From a50e5e034a1b9fbce066639cbebcd457a6259ef9 Mon Sep 17 00:00:00 2001 From: Giorgio Arena Date: Mon, 2 Jul 2018 13:42:23 +0100 Subject: COMPMID-1338 Split winograd.cl Change-Id: I583227fc1a38b1a34de253e383d71cca66007f18 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/138273 Tested-by: Jenkins Reviewed-by: Gian Marco Iodice --- src/core/CL/cl_kernels/winograd_input_transform.cl | 1623 ++++++++++++++++++++ 1 file changed, 1623 insertions(+) create mode 100644 src/core/CL/cl_kernels/winograd_input_transform.cl (limited to 'src/core/CL/cl_kernels/winograd_input_transform.cl') diff --git a/src/core/CL/cl_kernels/winograd_input_transform.cl b/src/core/CL/cl_kernels/winograd_input_transform.cl new file mode 100644 index 0000000000..4662426a72 --- /dev/null +++ b/src/core/CL/cl_kernels/winograd_input_transform.cl @@ -0,0 +1,1623 @@ +/* + * Copyright (c) 2018 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "helpers.h" + +#if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H) +/** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3 and the output tile is 2x2/2x1 or 1x2 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 + * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_2x2_3x3_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); + + // Compute input address + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; + + src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); + +#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) + float4 in_row0 = vload4(0, (__global float *)(src_addr)); +#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) + float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), + *((__global float *)(src_addr + 1 * src_stride_y)), + *((__global float *)(src_addr + 2 * src_stride_y)), + *((__global float *)(src_addr + 3 * src_stride_y))); +#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); + float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); + float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); + float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + float4 tmp0 = in_row0; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + tmp0 -= in_row2; +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + float out00 = tmp0.s0 - tmp0.s2; + float out01 = tmp0.s1 + tmp0.s2; + float out02 = tmp0.s2 - tmp0.s1; + float out03 = tmp0.s1 - tmp0.s3; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float4 tmp1 = in_row1 + in_row2; + float4 tmp2 = in_row2 - in_row1; + float4 tmp3 = in_row1 - in_row3; + + float out10 = tmp1.s0 - tmp1.s2; + float out11 = tmp1.s1 + tmp1.s2; + float out12 = tmp1.s2 - tmp1.s1; + float out13 = tmp1.s1 - tmp1.s3; + + float out20 = tmp2.s0 - tmp2.s2; + float out21 = tmp2.s1 + tmp2.s2; + float out22 = tmp2.s2 - tmp2.s1; + float out23 = tmp2.s1 - tmp2.s3; + + float out30 = tmp3.s0 - tmp3.s2; + float out31 = tmp3.s1 + tmp3.s2; + float out32 = tmp3.s2 - tmp3.s1; + float out33 = tmp3.s1 - tmp3.s3; +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y; + + *((__global float *)(dst_addr + 0 * dst_stride_z)) = out00; // in_row0.s0; out00; + *((__global float *)(dst_addr + 1 * dst_stride_z)) = out01; // in_row0.s1; out01; + *((__global float *)(dst_addr + 2 * dst_stride_z)) = out02; // in_row0.s2; out02; + *((__global float *)(dst_addr + 3 * dst_stride_z)) = out03; // in_row0.s3; out03; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + *((__global float *)(dst_addr + 4 * dst_stride_z)) = out10; + *((__global float *)(dst_addr + 5 * dst_stride_z)) = out11; + *((__global float *)(dst_addr + 6 * dst_stride_z)) = out12; + *((__global float *)(dst_addr + 7 * dst_stride_z)) = out13; + *((__global float *)(dst_addr + 8 * dst_stride_z)) = out20; + *((__global float *)(dst_addr + 9 * dst_stride_z)) = out21; + *((__global float *)(dst_addr + 10 * dst_stride_z)) = out22; + *((__global float *)(dst_addr + 11 * dst_stride_z)) = out23; + *((__global float *)(dst_addr + 12 * dst_stride_z)) = out30; + *((__global float *)(dst_addr + 13 * dst_stride_z)) = out31; + *((__global float *)(dst_addr + 14 * dst_stride_z)) = out32; + *((__global float *)(dst_addr + 15 * dst_stride_z)) = out33; +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) +} + +/** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3, the output tile is 2x2/2x1 or 1x2 and the number of channels is multiple of 2 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 + * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_2x2_3x3_stepz2_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2) * 2; + + // Compute input address + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; + + src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); + +#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) + float4 in_row0 = vload4(0, (__global float *)(src_addr)); +#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) + float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), + *((__global float *)(src_addr + 1 * src_stride_y)), + *((__global float *)(src_addr + 2 * src_stride_y)), + *((__global float *)(src_addr + 3 * src_stride_y))); +#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); + float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); + float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); + float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + src_addr += src_stride_z; +#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) + float4 in_row4 = vload4(0, (__global float *)(src_addr)); +#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL) + float4 in_row4 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), + *((__global float *)(src_addr + 1 * src_stride_y)), + *((__global float *)(src_addr + 2 * src_stride_y)), + *((__global float *)(src_addr + 3 * src_stride_y))); +#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float4 in_row4 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); + float4 in_row5 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); + float4 in_row6 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); + float4 in_row7 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + float4 tmp0 = in_row0; + float4 tmp4 = in_row4; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + tmp0 -= in_row2; + tmp4 -= in_row6; +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + float2 out00 = (float2)(tmp0.s0 - tmp0.s2, tmp4.s0 - tmp4.s2); + float2 out01 = (float2)(tmp0.s1 + tmp0.s2, tmp4.s1 + tmp4.s2); + float2 out02 = (float2)(tmp0.s2 - tmp0.s1, tmp4.s2 - tmp4.s1); + float2 out03 = (float2)(tmp0.s1 - tmp0.s3, tmp4.s1 - tmp4.s3); + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float4 tmp1 = in_row1 + in_row2; + float4 tmp2 = in_row2 - in_row1; + float4 tmp3 = in_row1 - in_row3; + + float4 tmp5 = in_row5 + in_row6; + float4 tmp6 = in_row6 - in_row5; + float4 tmp7 = in_row5 - in_row7; + + float2 out10 = (float2)(tmp1.s0 - tmp1.s2, tmp5.s0 - tmp5.s2); + float2 out11 = (float2)(tmp1.s1 + tmp1.s2, tmp5.s1 + tmp5.s2); + float2 out12 = (float2)(tmp1.s2 - tmp1.s1, tmp5.s2 - tmp5.s1); + float2 out13 = (float2)(tmp1.s1 - tmp1.s3, tmp5.s1 - tmp5.s3); + + float2 out20 = (float2)(tmp2.s0 - tmp2.s2, tmp6.s0 - tmp6.s2); + float2 out21 = (float2)(tmp2.s1 + tmp2.s2, tmp6.s1 + tmp6.s2); + float2 out22 = (float2)(tmp2.s2 - tmp2.s1, tmp6.s2 - tmp6.s1); + float2 out23 = (float2)(tmp2.s1 - tmp2.s3, tmp6.s1 - tmp6.s3); + + float2 out30 = (float2)(tmp3.s0 - tmp3.s2, tmp7.s0 - tmp7.s2); + float2 out31 = (float2)(tmp3.s1 + tmp3.s2, tmp7.s1 + tmp7.s2); + float2 out32 = (float2)(tmp3.s2 - tmp3.s1, tmp7.s2 - tmp7.s1); + float2 out33 = (float2)(tmp3.s1 - tmp3.s3, tmp7.s1 - tmp7.s3); +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y; + + vstore2(out00, 0, (__global float *)(dst_addr + 0 * dst_stride_z)); + vstore2(out01, 0, (__global float *)(dst_addr + 1 * dst_stride_z)); + vstore2(out02, 0, (__global float *)(dst_addr + 2 * dst_stride_z)); + vstore2(out03, 0, (__global float *)(dst_addr + 3 * dst_stride_z)); + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + vstore2(out10, 0, (__global float *)(dst_addr + 4 * dst_stride_z)); + vstore2(out11, 0, (__global float *)(dst_addr + 5 * dst_stride_z)); + vstore2(out12, 0, (__global float *)(dst_addr + 6 * dst_stride_z)); + vstore2(out13, 0, (__global float *)(dst_addr + 7 * dst_stride_z)); + vstore2(out20, 0, (__global float *)(dst_addr + 8 * dst_stride_z)); + vstore2(out21, 0, (__global float *)(dst_addr + 9 * dst_stride_z)); + vstore2(out22, 0, (__global float *)(dst_addr + 10 * dst_stride_z)); + vstore2(out23, 0, (__global float *)(dst_addr + 11 * dst_stride_z)); + vstore2(out30, 0, (__global float *)(dst_addr + 12 * dst_stride_z)); + vstore2(out31, 0, (__global float *)(dst_addr + 13 * dst_stride_z)); + vstore2(out32, 0, (__global float *)(dst_addr + 14 * dst_stride_z)); + vstore2(out33, 0, (__global float *)(dst_addr + 15 * dst_stride_z)); +#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) +} + +/** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NCHW + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 + * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_4x4_3x3_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); + + // Compute input address + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z; + + src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y); + +#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + // Row0 + float4 d00 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)), + *((__global float *)(src_addr + 1 * src_stride_y)), + *((__global float *)(src_addr + 2 * src_stride_y)), + *((__global float *)(src_addr + 3 * src_stride_y))); + float2 d01 = (float2)(*((__global float *)(src_addr + 4 * src_stride_y)), + *((__global float *)(src_addr + 5 * src_stride_y))); +#else // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + // Row0 + float4 d00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y)); + float2 d01 = vload2(2, (__global float *)(src_addr + 0 * src_stride_y)); +#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + float out0 = 0.0f; + float out1 = 0.0f; + float out2 = 0.0f; + float out3 = 0.0f; + float out4 = 0.0f; + float out5 = 0.0f; + + // Channels [0, 5]: [out00, out01, out02, out03, out04, out05] + out0 += 16.0f * d00.s0 - 20.0f * d00.s2 + 4.0f * d01.s0; + out1 += -16.0f * d00.s1 - 16.0f * d00.s2 + 4.0f * d00.s3 + 4.0f * d01.s0; + out2 += 16.0f * d00.s1 - 16.0f * d00.s2 - 4.0f * d00.s3 + 4.0f * d01.s0; + out3 += -8.0f * d00.s1 - 4.0f * d00.s2 + 8.0f * d00.s3 + 4.0f * d01.s0; + out4 += 8.0f * d00.s1 - 4.0f * d00.s2 - 8.0f * d00.s3 + 4.0f * d01.s0; + out5 += 16.0f * d00.s1 - 20.0f * d00.s3 + 4.0f * d01.s1; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + // Row4 + float4 d40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); + float2 d41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y)); + + // k0, k1, k2, k3, k4, k5 are common terms for row0, row1, row2, row3 and row4 + float k0 = d41.s0; + float k1 = d41.s0; + float k2 = d41.s0; + float k3 = d41.s0; + float k4 = d41.s0; + float k5 = 0.0f; + + k0 += 4.0f * d40.s0 - 5.0f * d40.s2; + k1 += -4.0f * d40.s1 - 4.0f * d40.s2 + d40.s3; + k2 += 4.0f * d40.s1 - 4.0f * d40.s2 - d40.s3; + k3 += -2.0f * d40.s1 + 2.0f * d40.s3 - d40.s2; + k4 += 2.0f * d40.s1 - 2.0f * d40.s3 - d40.s2; + k5 += 4.0f * d40.s1 - 5.0f * d40.s3 + d41.s1; + + out0 += k0; + out1 += k1; + out2 += k2; + out3 += k3; + out4 += k4; + out5 += k5; + + // Row2 + float4 d20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y)); + float2 d21 = vload2(2, (__global float *)(src_addr + 2 * src_stride_y)); + + out0 += -20.0f * d20.s0 + 25.0f * d20.s2 - 5.0f * d21.s0; + out1 += +20.0f * d20.s1 + 20.0f * d20.s2 - 5.0f * d20.s3 - 5.0f * d21.s0; + out2 += -20.0f * d20.s1 + 20.0f * d20.s2 + 5.0f * d20.s3 - 5.0f * d21.s0; + out3 += +10.0f * d20.s1 + 5.0f * d20.s2 - 10.0f * d20.s3 - 5.0f * d21.s0; + out4 += -10.0f * d20.s1 + 5.0f * d20.s2 + 10.0f * d20.s3 - 5.0f * d21.s0; + out5 += -20.0f * d20.s1 + 25.0f * d20.s3 - 5.0f * d21.s1; +#endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + + // Compute destination address + __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y); + + uint dst_plane_stride = dst_stride_z / sizeof(float); + + *(dst_addr) = out0; + dst_addr += dst_plane_stride; + *(dst_addr) = out1; + dst_addr += dst_plane_stride; + *(dst_addr) = out2; + dst_addr += dst_plane_stride; + *(dst_addr) = out3; + dst_addr += dst_plane_stride; + *(dst_addr) = out4; + dst_addr += dst_plane_stride; + *(dst_addr) = out5; + dst_addr += dst_plane_stride; + +#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + float out6 = k0; + float out7 = k1; + float out8 = k2; + float out9 = k3; + float out10 = k4; + float out11 = k5; + float out12 = k0; + float out13 = k1; + float out14 = k2; + float out15 = k3; + float out16 = k4; + float out17 = k5; + float out18 = k0; + float out19 = k1; + float out20 = k2; + float out21 = k3; + float out22 = k4; + float out23 = k5; + float out24 = k0; + float out25 = k1; + float out26 = k2; + float out27 = k3; + float out28 = k4; + float out29 = k5; + + // Row1 + float4 d10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y)); + float2 d11 = vload2(2, (__global float *)(src_addr + 1 * src_stride_y)); + + // Row3 + float4 d30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y)); + float2 d31 = vload2(2, (__global float *)(src_addr + 3 * src_stride_y)); + + // Compute common parts for the channels between [6, 29] + // Channels [6, 11]: [out10, out11, out12, out13, out14, out15] + // Channels [12, 17]: [out20, out21, out22, out23, out24, out25] + float part0 = -16.0f * d20.s0 + 20.0f * d20.s2 - 4.0f * d21.s0; + float part1 = 16.0f * d10.s0 - 20.0f * d10.s2 + 4.0f * d11.s0 - 4.0f * d30.s0 + 5.0f * d30.s2 - d31.s0; + float part2 = 16.0f * d20.s2 - 4.0f * d21.s0; + float part3 = 16.0f * d20.s1 - 4.0f * d20.s3; + float part4 = 16.0f * d10.s2 - 4.0f * d11.s0 - 4.0f * d30.s2 + d31.s0; + float part5 = 16.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + d30.s3; + float part6 = 4.0f * d20.s2 - 4.0f * d21.s0; + float part7 = 8.0f * d10.s1 - 8.0f * d10.s3 - 2.0f * d30.s1 + 2.0f * d30.s3; + float part8 = 4.0f * d10.s2 - 4.0f * d11.s0 - d30.s2 + d31.s0; + float part9 = 8.0f * d20.s1 - 8.0f * d20.s3; + float part10 = -16.0f * d20.s1 + 20.0f * d20.s3 - 4.0f * d21.s1; + float part11 = -16.0f * d10.s1 + 20.0f * d10.s3 - 4.0f * d11.s1 + 4.0f * d30.s1 - 5.0f * d30.s3 + d31.s1; + + // Channels [18, 23]: [out30, out31, out32, out33, out34, out35] + // Channels [24, 29]: [out40, out41, out42, out43, out44, out45] + float part12 = 8.0f * d10.s0 - 10.0f * d10.s2 + 2.0f * d11.s0 - 8.0f * d30.s0 + 10.0f * d30.s2 - 2.0f * d31.s0; + float part13 = part0 * 0.25f; // -4.0f * d20.s0 + 5.0f * d20.s2 - d21.s0 + float part14 = part2 * 0.25f; // 4.0f * d20.s2 - d21.s0 + float part15 = 8.0f * d10.s1 - 2.0f * d10.s3 - 8.0f * d30.s1 + 2.0f * d30.s3; + float part16 = 8.0f * d10.s2 - 2.0f * d11.s0 - 8.0f * d30.s2 + 2.0f * d31.s0; + float part17 = part3 * 0.25f; // 4.0f * d20.s1 - d20.s3 + float part18 = part6 * 0.25f; // d20.s2 - d21.s0 + float part19 = 4.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + 4.0f * d30.s3; + float part20 = 2.0f * d10.s2 - 2.0f * d11.s0 - 2.0f * d30.s2 + 2.0f * d31.s0; + float part21 = part9 * 0.25f; // 2.0f * (d20.s1 - d20.s3) + float part22 = part10 * 0.25f; // - 4.0f * d20.s1 + 5.0f * d20.s3 - d21.s1 + float part23 = part11 * 0.5f + 6.0f * d30.s1 - 7.5f * d30.s3 + 1.5f * d31.s1; // - 8.0f * d10.s1 + 10.0f * d10.s3 - 2.0f * d11.s1 + 8.0f * d30.s1 - 10.0f * d30.s3 + 2.0f * d31.s1; + + out6 += part0 - part1; + out12 += part0 + part1; + out7 += part2 + part3 + part4 + part5; + out8 += part2 - part3 + part4 - part5; + out13 += part2 + part3 - part4 - part5; + out14 += part2 - part3 - part4 + part5; + out9 += part6 + part7 + part8 + part9; + out10 += part6 - part7 + part8 - part9; + out15 += part6 - part7 - part8 + part9; + out16 += part6 + part7 - part8 - part9; + out11 += part10 + part11; + out17 += part10 - part11; + + out18 += part13 - part12; + out24 += part13 + part12; + out19 += part14 + part15 + part16 + part17; + out20 += part14 - part15 + part16 - part17; + out25 += part14 - part15 - part16 + part17; + out26 += part14 + part15 - part16 - part17; + out21 += part18 + part19 + part20 + part21; + out22 += part18 - part19 + part20 - part21; + out27 += part18 - part19 - part20 + part21; + out28 += part18 + part19 - part20 - part21; + out23 += part22 + part23; + out29 += part22 - part23; + + *(dst_addr) = out6; + dst_addr += dst_plane_stride; + *(dst_addr) = out7; + dst_addr += dst_plane_stride; + *(dst_addr) = out8; + dst_addr += dst_plane_stride; + *(dst_addr) = out9; + dst_addr += dst_plane_stride; + *(dst_addr) = out10; + dst_addr += dst_plane_stride; + *(dst_addr) = out11; + dst_addr += dst_plane_stride; + *(dst_addr) = out12; + dst_addr += dst_plane_stride; + *(dst_addr) = out13; + dst_addr += dst_plane_stride; + *(dst_addr) = out14; + dst_addr += dst_plane_stride; + *(dst_addr) = out15; + dst_addr += dst_plane_stride; + *(dst_addr) = out16; + dst_addr += dst_plane_stride; + *(dst_addr) = out17; + dst_addr += dst_plane_stride; + + *(dst_addr) = out18; + dst_addr += dst_plane_stride; + *(dst_addr) = out19; + dst_addr += dst_plane_stride; + *(dst_addr) = out20; + dst_addr += dst_plane_stride; + *(dst_addr) = out21; + dst_addr += dst_plane_stride; + *(dst_addr) = out22; + dst_addr += dst_plane_stride; + *(dst_addr) = out23; + dst_addr += dst_plane_stride; + *(dst_addr) = out24; + dst_addr += dst_plane_stride; + *(dst_addr) = out25; + dst_addr += dst_plane_stride; + *(dst_addr) = out26; + dst_addr += dst_plane_stride; + *(dst_addr) = out27; + dst_addr += dst_plane_stride; + *(dst_addr) = out28; + dst_addr += dst_plane_stride; + *(dst_addr) = out29; + dst_addr += dst_plane_stride; + + // Row5 + float4 d50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y)); + float2 d51 = vload2(2, (__global float *)(src_addr + 5 * src_stride_y)); + + // Channels [30, 35] + out0 = 16.0f * d10.s0 - 20.0f * d10.s2 - 20.0f * d30.s0 + 25.0f * d30.s2 + 4.0f * d50.s0 - 5.0f * d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; + out1 = -16.0f * d10.s1 - 16.0f * d10.s2 + 4.0f * d10.s3 + 20.0f * d30.s1 + 20.0f * d30.s2 - 5.0f * d30.s3 - 4.0f * d50.s1 - 4.0f * d50.s2 + d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; + out2 = 16.0f * d10.s1 - 16.0f * d10.s2 - 4.0f * d10.s3 - 20.0f * d30.s1 + 20.0f * d30.s2 + 5.0f * d30.s3 + 4.0f * d50.s1 - 4.0f * d50.s2 - d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; + out3 = -8.0f * d10.s1 - 4.0f * d10.s2 + 8.0f * d10.s3 + 10.0f * d30.s1 - 10.0f * d30.s3 + 5.0f * d30.s2 - 2.0f * d50.s1 + 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; + out4 = 8.0f * d10.s1 - 4.0f * d10.s2 - 8.0f * d10.s3 - 10.0f * d30.s1 + 