From 188708170a51887868a7170c9ee963372bfb9ced Mon Sep 17 00:00:00 2001 From: giuros01 Date: Thu, 13 Sep 2018 09:31:40 +0100 Subject: [COMPMID-1331] Add support for RoIAlign operator in CL Change-Id: Ie215daacd10477309dbf8af1bb2b05b7a0a8f203 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/150773 Tested-by: bsgcomp Reviewed-by: Isabella Gottardi Reviewed-by: Pablo Tello --- src/core/CL/cl_kernels/roi_align_layer.cl | 181 ++++++++++++++++++++++++++++++ 1 file changed, 181 insertions(+) create mode 100644 src/core/CL/cl_kernels/roi_align_layer.cl (limited to 'src/core/CL/cl_kernels/roi_align_layer.cl') diff --git a/src/core/CL/cl_kernels/roi_align_layer.cl b/src/core/CL/cl_kernels/roi_align_layer.cl new file mode 100644 index 0000000000..4625e53ed5 --- /dev/null +++ b/src/core/CL/cl_kernels/roi_align_layer.cl @@ -0,0 +1,181 @@ +/* + * Copyright (c) 2018 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "helpers.h" + +// This specifies the value to shift the result of roi_dims / pooled_dims before ceiling. +// It is close to the epsilon machine (for a floating point system, x and x+EPS are the same number). +#define EPS_GRID 0.00001f + +#if defined(DATA_TYPE) && defined(POOLED_DIM_X) && defined(POOLED_DIM_Y) && defined(MAX_DIM_X) && defined(MAX_DIM_Y) && defined(MAX_DIM_Z) && defined(SPATIAL_SCALE) // Check for compile time constants + +/** Performs a roi align on a single output pixel. + * + * @param[in] input Pointer to input Tensor3D struct. + * @param[in] region_start_x Start x index projected onto the input tensor. + * @param[in] region_end_x End x index projected onto the input tensor. + * @param[in] region_start_y Start y index projected onto the input tensor. + * @param[in] region_end_y End y index projected onto the input tensor. + * @param[in] pz z index of the input tensor. + * + * @return An average pooled value from the region specified in the input tensor. + */ +inline DATA_TYPE roi_align_1x1(const Tensor3D *input, float region_start_x, + float bin_size_x, + float grid_size_x, + float region_end_x, + float region_start_y, + float bin_size_y, + float grid_size_y, + float region_end_y, + int pz) +{ + // Iterate through the pooling region + float sum = 0; + for(int iy = 0; iy < grid_size_y; ++iy) + { + for(int ix = 0; ix < grid_size_x; ++ix) + { + // Align the window in the middle of every bin + const float y = region_start_y + (iy + 0.5f) * bin_size_y / (float)grid_size_y; + const float x = region_start_x + (ix + 0.5f) * bin_size_x / (float)grid_size_x; + + // Interpolation in the unit square + const int y_low = (int)y; + const int x_low = (int)x; + const int y_high = y_low + 1; + const int x_high = x_low + 1; + + const float ly = y - y_low; + const float lx = x - x_low; + const float hy = 1.f - ly; + const float hx = 1.f - lx; + + const float w1 = hy * hx; + const float w2 = hy * lx; + const float w3 = ly * hx; + const float w4 = ly * lx; + + const DATA_TYPE data1 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_low, pz); + const DATA_TYPE data2 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_low, pz); + const DATA_TYPE data3 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_high, pz); + const DATA_TYPE data4 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_high, pz); + sum += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4; + } + } + + return (DATA_TYPE)(sum / (grid_size_x * grid_size_y)); +} + +/** Performs a roi align function. + * + * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16, F32; + * @note Datasize must be passed using -DDATA_SIZE e.g. -DDATA_SIZE=32; + * @note Input dimensions must be passed using -DMAX_DIM_X, -DMAX_DIM_Y and -DMAX_DIM_Z; + * @note Pooled region