From 451c309179b784d19d333da31aec5a871c3ff2b6 Mon Sep 17 00:00:00 2001 From: Ramy Elgammal Date: Tue, 1 Feb 2022 23:01:27 +0000 Subject: Revert "Rework gemm_mm_reshaped_only_rhs_ kernels with new macros" This reverts commit 10e88a7351 "Rework gemm_mm_reshaped_only_rhs_ kernels with new macros" Resolves: COMPMID-5095 Signed-off-by: Ramy Elgammal Change-Id: I46e167882f072e7508b6101d295accb6e089e740 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/7045 Reviewed-by: Gian Marco Iodice Comments-Addressed: Arm Jenkins Tested-by: Arm Jenkins --- .../gemm_mm_reshaped_only_rhs.cl | 1399 ++++++++++++++++++ src/core/CL/cl_kernels/common/gemm.cl | 1506 ++++++++++++++++++++ .../CL/cl_kernels/common/gemm_reshaped_rhs_only.cl | 953 ------------- src/core/CL/cl_kernels/tile_helpers.h | 186 +-- 4 files changed, 2909 insertions(+), 1135 deletions(-) create mode 100644 src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl delete mode 100644 src/core/CL/cl_kernels/common/gemm_reshaped_rhs_only.cl (limited to 'src/core/CL/cl_kernels') diff --git a/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl new file mode 100644 index 0000000000..09ddcde043 --- /dev/null +++ b/src/core/CL/cl_kernels/common/experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl @@ -0,0 +1,1399 @@ +/* + * Copyright (c) 2021-2022 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "fp_post_ops_act_eltwise_op_act.h" +#include "gemm_helpers.h" +#include "repeat.h" + +/** (EXPERIMENTAL_POST_OPS) gemm_mm_reshaped_only_rhs kernel */ +#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) +#if defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) + +#define CONCAT(a, b) a##b + +#define ARM_DOT1(a, b, c) \ + ({ \ + c = fma(a, b, c); \ + }) +#define ARM_DOT2(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + }) +#define ARM_DOT3(a, b, c) \ + ({ \ + ARM_DOT2(a, b, c); \ + c = fma((a.s2), (b.s2), c); \ + }) +#define ARM_DOT4(a, b, c) \ + ({ \ + ARM_DOT3(a, b, c); \ + c = fma((a.s3), (b.s3), c); \ + }) +#define ARM_DOT8(a, b, c) \ + ({ \ + ARM_DOT4((a.lo), (b.lo), c); \ + ARM_DOT4((a.hi), (b.hi), c); \ + }) +#define ARM_DOT16(a, b, c) \ + ({ \ + ARM_DOT8((a.lo), (b.lo), c); \ + ARM_DOT8((a.hi), (b.hi), c); \ + }) + +#if N0 == 2 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + }) +#elif N0 == 3 // N0 == 3 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + }) +#elif N0 == 4 // N0 == 4 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + }) +#elif N0 == 8 // N0 == 8 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##4), (c.s4)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##5), (c.s5)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##6), (c.s6)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##7), (c.s7)); \ + }) +#elif N0 == 16 // N0 == 16 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##4), (c.s4)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##5), (c.s5)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##6), (c.s6)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##7), (c.s7)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##8), (c.s8)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##9), (c.s9)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##A), (c.sA)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##B), (c.sB)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##C), (c.sC)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##D), (c.sD)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##E), (c.sE)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##F), (c.sF)); \ + }) +#else // N0 not supported +#error "N0 value not supported" +#endif // N0 conditions + +#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + */ +__kernel void gemm_mm_reshaped_only_rhs_t_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (K0) +#define RHS_STEP_X ((K0) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (K0) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + + // Compute RHS reshaped matrix address + uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_offset += z * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0; + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Supported cases (M0, K0): + // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 + // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 + // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 + // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 + // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 + // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 + // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 + // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS reshaped matrix + LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero); + + // Accumulate + ARM_DOT_K0XN0(K0, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += K0 * sizeof(DATA_TYPE); + rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE); + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS reshaped matrix + LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero); + + // Accumulate + ARM_DOT_K0XN0(1, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(1, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(1, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(1, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(1, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(1, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(1, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(1, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += sizeof(DATA_TYPE); + rhs_offset += sizeof(DATA_TYPE); + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +} +#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T_POST_ACT_ELTWISE_OP_ACT) + +#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_t_texture, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_t_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0) + + const uint LEFTOVER_K = K % K0; + + // Block size +#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X (PIXEL_UNIT * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X PIXEL_UNIT +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = get_global_id(2); +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT; + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS matrix stored in a cl_image + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); + LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); + + // Accumulate + ARM_DOT_K0XN0(K0, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += K0 * sizeof(DATA_TYPE); + x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP; + } + + if(LEFTOVER_K != 0) + { + // Note: We cannot read out-of-bound elements from the RHS matrix because + // the RHS width is always multiple of K0. This is not be true for the LHS matrix + + union UNION_VEC_TYPE + { + DATA_TYPE s[K0]; + VEC_DATA_TYPE(DATA_TYPE, K0) + v; + }; + + union UNION_VEC_TYPE a0 = {.v = 0 }; +#if M0 > 1 + union UNION_VEC_TYPE a1 = {.v = 0 }; +#endif // M0 > 1 +#if M0 > 2 + union UNION_VEC_TYPE a2 = {.v = 0 }; +#endif // M0 > 2 +#if M0 > 3 + union UNION_VEC_TYPE a3 = {.v = 0 }; +#endif // M0 > 3 +#if M0 > 4 + union UNION_VEC_TYPE a4 = {.v = 0 }; +#endif // M0 > 4 +#if M0 > 5 + union UNION_VEC_TYPE a5 = {.v = 0 }; +#endif // M0 > 5 +#if M0 > 6 + union UNION_VEC_TYPE a6 = {.v = 0 }; +#endif // M0 > 6 +#if M0 > 7 + union UNION_VEC_TYPE a7 = {.v = 0 }; +#endif // M0 > 7 + + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); + + // Load from RHS matrix + LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); + + // Load from LHS matrix + for(int k = 0; k < LEFTOVER_K; ++k) + { + a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0); +#if M0 > 1 + a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1); +#endif // M0 > 1 +#if M0 > 2 + a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2); +#endif // M0 > 2 +#if M0 > 3 + a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3); +#endif // M0 > 3 +#if M0 > 4 + a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4); +#endif // M0 > 4 +#if M0 > 5 + a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5); +#endif // M0 > 5 +#if M0 > 6 + a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6); +#endif // M0 > 6 +#if M0 > 7 + a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7); +#endif // M0 > 7 + + lhs_offset += sizeof(DATA_TYPE); + } + + // Accumulate + ARM_DOT_K0XN0(K0, a0.v, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1.v, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2.v, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3.v, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4.v, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5.v, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6.v, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7.v, b, c7); +#endif // M0 > 7 + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef PIXEL_UNIT +} +#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE_POST_ACT_ELTWISE_OP_ACT) + +#define VFMA(a, b, c) \ + ({ \ + c = fma(a, b, c); \ + }) + +#if M0 == 1 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + }) +#elif M0 == 2 // M0 == 2 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + }) +#elif M0 == 3 // M0 == 3 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + }) +#elif M0 == 4 // M0 == 4 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + }) +#elif M0 == 5 // M0 == 5 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + }) +#elif M0 == 6 // M0 == 6 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + }) +#elif M0 == 7 // M0 == 7 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \ + }) +#elif M0 == 8 // M0 == 8 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \ + }) +#else // M0 not supported +#error "M0 not supported" +#endif // M0 not supported + +#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_nt_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (N0) +#define RHS_STEP_X ((N0) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (N0) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + + // Compute RHS reshaped matrix address + uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_offset += z * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0; + +#if defined(REINTERPRET_INPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0; + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Supported cases (M0, K0): + // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 + // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 + // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 + // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 + // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 + // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 + // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 + // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin); + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(0, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(1, a, b0, c); +#if K0 > 2 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(2, a, b0, c); +#endif // K0 > 2 +#if K0 > 3 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(3, a, b0, c); +#endif // K0 > 3 +#if K0 > 4 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(4, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(5, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(6, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(7, a, b0, c); +#endif // K0 > 4 +#if K0 > 8 