5.0f * d30.s2 + 10.0f * d30.s3 + 2.0f * d50.s1 - 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0; + out5 = 16.0f * d10.s1 - 20.0f * d10.s3 + 4.0f * d11.s1 - 20.0f * d30.s1 + 25.0f * d30.s3 - 5.0f * d31.s1 + 4.0f * d50.s1 - 5.0f * d50.s3 + d51.s1; + + *(dst_addr) = out0; + dst_addr += dst_plane_stride; + *(dst_addr) = out1; + dst_addr += dst_plane_stride; + *(dst_addr) = out2; + dst_addr += dst_plane_stride; + *(dst_addr) = out3; + dst_addr += dst_plane_stride; + *(dst_addr) = out4; + dst_addr += dst_plane_stride; + *(dst_addr) = out5; + dst_addr += dst_plane_stride; +#endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) +} + +#if defined(SRC_DIM_1) && defined(SRC_DIM_2) +/** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NHWC + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112) + * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112) + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_4x4_3x3_stepz1_nhwc( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); + + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * src_stride_x; + + // Clamp coordinates. This clamp is valid for all rows + int4 y_coord0 = (int4)(y * 4) + (int4)(0, 1, 2, 3) - (int4)PAD_LEFT; + int2 y_coord1 = (int2)(y * 4) + (int2)(4, 5) - (int2)PAD_LEFT; + y_coord0 = clamp(y_coord0, -1, SRC_DIM_1); + y_coord1 = clamp(y_coord1, -1, SRC_DIM_1); + + // Row4 + int z_coord = (z * 4) - PAD_TOP + 4; + + // If z < 0, set y to -1 + int4 valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); + int2 valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); + // If z >= SRC_DIM_2, set y to SRC_DIM_2 + valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); + valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); + + // Clamp z coordinate + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + float d40 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d41 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d42 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d43 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d44 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d45 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + float k0 = d44; + float k1 = d44; + float k2 = d44; + float k3 = d44; + float k4 = d44; + float k5 = (float)0.0f; + + k0 += 4.0f * d40 - 5.0f * d42; + k1 += -4.0f * d41 - 4.0f * d42 + d43; + k2 += 4.0f * d41 - 4.0f * d42 - d43; + k3 += -2.0f * d41 + 2.0f * d43 - d42; + k4 += 2.0f * d41 - 2.0f * d43 - d42; + k5 += 4.0f * d41 - 5.0f * d43 + d45; + + // Row0 + z_coord = (z * 4) - PAD_TOP + 0; + +#if PAD_TOP != 0 + valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); + valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); + valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); + valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); +#else // PAD_TOP != 0 + valid_y0 = y_coord0; + valid_y1 = y_coord1; +#endif // if PAD_TOP == 0, we cannot read out of bound + + float d00 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d01 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d02 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d03 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d04 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d05 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + // Row2 + z_coord = (z * 4) - PAD_TOP + 2; + valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); + valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); + valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); + valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + float d20 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d21 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d22 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d23 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d24 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d25 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + // Compute destination address + __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + x * dst_stride_x + (y + z * (int)NUM_TILES_X) * dst_stride_y); + + uint dst_plane_stride = dst_stride_z / sizeof(float); + + float out0 = k0; + float out1 = k1; + float out2 = k2; + float out3 = k3; + float out4 = k4; + float out5 = k5; + float out6 = k0; + float out7 = k1; + float out8 = k2; + float out9 = k3; + float out10 = k4; + float out11 = k5; + float out12 = k0; + float out13 = k1; + float out14 = k2; + float out15 = k3; + float out16 = k4; + float out17 = k5; + float out18 = k0; + float out19 = k1; + float out20 = k2; + float out21 = k3; + float out22 = k4; + float out23 = k5; + float out24 = k0; + float out25 = k1; + float out26 = k2; + float out27 = k3; + float out28 = k4; + float out29 = k5; + + // Channels [0, 5]: [out00, out01, out02, out03, out04, out05] + out0 += 16.0f * d00 - 20.0f * d02 - 20.0f * d20 + 25.0f * d22 + 4.0f * d04 - 5.0f * d24; + out1 += -16.0f * d01 - 16.0f * d02 + 4.0f * d03 + 20.0f * d21 + 20.0f * d22 - 5.0f * d23 + 4.0f * d04 - 5.0f * d24; + out2 += 16.0f * d01 - 16.0f * d02 - 4.0f * d03 - 20.0f * d21 + 20.0f * d22 + 5.0f * d23 + 4.0f * d04 - 5.0f * d24; + out3 += -8.0f * d01 - 4.0f * d02 + 8.0f * d03 + 10.0f * d21 + 5.0f * d22 - 10.0f * d23 + 4.0f * d04 - 5.0f * d24; + out4 += 8.0f * d01 - 4.0f * d02 - 8.0f * d03 - 10.0f * d21 + 5.0f * d22 + 10.0f * d23 + 4.0f * d04 - 5.0f * d24; + out5 += 16.0f * d01 - 20.0f * d03 - 20.0f * d21 + 4.0f * d05 + 25.0f * d23 - 5.0f * d25; + + *((__global float *)dst_addr) = out0; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out1; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out2; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out3; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out4; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out5; + dst_addr += dst_plane_stride; + + // Row1 + z_coord = (z * 4) - PAD_TOP + 1; + // Row1 can never be out of bounds + valid_y0 = y_coord0; + valid_y1 = y_coord1; + + float d10 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d11 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d12 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d13 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d14 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d15 