From 5ba5e0938e68d4f90f5545a81066d56f022b376a Mon Sep 17 00:00:00 2001 From: Gian Marco Iodice Date: Thu, 6 Dec 2018 17:13:09 +0000 Subject: COMPMID-1774: Implement CLGEMMReshapeLHSMatrixKernel to reshape the LHS matrix of GEMM/GEMMLowp Change-Id: I8c5fd4c8bcdffda1522c83158981ed92baa045f4 Reviewed-on: https://review.mlplatform.org/364 Reviewed-by: Michele Di Giorgio Tested-by: Arm Jenkins --- src/core/CL/cl_kernels/gemm.cl | 231 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 230 insertions(+), 1 deletion(-) (limited to 'src/core/CL/cl_kernels') diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl index 7de15d018a..cf1e021929 100644 --- a/src/core/CL/cl_kernels/gemm.cl +++ b/src/core/CL/cl_kernels/gemm.cl @@ -23,6 +23,235 @@ */ #include "helpers.h" +#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) + +/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in + * the output matrix unrolling the values. + * + * @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float) + * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (i.e. -DM0=2, -DK0=2). + * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (i.e. -DV0=2) + * @note Only the following values for M0, K0 and V0 are supported: + * M0: 2,3,4,5,6,7,8 + * K0: 2,4,8,16 + * V0: greater than 0 + * @note In case the input has to be reinterpreted as a 3D tensor (i.e. input of convolution layer 1x1), the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped + * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. + * + * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/S32/F32 + * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + */ +__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst) +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D + ) +{ +// Block size +#define BLOCK_SIZE ((M0) * (K0)) + +// Output offset X +#if defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (K0) +#else // defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (BLOCK_SIZE) +#endif // defined(INTERLEAVE) + +// Output step X +#if defined(INTERLEAVE) +#define OUTPUT_STEP_X (K0) * (V0) +#else // Do not interleave +#define OUTPUT_STEP_X (K0) +#endif // defined(INTERLEAVE) + + // Compute source and destination addresses + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + // ------------------ Compute input/output addresses --------------------------- + + // Compute the input address + __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y; + + // Compute the output address + __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) * + (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)); + + uint zin0 = 0; + uint zin1 = 0; + uint zin2 = 0; + uint zin3 = 0; + uint zin4 = 0; + uint zin5 = 0; + uint zin6 = 0; + uint zin7 = 0; + +#if defined(REINTERPRET_INPUT_AS_3D) + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply src_stride_z by DEPTH_GEMM3D + + // Note for the REINTERPRET_INPUT_AS_3D case + // Since we load a 2D input tile from a 3D tensor, we need to check when the plane changes across the z dimension + // in order to take into account the presence of possible cross plane paddings + // + // | | + // | plane0 | + // | | + // |__________________| + // |******************| + // | cross_plane_pad | + // |******************| + // | | + // | plane1 | + // | | + // |__________________| + + input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D; + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + zin0 = (0 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin0 = min((uint)(DEPTH_GEMM3D - 1), zin0); + zin0 *= (cross_plane_pad * src_stride_y); +#if M0 > 1 + zin1 = (1 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin1 = min((uint)(DEPTH_GEMM3D - 1), zin1); + zin1 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 1 +#if M0 > 2 + zin2 = (2 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin2 = min((uint)(DEPTH_GEMM3D - 1), zin2); + zin2 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 2 +#if M0 > 3 + zin3 = (3 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin3 = min((uint)(DEPTH_GEMM3D - 1), zin3); + zin3 