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(8, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(9, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(A, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(B, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(C, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(D, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(E, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(F, a, b0, c); +#endif // K0 > 8 + + lhs_offset += K0 * sizeof(DATA_TYPE); + rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE); + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + VEC_DATA_TYPE(DATA_TYPE, 2) + a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0)); +#if M0 > 1 + VEC_DATA_TYPE(DATA_TYPE, 2) + a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1)); +#endif // M0 > 1 +#if M0 > 2 + VEC_DATA_TYPE(DATA_TYPE, 2) + a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2)); +#endif // M0 > 2 +#if M0 > 3 + VEC_DATA_TYPE(DATA_TYPE, 2) + a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3)); +#endif // M0 > 3 +#if M0 > 4 + VEC_DATA_TYPE(DATA_TYPE, 2) + a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4)); +#endif // M0 > 4 +#if M0 > 5 + VEC_DATA_TYPE(DATA_TYPE, 2) + a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5)); +#endif // M0 > 5 +#if M0 > 6 + VEC_DATA_TYPE(DATA_TYPE, 2) + a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6)); +#endif // M0 > 6 +#if M0 > 7 + VEC_DATA_TYPE(DATA_TYPE, 2) + a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7)); +#endif // M0 > 7 + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(0, a, b0, c); + + lhs_offset += sizeof(DATA_TYPE); + rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE); + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +} +#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_POST_ACT_ELTWISE_OP_ACT) + +#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops. The RHS matrix is stored in OpenCL image object. + * Post op 1: activation (optional) + * Post op 2: elementwise op + * Post op 3: activation (optional) + * + * @note (Optional) -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * @note (Required) -DP2_ELTWISE_OP: The (binary) elementwise post op to perform + * @note (Required) -DP2_ELTWISE_ARG1_HEIGHT: The height (Y dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Required) -DP2_ELTWISE_ARG1_WIDTH: The width (X dimension) of the eltwise operand matrix of the eltwise post op at slot 2 + * @note (Optional) -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 + * + * All parameters are similarly defined in kernel gemm_mm_reshaped_only_rhs_nt_texture, with these additions: + * + * @param[in] eltwise_operand_ptr Pointer to the eltwise operand matrix. Supported data type: F16/F32 + * @param[in] eltwise_operand_stride_x Stride of the eltwise operand matrix in X dimension (in bytes) + * @param[in] eltwise_operand_step_x eltwise_operand_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_y Stride of the eltwise operand matrix in Y dimension (in bytes) + * @param[in] eltwise_operand_step_y eltwise_operand_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] eltwise_operand_stride_z Stride of the eltwise operand tensor in Z dimension (in bytes) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_nt_texture_post_act_eltwise_op_act(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + // Post Op arguments + IMAGE_DECLARATION(eltwise_operand), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z, + uint eltwise_operand_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0) + + // Block size +#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X ((PIXEL_UNIT) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (PIXEL_UNIT) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (z % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = z; +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT; + + REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin); + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(0, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(1, a, b0, c); +#if K0 > 2 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(2, a, b0, c); +#endif // K0 > 2 +#if K0 > 3 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(3, a, b0, c); +#endif // K0 > 3 +#if K0 > 4 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(4, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(5, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(6, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(7, a, b0, c); +#endif // K0 > 4 +#if K0 > 8 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(8, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(9, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(A, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(B, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(C, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(D, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(E, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(F, a, b0, c); +#endif // K0 > 8 + + lhs_offset += K0 * sizeof(DATA_TYPE); + x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP; + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + VEC_DATA_TYPE(DATA_TYPE, 2) + a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0)); +#if M0 > 1 + VEC_DATA_TYPE(DATA_TYPE, 2) + a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1)); +#endif // M0 > 1 +#if M0 > 2 + VEC_DATA_TYPE(DATA_TYPE, 2) + a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2)); +#endif // M0 > 2 +#if M0 > 3 + VEC_DATA_TYPE(DATA_TYPE, 2) + a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3)); +#endif // M0 > 3 +#if M0 > 4 + VEC_DATA_TYPE(DATA_TYPE, 2) + a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4)); +#endif // M0 > 4 +#if M0 > 5 + VEC_DATA_TYPE(DATA_TYPE, 2) + a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5)); +#endif // M0 > 5 +#if M0 > 6 + VEC_DATA_TYPE(DATA_TYPE, 2) + a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6)); +#endif // M0 > 6 +#if M0 > 7 + VEC_DATA_TYPE(DATA_TYPE, 2) + a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7)); +#endif // M0 > 7 + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); + + VFMA_M0xN0(0, a, b0, c); + + lhs_offset += sizeof(DATA_TYPE); + x_rhs += RHS_STEP_X; + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + + // c = act(c) + POST_OP1_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + // c = c + eltwise_operand (mix-precision, broadcast, boundary aware) + POST_OP2_ELTWISE_OP(P2_ELTWISE_OP, M0, N0, c, eltwise_operand, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), DATA_TYPE, DATA_TYPE_ACCUMULATOR, zero, 1, PARTIAL_STORE_N0, false, cond_x); + // c = act(c) + POST_OP3_ACTIVATION_OPTIONAL(M0, DATA_TYPE, DATA_TYPE_ACCUMULATOR, N0, c); + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +} +#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE_POST_ACT_ELTWISE_OP_ACT) +#endif // defined(P2_ELTWISE_OP) && defined(P2_ELTWISE_ARG1_HEIGHT) && defined(P2_ELTWISE_ARG1_WIDTH) +#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl index 74e2e5097e..33ab25cad0 100644 --- a/src/core/CL/cl_kernels/common/gemm.cl +++ b/src/core/CL/cl_kernels/common/gemm.cl @@ -24,6 +24,1512 @@ #include "gemm_helpers.h" #include "repeat.h" +#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) + +#define CONCAT(a, b) a##b + +#define ARM_DOT1(a, b, c) \ + ({ \ + c = fma(a, b, c); \ + }) +#define ARM_DOT2(a, b, c) \ + ({ \ + c = fma(a.s0, b.s0, c); \ + c = fma(a.s1, b.s1, c); \ + }) +#define ARM_DOT3(a, b, c) \ + ({ \ + ARM_DOT2(a, b, c); \ + c = fma((a.s2), (b.s2), c); \ + }) +#define ARM_DOT4(a, b, c) \ + ({ \ + ARM_DOT3(a, b, c); \ + c = fma((a.s3), (b.s3), c); \ + }) +#define ARM_DOT8(a, b, c) \ + ({ \ + ARM_DOT4((a.lo), (b.lo), c); \ + ARM_DOT4((a.hi), (b.hi), c); \ + }) +#define ARM_DOT16(a, b, c) \ + ({ \ + ARM_DOT8((a.lo), (b.lo), c); \ + ARM_DOT8((a.hi), (b.hi), c); \ + }) + +#if N0 == 2 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + }) +#elif N0 == 3 // N0 == 3 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + }) +#elif N0 == 4 // N0 == 4 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + }) +#elif N0 == 8 // N0 == 8 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##4), (c.s4)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##5), (c.s5)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##6), (c.s6)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##7), (c.s7)); \ + }) +#elif N0 == 16 // N0 == 16 +#define ARM_DOT_K0XN0(k0, a, b, c) \ + ({ \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##0), (c.s0)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##1), (c.s1)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##2), (c.s2)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##3), (c.s3)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##4), (c.s4)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##5), (c.s5)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##6), (c.s6)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##7), (c.s7)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##8), (c.s8)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##9), (c.s9)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##A), (c.sA)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##B), (c.sB)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##C), (c.sC)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##D), (c.sD)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##E), (c.sE)); \ + CONCAT(ARM_DOT, k0) \ + ((a), (b##F), (c.sF)); \ + }) +#else // N0 not supported +#error "N0 value not supported" +#endif // N0 conditions + +#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices. + * The LHS matrix is NOT reshaped + * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl + * + * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. + * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters. + * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). + * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) + * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. + * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) + * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) + * @note Only the following configurations of M0, N0 and K0 are currently supported: + * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 + * - N0 = 2, 3, 4, 8, 16 + * - K0 = 2, 3, 4, 8, 16 + * - H0 >= 1 + * + * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively. + * The activation function is performed after the bias addition + * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D + * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix + * + * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32 + * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes) + * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes) + * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix + * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr + * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes) + * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes) + * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix + * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr + * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes) + * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes) + * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes) + * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes) + * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (K0) +#define