}; + +/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) + * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication + * + * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA + * + * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 + * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) + * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) + * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix + * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr + * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) + * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) + * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + */ +void main() +{ + Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0); + Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1); + Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); + + int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); + /* Compute the address for the vector A and matrix B */ + src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); + src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x; + + /* Compute end row address for matrix A */ + uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1); + + /* Reset accumulators */ + vec4 acc0 = vec4(0.0f); + +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec4 acc1 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec4 acc2 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec4 acc3 = vec4(0.0f); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + + for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y) + { + uvec4 packed_a; + vec4 a0[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); + a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); + +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec4 a1[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); + a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec4 a2[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); + a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec4 a3[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); + a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + + uvec2 packed_b; + vec4 b; + + for(int i = 0; i < 8; i++) + { + int j = i >> 2; + int k = i % 4; + + GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); + + b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); + + acc0 += b * vec4(a0[j][k]); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + acc1 += b * vec4(a1[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + acc2 += b * vec4(a2[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + acc3 += b * vec4(a3[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + } + } + + for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y) + { + uvec4 packed_a; + vec4 a0[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); + a0[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a0[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); + +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + vec4 a1[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 1); + a1[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a1[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + vec4 a2[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 2); + a2[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a2[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + vec4 a3[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 3); + a3[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a3[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + + uvec2 packed_b; + vec4 b; + + int leftover = COLS_A % 8; + + for(int i = 0; i < leftover; i++) + { + int j = i >> 2; + int k = i % 4; + + GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); + + b = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); + + acc0 += b * vec4(a0[j][k]); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + acc1 += b * vec4(a1[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + acc2 += b * vec4(a2[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + acc3 += b * vec4(a3[j][k]); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + } + } + + /* Multiply by the weight of vector-matrix product */ + acc0 = acc0 * vec4(ALPHA); + + uvec2 packed_d; + packed_d = uvec2(packHalf2x16(acc0.xy), packHalf2x16(acc0.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 + packed_d = uvec2(packHalf2x16(acc1.xy), packHalf2x16(acc1.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 1); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 + packed_d = uvec2(packHalf2x16(acc2.xy), packHalf2x16(acc2.