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + // Row3 + z_coord = (z * 4) - PAD_TOP + 3; + valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); + valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); + valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); + valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + float d30 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d31 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d32 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d33 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d34 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d35 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + // Compute common parts for the channels between [6, 29] + // Channels [6, 11]: [out10, out11, out12, out13, out14, out15] + // Channels [12, 17]: [out20, out21, out22, out23, out24, out25] + float part0 = -16.0f * d20 + 20.0f * d22 - 4.0f * d24; + float part1 = 16.0f * d10 - 20.0f * d12 + 4.0f * d14 - 4.0f * d30 + 5.0f * d32 - d34; + float part2 = 16.0f * d22 - 4.0f * d24; + float part3 = 16.0f * d21 - 4.0f * d23; + float part4 = 16.0f * d12 - 4.0f * d14 - 4.0f * d32 + d34; + float part5 = 16.0f * d11 - 4.0f * d13 - 4.0f * d31 + d33; + float part6 = 4.0f * d22 - 4.0f * d24; + float part7 = 8.0f * d11 - 8.0f * d13 - 2.0f * d31 + 2.0f * d33; + float part8 = 4.0f * d12 - 4.0f * d14 - d32 + d34; + float part9 = 8.0f * d21 - 8.0f * d23; + float part10 = -16.0f * d21 + 20.0f * d23 - 4.0f * d25; + float part11 = -16.0f * d11 + 20.0f * d13 - 4.0f * d15 + 4.0f * d31 - 5.0f * d33 + d35; + + // Channels [18, 23]: [out30, out31, out32, out33, out34, out35] + // Channels [24, 29]: [out40, out41, out42, out43, out44, out45] + float part12 = 8.0f * d10 - 10.0f * d12 + 2.0f * d14 - 8.0f * d30 + 10.0f * d32 - 2.0f * d34; + float part13 = part0 * 0.25f; // -4.0f * d20 + 5.0f * d22 - d24 + float part14 = part2 * 0.25f; // 4.0f * d22 - d24 + float part15 = 8.0f * d11 - 2.0f * d13 - 8.0f * d31 + 2.0f * d33; + float part16 = 8.0f * d12 - 2.0f * d14 - 8.0f * d32 + 2.0f * d34; + float part17 = part3 * 0.25f; // 4.0f * d21 - d23 + float part18 = part6 * 0.25f; // d22 - d24 + float part19 = 4.0f * d11 - 4.0f * d13 - 4.0f * d31 + 4.0f * d33; + float part20 = 2.0f * d12 - 2.0f * d14 - 2.0f * d32 + 2.0f * d34; + float part21 = part9 * 0.25f; // 2.0f * (d21 - d23) + float part22 = part10 * 0.25f; // - 4.0f * d21 + 5.0f * d23 - d25 + float part23 = part11 * 0.5f + 6.0f * d31 - 7.5f * d33 + 1.5f * d35; // - 8.0f * d11 + 10.0f * d13 - 2.0f * d15 + 8.0f * d31 - 10.0f * d33 + 2.0f * d35; + + out6 += part0 - part1; + out12 += part0 + part1; + out7 += part2 + part3 + part4 + part5; + out8 += part2 - part3 + part4 - part5; + out13 += part2 + part3 - part4 - part5; + out14 += part2 - part3 - part4 + part5; + out9 += part6 + part7 + part8 + part9; + out10 += part6 - part7 + part8 - part9; + out15 += part6 - part7 - part8 + part9; + out16 += part6 + part7 - part8 - part9; + out11 += part10 + part11; + out17 += part10 - part11; + + out18 += part13 - part12; + out24 += part13 + part12; + out19 += part14 + part15 + part16 + part17; + out20 += part14 - part15 + part16 - part17; + out25 += part14 - part15 - part16 + part17; + out26 += part14 + part15 - part16 - part17; + out21 += part18 + part19 + part20 + part21; + out22 += part18 - part19 + part20 - part21; + out27 += part18 - part19 - part20 + part21; + out28 += part18 + part19 - part20 - part21; + out23 += part22 + part23; + out29 += part22 - part23; + + *((__global float *)dst_addr) = out6; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out7; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out8; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out9; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out10; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out11; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out12; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out13; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out14; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out15; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out16; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out17; + dst_addr += dst_plane_stride; + + *((__global float *)dst_addr) = out18; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out19; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out20; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out21; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out22; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out23; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out24; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out25; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out26; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out27; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out28; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out29; + dst_addr += dst_plane_stride; + + // Row5 + z_coord = (z * 4) - PAD_TOP + 5; + valid_y0 = select(y_coord0, -1, (int4)z_coord < 0); + valid_y1 = select(y_coord1, -1, (int2)z_coord < 0); + valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2); + valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + float d50 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d51 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z); + float d52 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z); + float d53 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z); + float d54 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z); + float d55 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z); + + // Channels [30, 35] + out0 = 16.0f * d10 - 20.0f * d12 - 20.0f * d30 + 25.0f * d32 + 4.0f * d50 - 5.0f * d52 + d54 + 4.0f * d14 - 5.0f * d34; + out1 = -16.0f * d11 - 16.0f * d12 + 4.0f * d13 + 20.0f * d31 + 20.0f * d32 - 5.0f * d33 - 4.0f * d51 - 4.0f * d52 + d53 + d54 + 4.0f * d14 - 5.0f * d34; + out2 = 16.0f * d11 - 16.0f * d12 - 4.0f * d13 - 20.0f * d31 + 20.0f * d32 + 5.0f * d33 + 4.0f * d51 - 4.0f * d52 - d53 + d54 + 4.0f * d14 - 5.0f * d34; + out3 = -8.0f * d11 - 4.0f * d12 + 8.0f * d13 + 10.0f * d31 - 10.0f * d33 + 5.0f * d32 - 2.0f * d51 + 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34; + out4 = 8.0f * d11 - 4.0f * d12 - 8.0f * d13 - 10.0f * d31 + 5.0f * d32 + 10.0f * d33 + 2.0f * d51 - 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34; + out5 = 16.0f * d11 - 20.0f * d13 + 4.0f * d15 - 20.0f * d31 + 25.0f * d33 - 5.0f * d35 + 4.0f * d51 - 5.0f * d53 + d55; + + *((__global float *)dst_addr) = out0; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out1; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out2; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out3; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out4; + dst_addr += dst_plane_stride; + *((__global float *)dst_addr) = out5; + dst_addr += dst_plane_stride; +} + +#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2) + +#define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact) \ + ({ \ + comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6; \ + comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5; \ + comm_fact.s2 = 2.5f * tmp.s3; \ + comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \ + comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6; \ + comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4; \ + comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \ + \ + out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \ + out.s1 = comm_fact.s0 + comm_fact.s1; \ + out.s2 = comm_fact.s0 - comm_fact.s1; \ + out.s3 = comm_fact.s3 + comm_fact.s4; \ + out.s4 = comm_fact.s4 - comm_fact.s3; \ + out.s5 = comm_fact.s5 + comm_fact.s6; \ + out.s6 = comm_fact.s5 - comm_fact.s6; \ + out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \ + }) + +/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NCHW + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_4x4_5x5_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); + + // Compute input address + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 4 * src_stride_x + y * 4 * src_stride_y + z * src_stride_z; + + src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y); + + // Load 8x8 input tile + const float8 in_row0 = vload8(0, (__global float *)(src_addr + 0 * src_stride_y)); + const float8 in_row1 = vload8(0, (__global float *)(src_addr + 1 * src_stride_y)); + const float8 in_row2 = vload8(0, (__global float *)(src_addr + 2 * src_stride_y)); + const float8 in_row3 = vload8(0, (__global float *)(src_addr + 3 * src_stride_y)); + const float8 in_row4 = vload8(0, (__global float *)(src_addr + 4 * src_stride_y)); + const float8 in_row5 = vload8(0, (__global float *)(src_addr + 5 * src_stride_y)); + const float8 in_row6 = vload8(0, (__global float *)(src_addr + 6 * src_stride_y)); + const float8 in_row7 = vload8(0, (__global float *)(src_addr + 7 * src_stride_y)); + + // Calculate common factors for intermediate tensor + float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4; + float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3; + float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6; + + // Calculate intermediate tensor and reuse common factor vectors + const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2; + const float8 tmp1 = comm_fact0 + comm_fact1; + const float8 tmp2 = comm_fact0 - comm_fact1; + + comm_fact0 = 2.5f * in_row3; + comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5; + + const float8 tmp3 = comm_fact1 + comm_fact2; + const float8 tmp4 = comm_fact2 - comm_fact1; + + comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5; + comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6; + + const float8 tmp5 = comm_fact1 + comm_fact2; + const float8 tmp6 = comm_fact2 - comm_fact1; + const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5; + + // Calculate output rows (reuse comm_fact0 vector) + float8 out0, out1, out2, out3, out4, out5, out6, out7; + + OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0); + OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0); + OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0); + OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0); + OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0); + OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0); + OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0); + OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0); + + // Store values across the 64 channels + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y; + + *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0; + *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1; + *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2; + *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3; + *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4; + *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5; + *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6; + *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7; + *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0; + *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1; + *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2; + *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3; + *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4; + *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5; + *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6; + *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7; + *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0; + *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1; + *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2; + *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3; + *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4; + *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5; + *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6; + *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7; + *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0; + *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1; + *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2; + *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3; + *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4; + *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5; + *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6; + *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7; + *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