RHS_STEP_X ((K0) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (K0) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + + // Compute RHS reshaped matrix address + uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_offset += z * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + REPEAT_VAR_INIT_TO_CONST(8, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(M0-1)=0; + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Supported cases (M0, K0): + // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 + // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 + // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 + // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 + // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 + // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 + // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 + // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS reshaped matrix + LOAD_BLOCK(N0, K0, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero); + + // Accumulate + ARM_DOT_K0XN0(K0, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += K0 * sizeof(DATA_TYPE); + rhs_offset += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE); + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, 1, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS reshaped matrix + LOAD_BLOCK(N0, 1, DATA_TYPE, b, rhs_ptr, rhs_offset, RHS_STEP_X * sizeof(DATA_TYPE), zero); + + // Accumulate + ARM_DOT_K0XN0(1, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(1, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(1, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(1, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(1, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(1, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(1, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(1, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += sizeof(DATA_TYPE); + rhs_offset += sizeof(DATA_TYPE); + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + +#if defined(ACTIVATION_TYPE) + ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); +#endif // defined(ACTIVATION_TYPE) + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +} +#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T) + +#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image + * The LHS matrix is NOT reshaped + * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl + * + * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel + * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. + * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters. + * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT= (e.g. -DRHS_HEIGHT=32) + * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT + * could be different from the value returned by get_image_height(rhs_img). + * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). + * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) + * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. + * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) + * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) + * @note Only the following configurations of M0, N0 and K0 are currently supported: + * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 + * - N0 = 4, 8, 16 + * - K0 = 4, 8, 16 + * - H0 >= 1 + * + * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively. + * The activation function is performed after the bias addition + * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D + * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix + * + * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32 + * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes) + * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes) + * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix + * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr + * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr + * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes) + * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes) + * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes) + * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes) + * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0) + + const uint LEFTOVER_K = K % K0; + + // Block size +#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X (PIXEL_UNIT * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X PIXEL_UNIT +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = get_global_id(2); +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT; + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs); + + // Load values from RHS matrix stored in a cl_image + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); + LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); + + // Accumulate + ARM_DOT_K0XN0(K0, a0, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7, b, c7); +#endif // M0 > 7 + + lhs_offset += K0 * sizeof(DATA_TYPE); + x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP; + } + + if(LEFTOVER_K != 0) + { + // Note: We cannot read out-of-bound elements from the RHS matrix because + // the RHS width is always multiple of K0. This is not be true for the LHS matrix + // Left-over accumulations for LHS matrix + + union UNION_VEC_TYPE + { + DATA_TYPE s[K0]; + VEC_DATA_TYPE(DATA_TYPE, K0) + v; + }; + + union UNION_VEC_TYPE a0 = {.v = 0 }; +#if M0 > 1 + union UNION_VEC_TYPE a1 = {.v = 0 }; +#endif // M0 > 1 +#if M0 > 2 + union UNION_VEC_TYPE a2 = {.v = 0 }; +#endif // M0 > 2 +#if M0 > 3 + union UNION_VEC_TYPE a3 = {.v = 0 }; +#endif // M0 > 3 +#if M0 > 4 + union UNION_VEC_TYPE a4 = {.v = 0 }; +#endif // M0 > 4 +#if M0 > 5 + union UNION_VEC_TYPE a5 = {.v = 0 }; +#endif // M0 > 5 +#if M0 > 6 + union UNION_VEC_TYPE a6 = {.v = 0 }; +#endif // M0 > 6 +#if M0 > 7 + union UNION_VEC_TYPE a7 = {.v = 0 }; +#endif // M0 > 7 + + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0); + + // Load from RHS matrix + LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0); + + // Load from LHS matrix + for(int k = 0; k < LEFTOVER_K; ++k) + { + a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0); +#if M0 > 1 + a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1); +#endif // M0 > 1 +#if M0 > 2 + a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2); +#endif // M0 > 2 +#if M0 > 3 + a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3); +#endif // M0 > 3 +#if M0 > 4 + a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4); +#endif // M0 > 4 +#if M0 > 5 + a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5); +#endif // M0 > 5 +#if M0 > 6 + a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6); +#endif // M0 > 6 +#if M0 > 7 + a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7); +#endif // M0 > 7 + + lhs_offset += sizeof(DATA_TYPE); + } + + // Accumulate + ARM_DOT_K0XN0(K0, a0.v, b, c0); +#if M0 > 1 + ARM_DOT_K0XN0(K0, a1.v, b, c1); +#endif // M0 > 1 +#if M0 > 2 + ARM_DOT_K0XN0(K0, a2.v, b, c2); +#endif // M0 > 2 +#if M0 > 3 + ARM_DOT_K0XN0(K0, a3.v, b, c3); +#endif // M0 > 3 +#if M0 > 4 + ARM_DOT_K0XN0(K0, a4.v, b, c4); +#endif // M0 > 4 +#if M0 > 5 + ARM_DOT_K0XN0(K0, a5.v, b, c5); +#endif // M0 > 5 +#if M0 > 6 + ARM_DOT_K0XN0(K0, a6.v, b, c6); +#endif // M0 > 6 +#if M0 > 7 + ARM_DOT_K0XN0(K0, a7.v, b, c7); +#endif // M0 > 7 + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + +#if defined(ACTIVATION_TYPE) + ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); +#endif // defined(ACTIVATION_TYPE) + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +#undef PIXEL_UNIT +} +#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE) + +#define VFMA(a, b, c) \ + ({ \ + c = fma(a, b, c); \ + }) + +#if M0 == 1 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + }) +#elif M0 == 2 // M0 == 2 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + }) +#elif M0 == 3 // M0 == 3 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + }) +#elif M0 == 4 // M0 == 4 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + }) +#elif M0 == 5 // M0 == 5 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + }) +#elif M0 == 6 // M0 == 6 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + }) +#elif M0 == 7 // M0 == 7 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \ + }) +#elif M0 == 8 // M0 == 8 +#define VFMA_M0xN0(i, a, b, c) \ + ({ \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \ + VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \ + }) +#else // M0 not supported +#error "M0 not supported" +#endif // M0 not supported + +#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices. + * The LHS matrix is NOT reshaped + * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl + * + * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. + * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters. + * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). + * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) + * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. + * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) + * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) + * @note Only the following configurations of M0, N0 and K0 are currently supported: + * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 + * - N0 = 2, 3, 4, 8, 16 + * - K0 = 2, 3, 4, 8, 16 + * - H0 >= 1 + * + * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively. + * The activation function is performed after the bias addition + * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D + * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix + * + * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F16/F32 + * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes) + * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes) + * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix + * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p lhs_ptr + * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes) + * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes) + * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix + * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr + * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes) + * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes) + * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes) + * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes) + * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), + IMAGE_DECLARATION(rhs), +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Block size +#define RHS_BLOCK_SIZE ((K0) * (N0)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (N0) +#define RHS_STEP_X ((N0) * (H0)) +#define RHS_STEP_LOOP (1) +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (N0) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + + // Compute RHS reshaped matrix address + uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + rhs_offset += (z % MATRIX_B_DEPTH) * rhs_stride_z; +#else // defined(MATRIX_B_DEPTH) + rhs_offset += z * rhs_stride_z; +#endif // defined(MATRIX_B_DEPTH) + + REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); //uint zin0=0,zin1=0,zin2=0,... zin7=0; + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); //uint zero0=0,zero1=0,zero2=0,... zero7=0; + +#if defined(REINTERPRET_INPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) c0=0,c1=0,c2=0,... c(N0-1)=0; + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Supported