dimensions must be passed using -DPOOLED_DIM_X and -DPOOLED_DIM_Y; + * @note Spatial scale must be passed using -DSPATIAL_SCALE; + * @note Sampling ratio (i.e., the number of samples in each bin) may be passed using -DSAMPLING_RATIO. If not defined each roi + * will have a default sampling ratio of roi_dims/pooling_dims + * + * @param[in] input_ptr Pointer to the source image. Supported data types: F16, F32 + * @param[in] input_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] input_offset_first_element_in_bytes The offset of the first element in the pooled region of the source image as specifed by ROI + * @param[in] rois_ptr Pointer to the rois array. Layout: {x, y, width, height, batch_indx} + * @param[in] rois_stride_x Stride of the rois array in X dimension (in bytes) + * @param[in] rois_step_x rois_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] rois_offset_first_element_in_bytes The offset of the first element in the rois array + * @param[out] output_ptr Pointer to the destination image. Supported data types: F16, F32 + * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes) + * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes) + * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image + * @param[in] input_stride_w Stride of the source image in W dimension (in bytes) + * @param[in] output_stride_w Stride of the destination image in W dimension (in bytes) + */ +__kernel void roi_align_layer( + TENSOR3D_DECLARATION(input), + VECTOR_DECLARATION(rois), + TENSOR3D_DECLARATION(output), + unsigned int input_stride_w, unsigned int output_stride_w) +{ + // Get pixels pointer + Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); + Vector rois = CONVERT_TO_VECTOR_STRUCT_NO_STEP(rois); + Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); + + const int px = get_global_id(0); + const int py = get_global_id(1); + const int pw = get_global_id(2); + + // Load roi parameters + // roi is laid out as follows: + // { x, y, width, height, batch_index } + const ushort4 roi = vload4(0, (__global ushort *)vector_offset(&rois, pw)); + const ushort roi_batch = *((__global ushort *)vector_offset(&rois, pw) + 4); + const float2 roi_anchor = convert_float2(roi.s01) * convert_float(SPATIAL_SCALE); + const float2 roi_dims = fmax(convert_float2(roi.s23) * convert_float(SPATIAL_SCALE), 1.f); + + // Calculate pooled region start and end + const float2 spatial_indx = (float2)(px, py); + const float2 pooled_dims = (float2)(POOLED_DIM_X, POOLED_DIM_Y); + const float2 max_spatial_dims = (float2)(MAX_DIM_X, MAX_DIM_Y); + + const float2 bin_size = roi_dims / pooled_dims; + float2 region_start = spatial_indx * bin_size + roi_anchor; + float2 region_end = (spatial_indx + 1) * bin_size + roi_anchor; + + region_start = clamp(region_start, 0, max_spatial_dims); + region_end = clamp(region_end, 0, max_spatial_dims); + +#if defined(SAMPLING_RATIO) + const float2 roi_bin_grid = SAMPLING_RATIO; +#else // !defined(SAMPLING_RATIO) + // Note that we subtract EPS_GRID before ceiling. This is to avoid situations where 1.000001 gets ceiled to 2. + const float2 roi_bin_grid = ceil(roi_dims / pooled_dims - EPS_GRID); +#endif // defined(SAMPLING_RATIO) + + // Move input and output pointer across the fourth dimension + input.ptr += roi_batch * input_stride_w; + output.ptr += pw * output_stride_w; + for(int pz = 0; pz < MAX_DIM_Z; ++pz) + { + *(__global DATA_TYPE *)tensor3D_offset(&output, px, py, pz) = (__global DATA_TYPE)roi_align_1x1(&input, + region_start.x, + bin_size.x, + roi_bin_grid.x, + region_end.x, + region_start.y, + bin_size.y, + roi_bin_grid.y, + region_end.y, pz); + } +} +#endif // Check for compile time constants -- cgit v1.2.1