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 3 +#if M0 > 4 + zin4 = (4 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin4 = min((uint)(DEPTH_GEMM3D - 1), zin4); + zin4 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 4 +#if M0 > 5 + zin5 = (5 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin5 = min((uint)(DEPTH_GEMM3D - 1), zin5); + zin5 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 5 +#if M0 > 6 + zin6 = (6 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin6 = min((uint)(DEPTH_GEMM3D - 1), zin6); + zin6 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 6 +#if M0 > 6 + zin7 = (7 + (uint)(y * M0)) / (uint)HEIGHT_GEMM3D; + zin7 = min((uint)(DEPTH_GEMM3D - 1), zin7); + zin7 *= (cross_plane_pad * src_stride_y); +#endif // M0 > 7 + +#else // defined(REINTERPRET_INPUT_AS_3D) + + input_ptr += z * (uint)src_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + output_ptr += z * (uint)dst_stride_z; + + // ---------------------------Load input values -------------------------------- + + // Load values from the LHS matrix + VEC_DATA_TYPE(DATA_TYPE, K0) + a0 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y + zin0)); +#if M0 > 1 + VEC_DATA_TYPE(DATA_TYPE, K0) + a1 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y + zin1)); +#endif // M0 > 1 +#if M0 > 2 + VEC_DATA_TYPE(DATA_TYPE, K0) + a2 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y + zin2)); +#endif // M0 > 2 +#if M0 > 3 + VEC_DATA_TYPE(DATA_TYPE, K0) + a3 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y + zin3)); +#endif // M0 > 3 +#if M0 > 4 + VEC_DATA_TYPE(DATA_TYPE, K0) + a4 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y + zin4)); +#endif // M0 > 4 +#if M0 > 5 + VEC_DATA_TYPE(DATA_TYPE, K0) + a5 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y + zin5)); +#endif // M0 > 5 +#if M0 > 6 + VEC_DATA_TYPE(DATA_TYPE, K0) + a6 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y + zin6)); +#endif // M0 > 6 +#if M0 > 7 + VEC_DATA_TYPE(DATA_TYPE, K0) + a7 = VLOAD(K0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y + zin7)); +#endif // M0 > 7 + + // ---------------------------Store output values ------------------------------ + + VSTORE(K0) + (a0, 0, (__global DATA_TYPE *)(output_ptr + 0 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#if M0 > 1 + VSTORE(K0) + (a1, 0, (__global DATA_TYPE *)(output_ptr + 1 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 1 +#if M0 > 2 + VSTORE(K0) + (a2, 0, (__global DATA_TYPE *)(output_ptr + 2 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 2 +#if M0 > 3 + VSTORE(K0) + (a3, 0, (__global DATA_TYPE *)(output_ptr + 3 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 3 +#if M0 > 4 + VSTORE(K0) + (a4, 0, (__global DATA_TYPE *)(output_ptr + 4 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 4 +#if M0 > 5 + VSTORE(K0) + (a5, 0, (__global DATA_TYPE *)(output_ptr + 5 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 5 +#if M0 > 6 + VSTORE(K0) + (a6, 0, (__global DATA_TYPE *)(output_ptr + 6 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 6 +#if M0 > 7 + VSTORE(K0) + (a7, 0, (__global DATA_TYPE *)(output_ptr + 7 * OUTPUT_STEP_X * sizeof(DATA_TYPE))); +#endif // M0 > 7 + +#undef BLOCK_SIZE +#undef OUTPUT_OFFSET_X +#undef OUTPUT_STEP_X +} +#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) + #if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH) #if ELEMENT_SIZE == 1 @@ -193,7 +422,7 @@ __kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src), vstore4(a1, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 4 * MULT_INTERLEAVE4X4_HEIGHT)); vstore4(a2, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 8 * MULT_INTERLEAVE4X4_HEIGHT)); vstore4(a3, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 12 * MULT_INTERLEAVE4X4_HEIGHT)); -#else // defined(UNROLL_BLOCK) +#else // defined(UNROLL_BLOCK) VEC_DATA_TYPE(DATA_TYPE, 4) val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s0, a1.s0, a2.s0, a3.s0); vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 0 * MULT_INTERLEAVE4X4_HEIGHT)); -- cgit v1.2.1