cases (M0, K0): + // 1,2 - 1,3 - 1,4 - 1,8 - 1,16 + // 2,2 - 2,3 - 2,4 - 2,8 - 2,16 + // 3,2 - 3,3 - 3,4 - 3,8 - 3,16 + // 4,2 - 4,3 - 4,4 - 4,8 - 4,16 + // 5,2 - 5,3 - 5,4 - 5,8 - 5,16 + // 6,2 - 6,3 - 6,4 - 6,8 - 6,16 + // 7,2 - 7,3 - 7,4 - 7,8 - 7,16 + // 8,2 - 8,3 - 8,4 - 8,8 - 8,16 + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin); + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(0, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(1, a, b0, c); +#if K0 > 2 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(2, a, b0, c); +#endif // K0 > 2 +#if K0 > 3 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(3, a, b0, c); +#endif // K0 > 3 +#if K0 > 4 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(4, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(5, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(6, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(7, a, b0, c); +#endif // K0 > 4 +#if K0 > 8 + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(8, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(9, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(A, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(B, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(C, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(D, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(E, a, b0, c); + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(F, a, b0, c); +#endif // K0 > 8 + + lhs_offset += K0 * sizeof(DATA_TYPE); + rhs_offset += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE); + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + VEC_DATA_TYPE(DATA_TYPE, 2) + a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0)); +#if M0 > 1 + VEC_DATA_TYPE(DATA_TYPE, 2) + a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1)); +#endif // M0 > 1 +#if M0 > 2 + VEC_DATA_TYPE(DATA_TYPE, 2) + a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2)); +#endif // M0 > 2 +#if M0 > 3 + VEC_DATA_TYPE(DATA_TYPE, 2) + a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3)); +#endif // M0 > 3 +#if M0 > 4 + VEC_DATA_TYPE(DATA_TYPE, 2) + a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4)); +#endif // M0 > 4 +#if M0 > 5 + VEC_DATA_TYPE(DATA_TYPE, 2) + a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5)); +#endif // M0 > 5 +#if M0 > 6 + VEC_DATA_TYPE(DATA_TYPE, 2) + a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6)); +#endif // M0 > 6 +#if M0 > 7 + VEC_DATA_TYPE(DATA_TYPE, 2) + a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7)); +#endif // M0 > 7 + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE))); + VFMA_M0xN0(0, a, b0, c); + + lhs_offset += sizeof(DATA_TYPE); + rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE); + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + +#if defined(ACTIVATION_TYPE) + ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); +#endif // defined(ACTIVATION_TYPE) + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +} +#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT) + +#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE) +/** This OpenCL kernel computes the matrix multiplication between 2 matrices. + * The LHS matrix is NOT reshaped + * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed + * @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl + * + * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel + * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. + * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters. + * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT= (e.g. -DRHS_HEIGHT=32) + * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT + * could be different from the value returned by get_image_height(rhs_img). + * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). + * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) + * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. + * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) + * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) + * @note Only the following configurations of M0, N0 and K0 are currently supported: + * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 + * - N0 = 4, 8, 16 + * - K0 = 4, 8, 16 + * - H0 >= 1 + * + * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively. + * The activation function is performed after the bias addition + * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D + * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix + * + * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32 + * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes) + * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes) + * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix + * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr + * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr + * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes) + * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes) + * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix + * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes) + * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes) + * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D) + * @param[in] M Number of rows in LHS matrix not reshaped. + * @param[in] N Number of columns in RHS matrix not reshaped. + * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped. + */ +__kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), + __read_only image2d_t rhs_img, +#if defined(BETA) + IMAGE_DECLARATION(bias), +#endif // defined(BETA) + IMAGE_DECLARATION(dst), + uint lhs_stride_z, + uint rhs_stride_z, +#if defined(BETA) + uint bias_stride_z, +#endif //defined(BETA) + uint dst_stride_z +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint lhs_cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D +#if defined(REINTERPRET_OUTPUT_AS_3D) + , + uint dst_cross_plane_pad +#endif // REINTERPRET_OUTPUT_AS_3D + , + const int M, + const int N, + const int K) +{ + // Pixel unit +#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0) + + // Block size +#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT)) + + // RHS offset and step X +#if defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (PIXEL_UNIT) +#define RHS_STEP_X ((PIXEL_UNIT) * (H0)) +#define RHS_STEP_LOOP 1 +#else // defined(RHS_INTERLEAVE) +#define RHS_OFFSET_X (RHS_BLOCK_SIZE) +#define RHS_STEP_X (PIXEL_UNIT) +#define RHS_STEP_LOOP (H0) +#endif // defined(RHS_INTERLEAVE) + + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + +#if defined(DUMMY_WORK_ITEMS) + if((x * N0 >= N) || (y * M0 >= M)) + { + return; + } +#endif // defined(DUMMY_WORK_ITEMS) + + // Compute LHS matrix address + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + +#if defined(MATRIX_B_DEPTH) + // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 + const uint z_rhs = (z % MATRIX_B_DEPTH); +#else // defined(MATRIX_B_DEPTH) + const uint z_rhs = z; +#endif // defined(MATRIX_B_DEPTH) + + // Compute RHS matrix coordinates + uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X; + const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT; + + REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0); + REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply lhs_stride_z by DEPTH_GEMM3D + lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + lhs_offset += z * lhs_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Initialize the accumulators + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0); + + int i = 0; + for(; i <= (K - K0); i += K0) + { + // Load values from LHS matrix + LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin); + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(0, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(1, a, b0, c); +#if K0 > 2 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(2, a, b0, c); +#endif // K0 > 2 +#if K0 > 3 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(3, a, b0, c); +#endif // K0 > 3 +#if K0 > 4 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(4, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(5, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(6, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(7, a, b0, c); +#endif // K0 > 4 +#if K0 > 8 + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(8, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(9, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(A, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(B, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(C, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(D, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(E, a, b0, c); + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs)); + VFMA_M0xN0(F, a, b0, c); +#endif // K0 > 8 + + lhs_offset += K0 * sizeof(DATA_TYPE); + x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP; + } + + // Left-over accumulations + for(; i < K; ++i) + { + // Load values from LHS matrix + VEC_DATA_TYPE(DATA_TYPE, 2) + a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0)); +#if M0 > 1 + VEC_DATA_TYPE(DATA_TYPE, 2) + a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1)); +#endif // M0 > 1 +#if M0 > 2 + VEC_DATA_TYPE(DATA_TYPE, 2) + a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2)); +#endif // M0 > 2 +#if M0 > 3 + VEC_DATA_TYPE(DATA_TYPE, 2) + a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3)); +#endif // M0 > 3 +#if M0 > 4 + VEC_DATA_TYPE(DATA_TYPE, 2) + a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4)); +#endif // M0 > 4 +#if M0 > 5 + VEC_DATA_TYPE(DATA_TYPE, 2) + a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5)); +#endif // M0 > 5 +#if M0 > 6 + VEC_DATA_TYPE(DATA_TYPE, 2) + a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6)); +#endif // M0 > 6 +#if M0 > 7 + VEC_DATA_TYPE(DATA_TYPE, 2) + a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7)); +#endif // M0 > 7 + + VEC_DATA_TYPE(DATA_TYPE, N0) + b0; + b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs)); + + VFMA_M0xN0(0, a, b0, c); + + lhs_offset += sizeof(DATA_TYPE); + x_rhs += RHS_STEP_X; + } + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + + REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + +#if defined(REINTERPRET_OUTPUT_AS_3D) + // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply dst_stride_z by DEPTH_GEMM3D + dst_addr += z * dst_stride_z * DEPTH_GEMM3D; + +#else // defined(REINTERPRET_OUTPUT_AS_3D) + + // Add offset for batched GEMM + dst_addr += z * dst_stride_z; + +#endif // defined(REINTERPRET_OUTPUT_AS_3D) + + // Multiply by the weight of matrix-matrix product and store the result +#if defined(ALPHA) + SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA); +#endif // defined(ALPHA) + + // Add beta*bias +#if defined(BETA) +#if defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); + + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(1, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias[broadcasted] + ADD_BLOCK_BROADCAST(M0, c, bias0); + +#else // defined(BROADCAST_BIAS) + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#ifndef UNIT_BETA + SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); +#endif // UNIT_BIAS + + // c = c + bias + ADD_BLOCK(M0, c, bias); + +#endif // defined(BROADCAST_BIAS) +#endif // defined(BETA) + +#if defined(ACTIVATION_TYPE) + ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); +#endif // defined(ACTIVATION_TYPE) + + // Store output block + STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + +#undef RHS_BLOCK_SIZE +#undef RHS_OFFSET_X +#undef RHS_STEP_X +#undef RHS_STEP_LOOP +} +#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE) +#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) + #if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) #if defined(MIXED_PRECISION) diff --git a/src/core/CL/cl_kernels/common/gemm_reshaped_rhs_only.cl b/src/core/CL/cl_kernels/common/gemm_reshaped_rhs_only.cl deleted file mode 100644 index 1d6560a1c2..0000000000 --- a/src/core/CL/cl_kernels/common/gemm_reshaped_rhs_only.cl +++ /dev/null @@ -1,953 +0,0 @@ -/* - * Copyright (c) 2022 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#include "activation_float_helpers.h" -#include "helpers.h" -#include "tile_helpers.h" - -// *INDENT-OFF* -// clang-format off -#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T) -//! @cond Doxygen_Suppress -/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: - * Post op 1: activation (optional) - * Post op 2: elementwise op - * Post op 3: activation (optional) - * - * The LHS matrix is NOT reshaped - * The RHS is reshaped with @ref ClGemmMatrixMultiplyReshapedOnlyRhsKernel and the block K0xN0 is transposed - * - * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. - * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). - * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) - * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) - * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. - * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) - * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) - * @note Only the following configurations of M0, N0 and K0 are currently supported: - * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 - * - N0 = 2, 3, 4, 8, 16 - * - K0 = 2, 3, 4, 8, 16 - * - H0 >= 1 - * - * @note In case of post ops, the following information must be passed at compile time: - * @note -DPOST_OP1, -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 1 - * @note -DPOST_OP2: The arithmetic addition post op to perform at slot 2 - * @note -DPOST_OP3, -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 - * - * @param[in] lhs_ptr Pointer to the LHS tensor. Supported data types: F16/F32 - * @param[in] lhs_stride_y Stride of the LHS tensor in Y dimension (in bytes) - * @param[in] lhs_stride_z Stride of the LHS tensor in Z dimension (in bytes) - * @param[in] lhs_w The size of the width dimension of the LHS tensor - * @param[in] lhs_h The size of the height dimension of the LHS tensor - * @param[in] lhs_n The size of the depth dimension of the LHS tensor - * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS tensor - * @param[in] rhs_ptr Pointer to the RHS reshaped tensor. Supported data type: same as @p lhs_ptr - * @param[in] rhs_stride_y Stride of the RHS tensor in Y dimension (in bytes) - * @param[in] rhs_stride_z Stride of the RHS tensor in Z dimension (in bytes) - * @param[in] rhs_w The size of the width dimension of the RHS tensor - * @param[in] rhs_h The size of the height dimension of the RHS tensor - * @param[in] rhs_n The size of the depth dimension of the RHS tensor - * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS tensor - * @param[in] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: same as @p lhs_ptr - * @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes) - * @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes) - * @param[in] bia_w (Optional) The size of the width dimension of the bias tensor - * @param[in] bia_h (Optional) The size of the height dimension of the bias tensor - * @param[in] bia_n (Optional) The size of the depth dimension of the bias tensor - * @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor - * @param[in] ex0_ptr (Optional) Pointer to the tensor added with POST_OP2. Supported data type: same as @p lhs_ptr - * @param[in] ex0_stride_y (Optional) Stride of the tensor added with POST_OP2 in Y dimension (in bytes) - * @param[in] ex0_stride_z (Optional) Stride of the tensor added with POST_OP2 in Z dimension (in bytes) - * @param[in] ex0_w (Optional) The size of the width dimension of the tensor added with POST_OP2 - * @param[in] ex0_h (Optional) The size of the height dimension of the tensor added with POST_OP2 - * @param[in] ex0_n (Optional) The size of the depth dimension of the tensor added with POST_OP2 - * @param[in] ex0_offset_first_element_in_bytes (Optional) The offset of the first element in the tensor added with POST_OP2 - * @param[out] dst_ptr (Optional) Pointer to the destination tensor. Supported data type: same as @p lhs_ptr - * @param[in] dst_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes) - * @param[in] dst_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_w (Optional) The size of the width dimension of the destination tensor - * @param[in] dst_h (Optional) The size of the height dimension of the destination tensor - * @param[in] dst_n (Optional) The size of the depth dimension of the destination tensor - * @param[in] dst_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor - * @param[in] M Number of rows in LHS matrix not reshaped - * @param[in] N Number of columns in RHS matrix not reshaped - * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped - */ -//! @endcond -__kernel void gemm_mm_reshaped_only_rhs_t( - TENSOR3D_T(lhs, BUFFER), - TENSOR3D_T(rhs, BUFFER), -#if defined(BETA) - TENSOR3D_T(bia, BUFFER), -#endif // defined(BETA) -#if defined(POST_OP2) - TENSOR3D_T(ex0, BUFFER), -#endif // defined(POST_OP_ADD) - TENSOR3D_T(dst, BUFFER), - const int M, - const int N, - const int K -) -{ - // Block size -#define RHS_BLOCK_SIZE ((K0) * (N0)) - - // RHS offset and step X -#if defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (K0) -#define RHS_STEP_X ((K0) * (H0)) -#define RHS_STEP_LOOP (1) -#else // defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (RHS_BLOCK_SIZE) -#define RHS_STEP_X (K0) -#define RHS_STEP_LOOP (H0) -#endif // defined(RHS_INTERLEAVE) - - const uint x = GET_SPATIAL_IDX(0, N0, 0); - const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0); - const uint z = GET_SPATIAL_IDX(2, 1, 0); - -#if defined(DUMMY_WORK_ITEMS) - if((x >= N) || (y >= M)) - { - return; - } -#endif // defined(DUMMY_WORK_ITEMS) - - bool x_cond = PARTIAL_STORE_N0 != 0 && ((x + N0) > N); - bool y_cond = PARTIAL_STORE_M0 != 0 && y == 0; - - TILE(uint, M0, 1, dst_indirect_y); - INITIALIZE_INDIRECT_Y(M0, PARTIAL_STORE_M0, y_cond, dst_indirect_y); - - const uint x_rhs = x / N0; - - lhs_offset_first_element_in_bytes += y * (uint)lhs_stride_y + z * (uint)lhs_stride_y * M; - rhs_offset_first_element_in_bytes += (x_rhs % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x_rhs / (uint)H0) * rhs_stride_y; - -#if defined(MATRIX_B_DEPTH) - // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 - rhs_offset_first_element_in_bytes += (z % MATRIX_B_DEPTH) * rhs_stride_z; -#else // defined(MATRIX_B_DEPTH) - rhs_offset_first_element_in_bytes += z * rhs_stride_z; -#endif // defined(MATRIX_B_DEPTH) - - // Initialize the accumulators - TILE(DATA_TYPE, M0, N0, c); - - LOOP_UNROLLING(int, i, 0, 1, M0, - { - c[i].v = 0; - }) - - int i = 0; - for(; i <= (K - K0); i+=K0) - { - TILE(DATA_TYPE, M0, K0, a); - TILE(DATA_TYPE, N0, K0, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD(DATA_TYPE, N0, K0, BUFFER, rhs, 0, 0, 1, RHS_STEP_X * sizeof(DATA_TYPE), b); - - // Compute the matrix multiplication between the two tiles - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, T, a, b, c); - - lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE); - rhs_offset_first_element_in_bytes += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE); - } -#if defined(RUN_LEFTOVER_K0) - for(; i < K; ++i) - { - TILE(DATA_TYPE, M0, 1, a); - TILE(DATA_TYPE, N0, 1, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD(DATA_TYPE, N0, 1, BUFFER, rhs, 0, 0, 1, RHS_STEP_X * sizeof(DATA_TYPE), b); - - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, T, a, b, c); - - lhs_offset_first_element_in_bytes += sizeof(DATA_TYPE); - rhs_offset_first_element_in_bytes += sizeof(DATA_TYPE); - } -#endif // defined(RUN_LEFTOVER_K0) - - // Multiply by the weight of matrix-matrix product and store the result -#if defined(ALPHA) - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, c, (DATA_TYPE)ALPHA, c); -#endif // defined(ALPHA) - - // Add beta*bias -#if defined(BETA) -#if defined(BROADCAST_BIAS) - TILE(DATA_TYPE, 1, N0, bias0); - - T_LOAD_WIDTH_SELECT(DATA_TYPE, 1, N0, PARTIAL_STORE_N0, BUFFER, bia, x, 0, 0, x_cond, bias0); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, 1, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias[broadcasted] - T_ADD_BROADCAST_X(DATA_TYPE, M0, N0, c, bias0, c); -#else // defined(BROADCAST_BIAS) - TILE(DATA_TYPE, M0, N0, bias0); - - bia_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * bia_stride_y) + (z * bia_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, bia, 0, bia_stride_y, x_cond, bias0, dst_indirect_y); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias - T_ADD(DATA_TYPE, M0, N0, c, bias0, c); - // c = c + bias -#endif // defined(BROADCAST_BIAS) -#endif // defined(BETA) - -#if defined(POST_OP1) - T_ACTIVATION(DATA_TYPE, M0, N0, P1_ACTIVATION_TYPE, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP1) - -#if defined(POST_OP2) - TILE(DATA_TYPE, M0, N0, extra0); - - ex0_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * ex0_stride_y) + (z * ex0_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, ex0, 0, ex0_stride_y, x_cond, extra0, dst_indirect_y); - - T_ADD(DATA_TYPE, M0, N0, c, extra0, c); -#endif // defined(POST_OP2) - -#if defined(POST_OP3) - T_ACTIVATION(DATA_TYPE, M0, N0, P3_ACTIVATION_TYPE, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP3) - - dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * dst_stride_y) + (z * dst_stride_y * M); - - // Store the tile in reverse order so that the invalid values are overwritten with the valid ones - T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, c, dst_indirect_y); - -#undef RHS_BLOCK_SIZE -#undef RHS_OFFSET_X -#undef RHS_STEP_X -} -#endif // defined(GEMM_RESHAPED_RHS_ONLY_T) - -#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE) -//! @cond Doxygen_Suppress -/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: - * Post op 1: activation (optional) - * Post op 2: elementwise op - * Post op 3: activation (optional) - * - * The LHS matrix is NOT reshaped - * The RHS is reshaped with @ref ClGemmMatrixMultiplyReshapedOnlyRhsKernel and the block K0xN0 is transposed - * - * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. - * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). - * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) - * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) - * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. - * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) - * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) - * @note Only the following configurations of M0, N0 and K0 are currently supported: - * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 - * - N0 = 2, 3, 4, 8, 16 - * - K0 = 2, 3, 4, 8, 16 - * - H0 >= 1 - * - * @note In case of post ops, the following information must be passed at compile time: - * @note -DPOST_OP1, -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 1 - * @note -DPOST_OP2: The arithmetic addition post op to perform at slot 2 - * @note -DPOST_OP3, -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 - * - * @param[in] lhs_ptr Pointer to the LHS tensor. Supported data types: F16/F32 - * @param[in] lhs_stride_y Stride of the LHS tensor in Y dimension (in bytes) - * @param[in] lhs_stride_z Stride of the LHS tensor in Z dimension (in bytes) - * @param[in] lhs_w The size of the width dimension of the LHS tensor - * @param[in] lhs_h The size of the height dimension of the LHS tensor - * @param[in] lhs_n The size of the depth dimension of the LHS tensor - * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS tensor - * @param[in] rhs_ptr Pointer to the RHS reshaped tensor. Supported data type: same as @p lhs_ptr - * @param[in] rhs_stride_y Stride of the RHS tensor in Y dimension (in bytes) - * @param[in] rhs_stride_z Stride of the RHS tensor in Z dimension (in bytes) - * @param[in] rhs_w The size of the width dimension of the RHS tensor - * @param[in] rhs_h The size of the height dimension of the RHS tensor - * @param[in] rhs_n The size of the depth dimension of the RHS tensor - * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS tensor - * @param[in] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: same as @p lhs_ptr - * @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes) - * @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes) - * @param[in] bia_w (Optional) The size of the width dimension of the bias tensor - * @param[in] bia_h (Optional) The size of the height dimension of the bias tensor - * @param[in] bia_n (Optional) The size of the depth dimension of the bias tensor - * @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor - * @param[in] ex0_ptr (Optional) Pointer to the tensor added with POST_OP2. Supported data type: same as @p lhs_ptr - * @param[in] ex0_stride_y (Optional) Stride of the tensor added with POST_OP2 in Y dimension (in bytes) - * @param[in] ex0_stride_z (Optional) Stride of the tensor added with POST_OP2 in Z dimension (in bytes) - * @param[in] ex0_w (Optional) The size of the width dimension of the tensor added with POST_OP2 - * @param[in] ex0_h (Optional) The size of the height dimension of the tensor added with POST_OP2 - * @param[in] ex0_n (Optional) The size of the depth dimension of the tensor added with POST_OP2 - * @param[in] ex0_offset_first_element_in_bytes (Optional) The offset of the first element in the tensor added with POST_OP2 - * @param[out] dst_ptr (Optional) Pointer to the destination tensor. Supported data type: same as @p lhs_ptr - * @param[in] dst_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes) - * @param[in] dst_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_w (Optional) The size of the width dimension of the destination tensor - * @param[in] dst_h (Optional) The size of the height dimension of the destination tensor - * @param[in] dst_n (Optional) The size of the depth dimension of the destination tensor - * @param[in] dst_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor - * @param[in] M Number of rows in LHS matrix not reshaped - * @param[in] N Number of columns in RHS matrix not reshaped - * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped - */ -//! @endcond -__kernel void gemm_mm_reshaped_only_rhs_t_texture( - TENSOR3D_T(lhs, BUFFER), - TENSOR3D_T(rhs, IMAGE), -#if defined(BETA) - TENSOR3D_T(bia, BUFFER), -#endif // defined(BETA) -#if defined(POST_OP2) - TENSOR3D_T(ex0, BUFFER), -#endif // defined(POST_OP_ADD) - TENSOR3D_T(dst, BUFFER), - const int M, - const int N, - const int K -) -{ - // Block size -#define RHS_BLOCK_SIZE (K0 * (N0)) - - // RHS offset and step X -#if defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (K0) -#define RHS_STEP_X (K0 * (H0)) -#define RHS_STEP_LOOP (1) -#else // defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (RHS_BLOCK_SIZE) -#define RHS_STEP_X K0 -#define RHS_STEP_LOOP (H0) -#endif // defined(RHS_INTERLEAVE) - - const uint x = GET_SPATIAL_IDX(0, N0, 0); - const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0); - const uint z = GET_SPATIAL_IDX(2, 1, 0); - -#if defined(DUMMY_WORK_ITEMS) - if((x >= N) || (y >= M)) - { - return; - } -#endif // defined(DUMMY_WORK_ITEMS) - - bool x_cond = PARTIAL_STORE_N0 != 0 && ((x + N0) > N); - bool y_cond = PARTIAL_STORE_M0 != 0 && y == 0; - - TILE(uint, M0, 1, dst_indirect_y); - INITIALIZE_INDIRECT_Y(M0, PARTIAL_STORE_M0, y_cond, dst_indirect_y); - - lhs_offset_first_element_in_bytes += y * (uint)lhs_stride_y + z * lhs_stride_y * M; - -#if defined(MATRIX_B_DEPTH) - // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 - const uint z_rhs = z % MATRIX_B_DEPTH; -#else // defined(MATRIX_B_DEPTH) - const uint z_rhs = z; -#endif // defined(MATRIX_B_DEPTH) - - uint x_rhs = ((x / N0) % H0) * (uint)RHS_OFFSET_X; - const uint y_rhs = ((x / N0) / H0) + z_rhs * rhs_h; - - // Initialize the accumulators - TILE(DATA_TYPE, M0, N0, c); - - LOOP_UNROLLING(int, i, 0, 1, M0, - { - c[i].v = 0; - }) - - TILE(DATA_TYPE, M0, K0, a); - TILE(DATA_TYPE, N0, K0, b); - - int i = 0; - for(; i <= (K - K0); i+=K0) - { - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD_DILATED(DATA_TYPE, N0, K0, IMAGE, rhs, x_rhs, y_rhs, RHS_STEP_X, 0, 1, b); - - // Compute the matrix multiplication between the two tiles - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, T, a, b, c); - - lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE); - x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP; - } -#if defined(RUN_LEFTOVER_K0) - T_LOAD_DILATED(DATA_TYPE, N0, K0, IMAGE, rhs, x_rhs, y_rhs, RHS_STEP_X, 0, 1, b); - - LOOP_UNROLLING(int, k0, 0, 1, PARTIAL_K, - { - LOOP_UNROLLING(int, m0, 0, 1, M0, - { - DATA_TYPE a0 = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset_first_element_in_bytes + m0 * lhs_stride_y); - LOOP_UNROLLING(int, n0, 0, 1, N0, - { - c[m0].s[n0] += a0 * b[n0].s[k0]; - }) - }) - lhs_offset_first_element_in_bytes += sizeof(DATA_TYPE); - }) -#endif // defined(RUN_LEFTOVER_K0) - - // Multiply by the weight of matrix-matrix product and store the result -#if defined(ALPHA) - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, c, (DATA_TYPE)ALPHA, c); -#endif // defined(ALPHA) - - // Add beta*bias -#if defined(BETA) -#if defined(BROADCAST_BIAS) - TILE(DATA_TYPE, 1, N0, bias0); - - T_LOAD_WIDTH_SELECT(DATA_TYPE, 1, N0, PARTIAL_STORE_N0, BUFFER, bia, x, 0, 0, x_cond, bias0); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, 1, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias[broadcasted] - T_ADD_BROADCAST_X(DATA_TYPE, M0, N0, c, bias0, c); -#else // defined(BROADCAST_BIAS) - TILE(DATA_TYPE, M0, N0, bias0); - - bia_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * bia_stride_y) + (z * bia_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, bia, 0, bia_stride_y, x_cond, bias0, dst_indirect_y); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias - T_ADD(DATA_TYPE, M0, N0, c, bias0, c); - // c = c + bias -#endif // defined(BROADCAST_BIAS) -#endif // defined(BETA) - -#if defined(POST_OP1) - T_ACTIVATION(DATA_TYPE, M0, N0, P1_ACTIVATION_TYPE, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP1) - -#if defined(POST_OP2) - TILE(DATA_TYPE, M0, N0, extra0); - - ex0_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * ex0_stride_y) + (z * ex0_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, ex0, 0, ex0_stride_y, x_cond, extra0, dst_indirect_y); - - T_ADD(DATA_TYPE, M0, N0, c, extra0, c); -#endif // defined(POST_OP2) - -#if defined(POST_OP3) - T_ACTIVATION(DATA_TYPE, M0, N0, P3_ACTIVATION_TYPE, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP3) - - dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_y * M; - - // Store the tile in reverse order so that the invalid values are overwritten with the valid ones - T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, c, dst_indirect_y); - -#undef RHS_BLOCK_SIZE -#undef RHS_OFFSET_X -#undef RHS_STEP_X -} -#endif // defined(GEMM_RESHAPED_RHS_ONLY_T_TEXTURE) - -#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT) -//! @cond Doxygen_Suppress -/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: - * Post op 1: activation (optional) - * Post op 2: elementwise op - * Post op 3: activation (optional) - * - * The LHS matrix is NOT reshaped - * The RHS is reshaped with @ref ClGemmMatrixMultiplyReshapedOnlyRhsKernel and the block K0xN0 is not transposed - * - * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. - * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). - * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) - * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) - * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. - * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) - * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) - * @note Only the following configurations of M0, N0 and K0 are currently supported: - * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 - * - N0 = 2, 3, 4, 8, 16 - * - K0 = 2, 3, 4, 8, 16 - * - H0 >= 1 - * - * @note In case of post ops, the following information must be passed at compile time: - * @note -DPOST_OP1, -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 1 - * @note -DPOST_OP2: The arithmetic addition post op to perform at slot 2 - * @note -DPOST_OP3, -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 - * - * @param[in] lhs_ptr Pointer to the LHS tensor. Supported data types: F16/F32 - * @param[in] lhs_stride_y Stride of the LHS tensor in Y dimension (in bytes) - * @param[in] lhs_stride_z Stride of the LHS tensor in Z dimension (in bytes) - * @param[in] lhs_w The size of the width dimension of the LHS tensor - * @param[in] lhs_h The size of the height dimension of the LHS tensor - * @param[in] lhs_n The size of the depth dimension of the LHS tensor - * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS tensor - * @param[in] rhs_ptr Pointer to the RHS reshaped tensor. Supported data type: same as @p lhs_ptr - * @param[in] rhs_stride_y Stride of the RHS tensor in Y dimension (in bytes) - * @param[in] rhs_stride_z Stride of the RHS tensor in Z dimension (in bytes) - * @param[in] rhs_w The size of the width dimension of the RHS tensor - * @param[in] rhs_h The size of the height dimension of the RHS tensor - * @param[in] rhs_n The size of the depth dimension of the RHS tensor - * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS tensor - * @param[in] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: same as @p lhs_ptr - * @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes) - * @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes) - * @param[in] bia_w (Optional) The size of the width dimension of the bias tensor - * @param[in] bia_h (Optional) The size of the height dimension of the bias tensor - * @param[in] bia_n (Optional) The size of the depth dimension of the bias tensor - * @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor - * @param[in] ex0_ptr (Optional) Pointer to the tensor added with POST_OP2. Supported data type: same as @p lhs_ptr - * @param[in] ex0_stride_y (Optional) Stride of the tensor added with POST_OP2 in Y dimension (in bytes) - * @param[in] ex0_stride_z (Optional) Stride of the tensor added with POST_OP2 in Z dimension (in bytes) - * @param[in] ex0_w (Optional) The size of the width dimension of the tensor added with POST_OP2 - * @param[in] ex0_h (Optional) The size of the height dimension of the tensor added with POST_OP2 - * @param[in] ex0_n (Optional) The size of the depth dimension of the tensor added with POST_OP2 - * @param[in] ex0_offset_first_element_in_bytes (Optional) The