0; + *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1; + *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2; + *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3; + *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4; + *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5; + *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6; + *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7; + *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0; + *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1; + *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2; + *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3; + *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4; + *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5; + *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6; + *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7; + *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0; + *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1; + *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2; + *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3; + *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4; + *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5; + *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6; + *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7; + *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0; + *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1; + *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2; + *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3; + *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4; + *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5; + *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6; + *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7; +} + +#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) +/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 2x1 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 + * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_2x1_3x1_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} + +/** This OpenCL kernel computes the input transform when the kernel size is 3x1, the output tile is 2x1 and the number of channels is multiple of 2 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 + * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_2x1_3x1_stepz2_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} + +/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 4x1 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1 + * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_4x1_3x1_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} +#endif // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) + +#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) +/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x2 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 + * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_1x2_1x3_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} + +/** This OpenCL kernel computes the input transform when the kernel size is 1x3, the output tile is 1x2 and the number of channels is multiple of 2 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2 + * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_1x2_1x3_stepz2_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} + +/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x4 + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4 + * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_1x4_1x3_stepz1_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr, + src_stride_x, + src_step_x, + src_stride_y, + src_step_y, + src_stride_z, + src_step_z, + src_offset_first_element_in_bytes, + dst_ptr, + dst_stride_x, + dst_step_x, + dst_stride_y, + dst_step_y, + dst_stride_z, + dst_step_z, + dst_offset_first_element_in_bytes); +} +#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) + +#if defined(SRC_DIM_1) && defined(SRC_DIM_2) +/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NHWC + * + * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5). + * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0). + * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4 + * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4 + * + * @param[in] src_ptr Pointer to the source image. Supported data types: F32 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + */ +__kernel void winograd_input_transform_4x4_5x5_stepz1_nhwc( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); + + // Compute input address + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(float); + + // Clamp coordinates. This clamp is valid for all rows + int8 y_coord = (int8)(y * 4) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT; + y_coord = clamp(y_coord, -1, SRC_DIM_1); + + // Load 8x8 input tile + float8 in_row0, in_row1, in_row2, in_row3, in_row4, in_row5, in_row6, in_row7; + + // Row0 + int z_coord = (z * 4) - PAD_TOP + 0; + int8 valid_y = select(y_coord, -1, (int8)z_coord < 0); // If z < 0, set y to -1 + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2 + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate + + in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row1 + z_coord = (z * 4) - PAD_TOP + 1; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row1.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row1.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row2 + z_coord = (z * 4) - PAD_TOP + 2; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row2.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row2.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row3 + z_coord = (z * 4) - PAD_TOP + 3; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row3.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row3.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row4 + z_coord = (z * 4) - PAD_TOP + 4; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row4.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row4.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row5 + z_coord = (z * 4) - PAD_TOP + 5; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row5.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row5.