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 2); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2 +#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 + packed_d = uvec2(packHalf2x16(acc3.xy), packHalf2x16(acc3.zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 3); +#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3 +} +#elif defined(MM_PROCESS_8X) /* PROCESS_4X */ +BUFFER_DECLARATION(src0, 1, uvec4, readonly); +BUFFER_DECLARATION(src1, 2, uvec4, readonly); +BUFFER_DECLARATION(dst, 3, uvec4, writeonly); + +layout(std140) uniform shader_params +{ + IMAGE_PARAM_DECLARATION(src0); + IMAGE_PARAM_DECLARATION(src1); + IMAGE_PARAM_DECLARATION(dst); +}; + +/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) + * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication + * + * @attention The width of matrix B and the alpha's value need to be passed at compile time using WIDTH_MATRIX_B and ALPHA + * + * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32 + * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes) + * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes) + * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix + * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr + * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes) + * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes) + * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + */ +void main() +{ + Image src0 = GC_CONVERT_TO_IMAGE_STRUCT(src0); + Image src1 = GC_CONVERT_TO_IMAGE_STRUCT(src1); + Image dst = GC_CONVERT_TO_IMAGE_STRUCT(dst); + + int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X); + /* Compute the address for the vector A and matrix B */ + src0.current_offset = (src0_offset_first_element_in_bytes + uint(gl_GlobalInvocationID.y) * src0_stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y)); + src1.current_offset = src1_offset_first_element_in_bytes + uint(idx) * src1_stride_x; + + /* Compute end row address for matrix A */ + uint end_row_vec_a = src0.current_offset + uint(COLS_A << 1); + + /* Reset accumulators */ + vec4 acc[2]; + + acc[0] = vec4(0.0f); + acc[1] = vec4(0.0f); + + for(; int(src0.current_offset) < int(end_row_vec_a - uint(16)); src0.current_offset += uint(8) * src0_stride_x, src1.current_offset += uint(8) * src1_stride_y) + { + uvec4 packed_a; + vec4 a[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); + a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); + + uvec4 packed_b; + vec4 b[2]; + + for(int i = 0; i < 8; i++) + { + int j = i >> 2; + int k = i % 4; + + GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); + + b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); + b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w)); + + acc[0] += b[0] * vec4(a[j][k]); + acc[1] += b[1] * vec4(a[j][k]); + } + } + + for(; src0.current_offset < end_row_vec_a; src0.current_offset += uint(2 * 8), src1.current_offset += uint(8) * src1_stride_y) + { + uvec4 packed_a; + vec4 a[2]; + + GC_LOAD1_2D_OFFSET(packed_a, src0, 0, 0); + a[0] = vec4(unpackHalf2x16(packed_a.x), unpackHalf2x16(packed_a.y)); + a[1] = vec4(unpackHalf2x16(packed_a.z), unpackHalf2x16(packed_a.w)); + + uvec4 packed_b; + vec4 b[2]; + + int leftover = COLS_A % 8; + + for(int i = 0; i < leftover; i++) + { + int j = i >> 2; + int k = i % 4; + + GC_LOAD1_2D_OFFSET(packed_b, src1, 0, i); + + b[0] = vec4(unpackHalf2x16(packed_b.x), unpackHalf2x16(packed_b.y)); + b[1] = vec4(unpackHalf2x16(packed_b.z), unpackHalf2x16(packed_b.w)); + + acc[0] += b[0] * vec4(a[j][k]); + acc[1] += b[1] * vec4(a[j][k]); + } + } + + /* Multiply by the weight of vector-matrix product */ + acc[0] = acc[0] * vec4(ALPHA); + acc[1] = acc[1] * vec4(ALPHA); + + uvec4 packed_d; + packed_d = uvec4(packHalf2x16(acc[0].xy), packHalf2x16(acc[0].zw), packHalf2x16(acc[1].xy), packHalf2x16(acc[1].zw)); + GC_STORE1_2D_OFFSET(packed_d, dst, 0, 0); +} +#endif /* PROCESS_4X */ +#endif /* GEMM_MM_FLOATING_POINT */ #ifdef GEMM_ACCUMULATE_BIASES +#if defined(ACCUM_PROCESS_4X) BUFFER_DECLARATION(accum, 1, uvec2, restrict); BUFFER_DECLARATION(biases, 2, uvec2, readonly); @@ -617,7 +1014,54 @@ void main(void) packed_s[0] = uvec2(packHalf2x16(tmp.xy), packHalf2x16(tmp.zw)); GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0); } -#endif /* GEMM_ACCUMULATE_BIASES */ -#else /* DATA_TYPE_FP32 */ +#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_4X */ +BUFFER_DECLARATION(accum, 1, uvec4, restrict); +BUFFER_DECLARATION(biases, 2, uvec4, readonly); + +layout(std140) uniform shader_params +{ + IMAGE_PARAM_DECLARATION(accum); + VECTOR_PARAM_DECLARATION(biases); +}; + +/** This kernel accumulates each row with the biases vector + * + * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16 + * @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes) + * @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes) + * @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor + * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr + * @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +void main(void) +{ + Image accum = GC_CONVERT_TO_IMAGE_STRUCT(accum); + Vector biases = GC_CONVERT_TO_VECTOR_STRUCT(biases); + + vec4 u[2]; + vec4 v[2]; + uvec4 packed_s[2]; + GC_LOAD1_2D_OFFSET(packed_s[0], accum, 0, 0); + GC_LOAD1_1D_OFFSET(packed_s[1], biases, 0); + + u[0] = vec4(unpackHalf2x16(packed_s[0].x), unpackHalf2x16(packed_s[0].y)); + u[1] = vec4(unpackHalf2x16(packed_s[0].z), unpackHalf2x16(packed_s[0].w)); + + v[0] = vec4(unpackHalf2x16(packed_s[1].x), unpackHalf2x16(packed_s[1].y)); + v[1] = vec4(unpackHalf2x16(packed_s[1].z), unpackHalf2x16(packed_s[1].w)); + + vec4 r[2]; + r[0] = u[0] + v[0]; + r[1] = u[1] + v[1]; + packed_s[0] = uvec4(packHalf2x16(r[0].xy), packHalf2x16(r[0].zw), packHalf2x16(r[1].xy), packHalf2x16(r[1].zw)); + GC_STORE1_2D_OFFSET(packed_s[0], accum, 0, 0); +} +#endif /* ACCUM_PROCESS_4X */ +#endif /* GEMM_ACCUMULATE_BIASES */ +#else /* DATA_TYPE_FP32 */ #error Data type not supported #endif /* DATA_TYPE_FP32 */ -- cgit v1.2.1