offset of the first element in the tensor added with POST_OP2 - * @param[out] dst_ptr (Optional) Pointer to the destination tensor. Supported data type: same as @p lhs_ptr - * @param[in] dst_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes) - * @param[in] dst_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_w (Optional) The size of the width dimension of the destination tensor - * @param[in] dst_h (Optional) The size of the height dimension of the destination tensor - * @param[in] dst_n (Optional) The size of the depth dimension of the destination tensor - * @param[in] dst_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor - * @param[in] M Number of rows in LHS matrix not reshaped - * @param[in] N Number of columns in RHS matrix not reshaped - * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped - */ -//! @endcond -__kernel void gemm_mm_reshaped_only_rhs_nt( - TENSOR3D_T(lhs, BUFFER), - TENSOR3D_T(rhs, BUFFER), -#if defined(BETA) - TENSOR3D_T(bia, BUFFER), -#endif // defined(BETA) -#if defined(POST_OP2) - TENSOR3D_T(ex0, BUFFER), -#endif // defined(POST_OP_ADD) - TENSOR3D_T(dst, BUFFER), - const int M, - const int N, - const int K -) -{ - // Block size -#define RHS_BLOCK_SIZE ((K0) * (N0)) - - // RHS offset and step X -#if defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (N0) -#define RHS_STEP_X ((N0) * (H0)) -#define RHS_STEP_LOOP (1) -#else // defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (RHS_BLOCK_SIZE) -#define RHS_STEP_X (N0) -#define RHS_STEP_LOOP (H0) -#endif // defined(RHS_INTERLEAVE) - - const uint x = GET_SPATIAL_IDX(0, N0, 0); - const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0); - const uint z = GET_SPATIAL_IDX(2, 1, 0); - -#if defined(DUMMY_WORK_ITEMS) - if((x >= N) || (y >= M)) - { - return; - } -#endif // defined(DUMMY_WORK_ITEMS) - - bool x_cond = PARTIAL_STORE_N0 != 0 && ((x + N0) > N); - bool y_cond = PARTIAL_STORE_M0 != 0 && y == 0; - - TILE(uint, M0, 1, dst_indirect_y); - INITIALIZE_INDIRECT_Y(M0, PARTIAL_STORE_M0, y_cond, dst_indirect_y); - - const uint x_rhs = x / N0; - - lhs_offset_first_element_in_bytes += y * (uint)lhs_stride_y + z * lhs_stride_y * M; - rhs_offset_first_element_in_bytes += (x_rhs % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x_rhs / (uint)H0) * rhs_stride_y; - -#if defined(MATRIX_B_DEPTH) - // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 - rhs_offset_first_element_in_bytes += (z % MATRIX_B_DEPTH) * rhs_stride_z; -#else // defined(MATRIX_B_DEPTH) - rhs_offset_first_element_in_bytes += z * rhs_stride_z; -#endif // defined(MATRIX_B_DEPTH) - - // Initialize the accumulators - TILE(DATA_TYPE, M0, N0, c); - - LOOP_UNROLLING(int, i, 0, 1, M0, - { - c[i].v = 0; - }) - - int i = 0; - for(; i <= (K - K0); i+=K0) - { - TILE(DATA_TYPE, M0, K0, a); - TILE(DATA_TYPE, K0, N0, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD(DATA_TYPE, K0, N0, BUFFER, rhs, 0, 0, 1, RHS_STEP_X * sizeof(DATA_TYPE), b); - - // Compute the matrix multiplication between the two tiles - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, NT, a, b, c); - - lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE); - rhs_offset_first_element_in_bytes += K0 * RHS_STEP_X * RHS_STEP_LOOP * sizeof(DATA_TYPE); - } -#if defined(RUN_LEFTOVER_K0) - for(; i < K; ++i) - { - TILE(DATA_TYPE, M0, 1, a); - TILE(DATA_TYPE, 1, N0, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD(DATA_TYPE, 1, N0, BUFFER, rhs, 0, 0, 1, RHS_STEP_X * sizeof(DATA_TYPE), b); - - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, NT, a, b, c); - - lhs_offset_first_element_in_bytes += sizeof(DATA_TYPE); - rhs_offset_first_element_in_bytes += RHS_STEP_X * sizeof(DATA_TYPE); - } -#endif // defined(RUN_LEFTOVER_K0) - - // Multiply by the weight of matrix-matrix product and store the result -#if defined(ALPHA) - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, c, (DATA_TYPE)ALPHA, c); -#endif // defined(ALPHA) - - // Add beta*bias -#if defined(BETA) -#if defined(BROADCAST_BIAS) - TILE(DATA_TYPE, 1, N0, bias0); - - T_LOAD_WIDTH_SELECT(DATA_TYPE, 1, N0, PARTIAL_STORE_N0, BUFFER, bia, x, 0, 0, x_cond, bias0); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, 1, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias[broadcasted] - T_ADD_BROADCAST_X(DATA_TYPE, M0, N0, c, bias0, c); -#else // defined(BROADCAST_BIAS) - TILE(DATA_TYPE, M0, N0, bias0); - - bia_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * bia_stride_y) + (z * bia_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, bia, 0, bia_stride_y, x_cond, bias0, dst_indirect_y); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias - T_ADD(DATA_TYPE, M0, N0, c, bias0, c); - // c = c + bias -#endif // defined(BROADCAST_BIAS) -#endif // defined(BETA) - -#if defined(POST_OP1) - T_ACTIVATION(DATA_TYPE, M0, N0, P1_ACTIVATION_TYPE, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP1) - -#if defined(POST_OP2) - TILE(DATA_TYPE, M0, N0, extra0); - - ex0_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * ex0_stride_y) + (z * ex0_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, ex0, 0, ex0_stride_y, x_cond, extra0, dst_indirect_y); - - T_ADD(DATA_TYPE, M0, N0, c, extra0, c); -#endif // defined(POST_OP2) - -#if defined(POST_OP3) - T_ACTIVATION(DATA_TYPE, M0, N0, P3_ACTIVATION_TYPE, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP3) - - dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_y * M; - - // Store the tile in reverse order so that the invalid values are overwritten with the valid ones - T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, c, dst_indirect_y); - -#undef RHS_BLOCK_SIZE -#undef RHS_OFFSET_X -#undef RHS_STEP_X -} -#endif // defined(GEMM_RESHAPED_RHS_ONLY_NT) - -#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE) -//! @cond Doxygen_Suppress -/** This OpenCL kernel computes the matrix multiplication between 2 matrices plus 3 post ops: - * Post op 1: activation (optional) - * Post op 2: elementwise op - * Post op 3: activation (optional) - * - * The LHS matrix is NOT reshaped - * The RHS is reshaped with @ref ClGemmMatrixMultiplyReshapedOnlyRhsKernel and the block K0xN0 is not transposed - * - * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time. - * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4). - * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2) - * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2) - * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time. - * @note The size of the partial store block in y must be passed at compile time using -DPARTIAL_STORE_M0 (e.g. -DPARTIAL_STORE_M0=1) - * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_STORE_N0 (e.g. -DPARTIAL_STORE_N0=1) - * @note Only the following configurations of M0, N0 and K0 are currently supported: - * - M0 = 1, 2, 3, 4, 5, 6, 7, 8 - * - N0 = 2, 3, 4, 8, 16 - * - K0 = 2, 3, 4, 8, 16 - * - H0 >= 1 - * - * @note In case of post ops, the following information must be passed at compile time: - * @note -DPOST_OP1, -DP1_ACTIVATION_TYPE, -DP1_ACTIVATION_A_VAL, -DP1_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 1 - * @note -DPOST_OP2: The arithmetic addition post op to perform at slot 2 - * @note -DPOST_OP3, -DP3_ACTIVATION_TYPE, -DP3_ACTIVATION_A_VAL, -DP3_ACTIVATION_B_VAL: The activation type, alpha and beta values of the activation post op at slot 3 - * - * @param[in] lhs_ptr Pointer to the LHS tensor. Supported data types: F16/F32 - * @param[in] lhs_stride_y Stride of the LHS tensor in Y dimension (in bytes) - * @param[in] lhs_stride_z Stride of the LHS tensor in Z dimension (in bytes) - * @param[in] lhs_w The size of the width dimension of the LHS tensor - * @param[in] lhs_h The size of the height dimension of the LHS tensor - * @param[in] lhs_n The size of the depth dimension of the LHS tensor - * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS tensor - * @param[in] rhs_ptr Pointer to the RHS reshaped tensor. Supported data type: same as @p lhs_ptr - * @param[in] rhs_stride_y Stride of the RHS tensor in Y dimension (in bytes) - * @param[in] rhs_stride_z Stride of the RHS tensor in Z dimension (in bytes) - * @param[in] rhs_w The size of the width dimension of the RHS tensor - * @param[in] rhs_h The size of the height dimension of the RHS tensor - * @param[in] rhs_n The size of the depth dimension of the RHS tensor - * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS tensor - * @param[in] bia_ptr (Optional) Pointer to the bias tensor. Supported data type: same as @p lhs_ptr - * @param[in] bia_stride_y (Optional) Stride of the bias tensor in Y dimension (in bytes) - * @param[in] bia_stride_z (Optional) Stride of the bias tensor in Z dimension (in bytes) - * @param[in] bia_w (Optional) The size of the width dimension of the bias tensor - * @param[in] bia_h (Optional) The size of the height dimension of the bias tensor - * @param[in] bia_n (Optional) The size of the depth dimension of the bias tensor - * @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias tensor - * @param[in] ex0_ptr (Optional) Pointer to the tensor added with POST_OP2. Supported data type: same as @p lhs_ptr - * @param[in] ex0_stride_y (Optional) Stride of the tensor added with POST_OP2 in Y dimension (in bytes) - * @param[in] ex0_stride_z (Optional) Stride of the tensor added with POST_OP2 in Z dimension (in bytes) - * @param[in] ex0_w (Optional) The size of the width dimension of the tensor added with POST_OP2 - * @param[in] ex0_h (Optional) The size of the height dimension of the tensor added with POST_OP2 - * @param[in] ex0_n (Optional) The size of the depth dimension of the tensor added with POST_OP2 - * @param[in] ex0_offset_first_element_in_bytes (Optional) The offset of the first element in the tensor added with POST_OP2 - * @param[out] dst_ptr (Optional) Pointer to the destination tensor. Supported data type: same as @p lhs_ptr - * @param[in] dst_stride_y (Optional) Stride of the destination tensor in Y dimension (in bytes) - * @param[in] dst_stride_z (Optional) Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_w (Optional) The size of the width dimension of the destination tensor - * @param[in] dst_h (Optional) The size of the height dimension of the destination tensor - * @param[in] dst_n (Optional) The size of the depth dimension of the destination tensor - * @param[in] dst_offset_first_element_in_bytes (Optional) The offset of the first element in the destination tensor - * @param[in] M Number of rows in LHS matrix not reshaped - * @param[in] N Number of columns in RHS matrix not reshaped - * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped - */ -//! @endcond -__kernel void gemm_mm_reshaped_only_rhs_nt_texture( - TENSOR3D_T(lhs, BUFFER), - TENSOR3D_T(rhs, IMAGE), -#if defined(BETA) - TENSOR3D_T(bia, BUFFER), -#endif // defined(BETA) -#if defined(POST_OP2) - TENSOR3D_T(ex0, BUFFER), -#endif // defined(POST_OP_ADD) - TENSOR3D_T(dst, BUFFER), - const int M, - const int N, - const int K -) -{ - // Block size -#define RHS_BLOCK_SIZE ((K0) * (N0)) - - // RHS offset and step X -#if defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (N0) -#define RHS_STEP_X ((N0) * (H0)) -#define RHS_STEP_LOOP (1) -#else // defined(RHS_INTERLEAVE) -#define RHS_OFFSET_X (RHS_BLOCK_SIZE) -#define RHS_STEP_X (N0) -#define RHS_STEP_LOOP (H0) -#endif // defined(RHS_INTERLEAVE) - - const uint x = GET_SPATIAL_IDX(0, N0, 0); - const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0); - const uint z = GET_SPATIAL_IDX(2, 