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row6 + z_coord = (z * 4) - PAD_TOP + 6; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row6.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row6.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Row7 + z_coord = (z * 4) - PAD_TOP + 7; + valid_y = select(y_coord, -1, (int8)z_coord < 0); + valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); + z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); + + in_row7.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z); + in_row7.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z); + + // Calculate common factors for intermediate tensor + float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4; + float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3; + float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6; + + // Calculate intermediate tensor and reuse common factor vectors + const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2; + const float8 tmp1 = comm_fact0 + comm_fact1; + const float8 tmp2 = comm_fact0 - comm_fact1; + + comm_fact0 = 2.5f * in_row3; + comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5; + + const float8 tmp3 = comm_fact1 + comm_fact2; + const float8 tmp4 = comm_fact2 - comm_fact1; + + comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5; + comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6; + + const float8 tmp5 = comm_fact1 + comm_fact2; + const float8 tmp6 = comm_fact2 - comm_fact1; + const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5; + + // Calculate output rows (reuse comm_fact0 vector) + float8 out0, out1, out2, out3, out4, out5, out6, out7; + + OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0); + OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0); + OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0); + OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0); + OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0); + OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0); + OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0); + OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0); + + // Store values across the 64 channels + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(float) + (y + z * (int)NUM_TILES_X) * dst_stride_y; + + *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0; + *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1; + *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2; + *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3; + *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4; + *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5; + *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6; + *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7; + *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0; + *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1; + *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2; + *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3; + *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4; + *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5; + *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6; + *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7; + *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0; + *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1; + *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2; + *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3; + *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4; + *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5; + *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6; + *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7; + *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0; + *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1; + *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2; + *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3; + *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4; + *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5; + *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6; + *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7; + *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0; + *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1; + *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2; + *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3; + *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4; + *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5; + *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6; + *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7; + *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0; + *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1; + *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2; + *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3; + *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4; + *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5; + *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6; + *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7; + *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0; + *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1; + *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2; + *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3; + *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4; + *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5; + *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6; + *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7; + *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0; + *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1; + *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2; + *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3; + *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4; + *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5; + *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6; + *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7; +} +#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2) +#endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H) \ No newline at end of file -- cgit v1.2.1