1, 0); - -#if defined(DUMMY_WORK_ITEMS) - if((x >= N) || (y >= M)) - { - return; - } -#endif // defined(DUMMY_WORK_ITEMS) - - bool x_cond = PARTIAL_STORE_N0 != 0 && ((x + N0) > N); - bool y_cond = PARTIAL_STORE_M0 != 0 && y == 0; - - TILE(uint, M0, 1, dst_indirect_y); - INITIALIZE_INDIRECT_Y(M0, PARTIAL_STORE_M0, y_cond, dst_indirect_y); - - lhs_offset_first_element_in_bytes += y * (uint)lhs_stride_y + z * lhs_stride_y * M; - -#if defined(MATRIX_B_DEPTH) - // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 - const uint z_rhs = z % MATRIX_B_DEPTH; -#else // defined(MATRIX_B_DEPTH) - const uint z_rhs = z; -#endif // defined(MATRIX_B_DEPTH) - - uint x_rhs = ((x / N0) % H0) * (uint)RHS_OFFSET_X; - const uint y_rhs = ((x / N0) / H0) + z_rhs * rhs_h; - - // Initialize the accumulators - TILE(DATA_TYPE, M0, N0, c); - - LOOP_UNROLLING(int, i, 0, 1, M0, - { - c[i].v = 0; - }) - - int i = 0; - for(; i <= (K - K0); i+=K0) - { - TILE(DATA_TYPE, M0, K0, a); - TILE(DATA_TYPE, K0, N0, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD_DILATED(DATA_TYPE, K0, N0, IMAGE, rhs, x_rhs, y_rhs, RHS_STEP_X, 0, 1, b); - - // Compute the matrix multiplication between the two tiles - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, NT, a, b, c); - - lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE); - x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP; - } - -#if defined(RUN_LEFTOVER_K0) - for(; i < K; ++i) - { - TILE(DATA_TYPE, M0, 1, a); - TILE(DATA_TYPE, 1, N0, b); - - // Load tile from the lhs/rhs tensors - T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a); - T_LOAD_DILATED(DATA_TYPE, 1, N0, IMAGE, rhs, x_rhs, y_rhs, RHS_STEP_X, 0, 1, b); - - T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, NT, a, b, c); - - lhs_offset_first_element_in_bytes += sizeof(DATA_TYPE); - x_rhs += RHS_STEP_X; - } -#endif // defined(RUN_LEFTOVER_K0) - - // Multiply by the weight of matrix-matrix product and store the result -#if defined(ALPHA) - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, c, (DATA_TYPE)ALPHA, c); -#endif // defined(ALPHA) - - // Add beta*bias -#if defined(BETA) -#if defined(BROADCAST_BIAS) - TILE(DATA_TYPE, 1, N0, bias0); - - T_LOAD_WIDTH_SELECT(DATA_TYPE, 1, N0, PARTIAL_STORE_N0, BUFFER, bia, x, 0, 0, x_cond, bias0); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, 1, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias[broadcasted] - T_ADD_BROADCAST_X(DATA_TYPE, M0, N0, c, bias0, c); -#else // defined(BROADCAST_BIAS) - TILE(DATA_TYPE, M0, N0, bias0); - - bia_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * bia_stride_y) + (z * bia_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, bia, 0, bia_stride_y, x_cond, bias0, dst_indirect_y); - -#ifndef UNIT_BETA - T_SCALE_CONSTANT(DATA_TYPE, M0, N0, bias0, (DATA_TYPE)BETA, bias0); -#endif // UNIT_BIAS - - // c = c + bias - T_ADD(DATA_TYPE, M0, N0, c, bias0, c); - // c = c + bias -#endif // defined(BROADCAST_BIAS) -#endif // defined(BETA) - -#if defined(POST_OP1) - T_ACTIVATION(DATA_TYPE, M0, N0, P1_ACTIVATION_TYPE, P1_ACTIVATION_A_VAL, P1_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP1) - -#if defined(POST_OP2) - TILE(DATA_TYPE, M0, N0, extra0); - - ex0_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + (y * ex0_stride_y) + (z * ex0_stride_y * M); - - T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, ex0, 0, ex0_stride_y, x_cond, extra0, dst_indirect_y); - - T_ADD(DATA_TYPE, M0, N0, c, extra0, c); -#endif // defined(POST_OP2) - -#if defined(POST_OP3) - T_ACTIVATION(DATA_TYPE, M0, N0, P3_ACTIVATION_TYPE, P3_ACTIVATION_A_VAL, P3_ACTIVATION_B_VAL, c, c); -#endif // defined(POST_OP3) - - dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_y * M; - - // Store the tile in reverse order so that the invalid values are overwritten with the valid ones - T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, c, dst_indirect_y); - -#undef RHS_BLOCK_SIZE -#undef RHS_OFFSET_X -#undef RHS_STEP_X -} -#endif // defined(GEMM_RESHAPED_RHS_ONLY_NT_TEXTURE) \ No newline at end of file diff --git a/src/core/CL/cl_kernels/tile_helpers.h b/src/core/CL/cl_kernels/tile_helpers.h index 6a77463325..eba2316243 100644 --- a/src/core/CL/cl_kernels/tile_helpers.h +++ b/src/core/CL/cl_kernels/tile_helpers.h @@ -475,106 +475,6 @@ }) \ }) -/** Load a tile from global memory (tensor) and conditionally use a different length for the load - * - * @note If WIDTH1_CONDITION is true, the load will use the WIDTH1 length - * @note The vectors are stored in reverse order so the invalid rows are overwritten by the valid ones - * - * @param[in] DATA_TYPE Data type - * @param[in] HEIGHT Number of dst rows - * @param[in] WIDTH0 Load width to use if WIDTH1_CONDITION = false - * @param[in] WIDTH1 Load width to use if WIDTH1_CONDITION = true - * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image). - * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16) - * @param[in] TENSOR Tensor basename - * @param[in] X Starting X position - * @param[in] Y Starting Y position - * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row. - * @param[in] WIDTH1_CONDITION Condition to select the WIDTH1 store - * @param[out] dst Output tile - */ -#define T_LOAD_WIDTH_SELECT(DATA_TYPE, HEIGHT, WIDTH0, WIDTH1, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y, WIDTH1_CONDITION, dst) \ - ({ \ - if(WIDTH1_CONDITION) \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \ - { \ - VLOAD_PARTIAL(WIDTH0, WIDTH1) \ - (dst[HEIGHT - 1 - _i].v, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (Y) * STRIDE_Y)); \ - }) \ - } \ - else \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \ - { \ - dst[HEIGHT - 1 - _i].v = V_LOAD(DATA_TYPE, WIDTH0, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y); \ - }) \ - } \ - }) - -/** Load a tile from global memory (tensor) using an indirect Y index tile and conditionally use a different length for the load - * - * @note If WIDTH1_CONDITION is true, the load will use the WIDTH1 length - * @note The vectors are stored in reverse order so the invalid rows are overwritten by the valid ones - * - * @param[in] DATA_TYPE Data type - * @param[in] HEIGHT Number of dst rows - * @param[in] WIDTH0 Load width to use if WIDTH1_CONDITION = false - * @param[in] WIDTH1 Load width to use if WIDTH1_CONDITION = true - * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image). - * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16) - * @param[in] TENSOR Tensor basename - * @param[in] X Starting X position - * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row. - * @param[in] WIDTH1_CONDITION Condition to select the WIDTH1 store - * @param[out] dst Output tile - * @param[in] indirect_y Indirect Y index tile - */ -#define T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, HEIGHT, WIDTH0, WIDTH1, TENSOR_TYPE, TENSOR, X, STRIDE_Y, WIDTH1_CONDITION, dst, indirect_y) \ - ({ \ - if(WIDTH1_CONDITION) \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \ - { \ - VLOAD_PARTIAL(WIDTH0, WIDTH1) \ - (dst[HEIGHT - 1 - _i].v, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \ - }) \ - } \ - else \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \ - { \ - dst[HEIGHT - 1 - _i].v = V_LOAD(DATA_TYPE, WIDTH0, TENSOR_TYPE, TENSOR, X, (indirect_y[HEIGHT - 1 - _i].v), STRIDE_Y); \ - }) \ - } \ - }) - -/** Load a tile from global memory (tensor) with dilation for the X and Y direction - * - * @note If WIDTH1_CONDITION is true, the load will use the WIDTH1 length - * @note The vectors are stored in reverse order so the invalid rows are overwritten by the valid ones - * - * @param[in] DATA_TYPE Data type - * @param[in] HEIGHT Number of dst rows - * @param[in] WIDTH Number of dst columns - * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image). - * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16) - * @param[in] TENSOR Tensor basename - * @param[in] X Starting X position - * @param[in] Y Starting Y position - * @param[in] XI_MULTIPLIER Dilation for the X increment - * @param[in] YI_MULTIPLIER Dilation for the Y increment - * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row. - * @param[out] dst Output tile - */ -#define T_LOAD_DILATED(DATA_TYPE, HEIGHT, WIDTH, TENSOR_TYPE, TENSOR, X, Y, XI_MULTIPLIER, YI_MULTIPLIER, STRIDE_Y, dst) \ - ({ \ - LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \ - { \ - dst[_i].v = V_LOAD(DATA_TYPE, WIDTH, TENSOR_TYPE, TENSOR, ((X) + _i * (int)(XI_MULTIPLIER)), ((Y) + _i * (int)(YI_MULTIPLIER)), STRIDE_Y); \ - }) \ - }) - /** Load a tile from global memory (tensor) using an indirect Y index tile * * @param[in] DATA_TYPE Data type @@ -1086,25 +986,6 @@ }) \ }) -/** Element-wise addition between two tiles - * - * @note Performs: LHS + RHS = DST - * - * @param[in] DATA_TYPE LHS/RHS/DST data type - * @param[in] M0 Number of LHS rows - * @param[in] N0 Number of LHS columns - * @param[in] lhs LHS tile - * @param[in] rhs Constant LHS tile - * @param[out] dst DST tile - */ -#define T_ADD(DATA_TYPE, M0, N0, lhs, rhs, dst) \ - ({ \ - LOOP_UNROLLING(int, _m0, 0, 1, M0, \ - { \ - dst[_m0].v = lhs[_m0].v + rhs[_m0].v; \ - }) \ - }) - /** Element-wise addition with a constant value * * @note Performs: LHS + constant = DST @@ -1120,26 +1001,10 @@ ({ \ LOOP_UNROLLING(int, _m0, 0, 1, M0, \ { \ - dst[_m0].v = lhs[_m0].v + (DATA_TYPE)rhs_constant; \ - }) \ - }) - -/** Element-wise scale with a constant value - * - * @note Performs: LHS * constant = DST - * - * @param[in] DATA_TYPE LHS/RHS/DST data type - * @param[in] M0 Number of LHS rows - * @param[in] N0 Number of LHS columns - * @param[in] lhs LHS tile - * @param[in] rhs_constant Constant value - * @param[out] dst DST tile - */ -#define T_SCALE_CONSTANT(DATA_TYPE, M0, N0, lhs, rhs_constant, dst) \ - ({ \ - LOOP_UNROLLING(int, _m0, 0, 1, M0, \ - { \ - dst[_m0].v = lhs[_m0].v * (DATA_TYPE)rhs_constant; \ + LOOP_UNROLLING(int, _n0, 0, 1, N0, \ + { \ + dst[_m0].s[_n0] = lhs[_m0].s[_n0] + rhs_constant; \ + }) \ }) \ }) @@ -1201,26 +1066,6 @@ }) \ } -#define T_MMUL_NT_NT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_float_float_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_half_half_half(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_char_char_int(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_uchar_uchar_uint(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_uchar_uchar_int(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) -#define T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \ - { \ - LOOP_UNROLLING(int, _m, 0, 1, M0, \ - { \ - LOOP_UNROLLING(int, _n, 0, 1, N0, \ - { \ - LOOP_UNROLLING(int, _k, 0, 1, K0, \ - { \ - dst[_m].s[_n] = fma((lhs[_m].s[_k]), (rhs[_k].s[_n]), dst[_m].s[_n]); \ - }) \ - }) \ - }) \ - } - #define T_MMUL_NT_T_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \ ({ \ LOOP_UNROLLING(int, _m, 0, 1, M0, \ @@ -1231,26 +1076,3 @@ }) \ }) \ }) - -/** Initialize indirect Y for avoiding out-of-bound reads/writes - * - * @param[in] M0 Tile height to use if CONDITION = false - * @param[in] M1 Tile height to use if CONDITION = true - * @param[in] COND Condition to select the M1 tile height - * @param[out] indirect_y Indirect tile - */ -#define INITIALIZE_INDIRECT_Y(M0, M1, COND, indirect_y) \ - if(COND) \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, M0, \ - { \ - indirect_y[_i].v = min(_i, (int)M1 - 1); \ - }) \ - } \ - else \ - { \ - LOOP_UNROLLING(int, _i, 0, 1, M0, \ - { \ - indirect_y[_i].v = _i; \ - }) \ - } -- cgit v1.2.1