From 7075fe2c5ee6f7cfe7cfd9454d905235e70b9ac4 Mon Sep 17 00:00:00 2001 From: Adnan AlSinan Date: Mon, 5 Jul 2021 13:12:52 +0100 Subject: Reorganize the kernels into nhwc, nchw and common folders The Following kernels have been split into nchw/nhwc kernels files: - batchnormalization_layer - batch_to_space - channel_shuffle - depth_to_space - dequantization_layer - im2col - normalization_layer - normalize_planar_yuv_layer - normalize_planar_yuv_layer_quantized - pooling_layer - pooling_layer_quantized - remap - reorg_layer - scale - scale_quantized - space_to_batch - space_to_depth - upsample_layer - winograd_filter_transform - winograd_input_transform - winograd_output_transform The following kernels have been moved to nchw folder: - direct_convolution1x1 - direct_convolution3x3 - direct_convolution5x5 - direct_convolution_quantized - prior_box_layer The following kernels have been moved to nhwc folder: - direct_convolution - dwc_native_fp_nhwc - dwc_native_quantized_nhwc The following kernels have been removed: - sobel_filter While the rest kerenls have been moved to the common folder. Partially resolves COMPMID-4453 Signed-off-by: Adnan AlSinan Change-Id: Ic327ac935687ec351c610c65a3c6357f364a5a58 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5919 Tested-by: Arm Jenkins Reviewed-by: Georgios Pinitas Comments-Addressed: Arm Jenkins --- src/core/CL/cl_kernels/pooling_layer.cl | 981 -------------------------------- 1 file changed, 981 deletions(-) delete mode 100644 src/core/CL/cl_kernels/pooling_layer.cl (limited to 'src/core/CL/cl_kernels/pooling_layer.cl') diff --git a/src/core/CL/cl_kernels/pooling_layer.cl b/src/core/CL/cl_kernels/pooling_layer.cl deleted file mode 100644 index d63a2e51e8..0000000000 --- a/src/core/CL/cl_kernels/pooling_layer.cl +++ /dev/null @@ -1,981 +0,0 @@ -/* - * Copyright (c) 2017-2021 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#include "helpers.h" -#include "repeat.h" -#include "tile_helpers.h" - -#if defined(POOL_AVG) || defined(POOL_L2) -#define POOL_OP(x, y) ((x) + (y)) -#else /* defined(POOL_AVG) || defined(POOL_L2) */ -#define POOL_OP(x, y) (fmax((x), (y))) -#endif /* defined(POOL_AVG) || defined(POOL_L2) */ - -#if defined(POOL_L2) -#define POW2_OP(x, vec_size) ((x) * (x)) -#else /* defined(POOL_L2) */ -#define POW2_OP(x, vec_size) (x) -#endif /* defined(POOL_L2) */ - -#define DIV_OP(x, y) (x * (1.f / y)) -#define SQRT_OP(x) sqrt((x)) - -#if STRIDE_X == 1 -#define POOLING3x3(res, input, output) POOLING3x3_STRIDE1(res, input, output) -#elif STRIDE_X == 2 /* STRIDE_X == 1 */ -#define POOLING3x3(res, input, output) POOLING3x3_STRIDE2(res, input, output) -#elif STRIDE_X == 3 /* STRIDE_X not equals 1 or 2 */ -#define POOLING3x3(res, input, output) POOLING3x3_STRIDE3(res, input, output) -#endif /* STRIDE_X == 3 */ - -#if defined(FP_MIXED_PRECISION) -#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n)) -#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \ - CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n) -#else /* defined(FP_MIXED_PRECISION) */ -#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr) -#endif /* defined(FP_MIXED_PRECISION) */ - -#define POOLING3x3_STRIDE1(res, input, output) \ - ({ \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \ - data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 4); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \ - data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 4); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \ - data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 4); \ - data00 = POW2_OP(data00, 4); \ - data01 = POW2_OP(data01, 2); \ - data10 = POW2_OP(data10, 4); \ - data11 = POW2_OP(data11, 2); \ - data20 = POW2_OP(data20, 4); \ - data21 = POW2_OP(data21, 2); \ - \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01212323); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data01.s0, data00.s3, data01.s01); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01212323); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data11.s0, data10.s3, data11.s01); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01212323); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data21.s0, data20.s3, data21.s01); \ - \ - values00 = POOL_OP(values00, values10); \ - values01 = POOL_OP(values01, values11); \ - values00 = POOL_OP(values00, values20); \ - values01 = POOL_OP(values01, values21); \ - \ - res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \ - res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03)); \ - }) - -#define POOLING3x3_STRIDE2(res, input, output) \ - ({ \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \ - ACC_DATA_TYPE data01 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \ - ACC_DATA_TYPE data11 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \ - ACC_DATA_TYPE data21 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8)); \ - data00 = POW2_OP(data00, 8); \ - data01 = POW2_OP(data01, 1); \ - data10 = POW2_OP(data10, 8); \ - data11 = POW2_OP(data11, 1); \ - data20 = POW2_OP(data20, 8); \ - data21 = POW2_OP(data21, 1); \ - \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01223445); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s667, data01); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01223445); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data10.s667, data11); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01223445); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data20.s667, data21); \ - \ - values00 = POOL_OP(values00, values10); \ - values01 = POOL_OP(values01, values11); \ - values00 = POOL_OP(values00, values20); \ - values01 = POOL_OP(values01, values21); \ - \ - res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \ - res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03)); \ - }) - -#define POOLING3x3_STRIDE3(res, input, output) \ - ({ \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \ - data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \ - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \ - data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8); \ - data00 = POW2_OP(data00, 8); \ - data01 = POW2_OP(data01, 4); \ - data10 = POW2_OP(data10, 8); \ - data11 = POW2_OP(data11, 4); \ - data20 = POW2_OP(data20, 8); \ - data21 = POW2_OP(data21, 4); \ - \ - data00 = POOL_OP(data00, data10); \ - data01 = POOL_OP(data01, data11); \ - data00 = POOL_OP(data00, data20); \ - data01 = POOL_OP(data01, data21); \ - \ - res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s036, data01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s147, data01.s2)); \ - res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s25, data01.s03)); \ - }) - -ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h, - const int pad_x, const int pad_y, const int stride_x, const int stride_y) -{ - int start_x = get_global_id(0) * stride_x - pad_x; - int start_y = get_global_id(1) * stride_y - pad_y; - const int end_x = min(start_x + pool_size_x, upper_bound_w); - const int end_y = min(start_y + pool_size_y, upper_bound_h); -#if defined(EXCLUDE_PADDING) - start_x = max(0, start_x); - start_y = max(0, start_y); -#endif /* defined(EXCLUDE_PADDING) */ - return ((end_y - start_y) * (end_x - start_x)); -} - -/** Performs a pooling function of pool size equal to 2. - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32; - * @note In case of average pooling the following information must be passed at compile time: - * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed. - * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad) - * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - */ -__kernel void pooling_layer_2( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - - // Load data - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) - data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) - data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 = POW2_OP(data0, 2); - data1 = POW2_OP(data1, 2); -#endif /* defined(POOL_L2) */ - - // Perform calculations - data0 = POOL_OP(data0, data1); - ACC_DATA_TYPE res = POOL_OP(data0.s0, data0.s1); - -#if defined(POOL_AVG) || defined(POOL_L2) - // Divide by pool region in case of average or l2 pooling - res = DIV_OP(res, calculate_avg_scale(2, 2, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)); -#endif /* defined(POOL_AVG) || defined(POOL_L2) */ - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res = SQRT_OP(res); -#endif /* defined(POOL_L2) */ - - // Store result - *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res; -} - -/** Performs a pooling function of pool size equal to 3 - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32; - * @note In case of average pooling the following information must be passed at compile time: - * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed. - * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad) - * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - */ -__kernel void pooling_layer_3( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - - // Load data - VEC_DATA_TYPE(ACC_DATA_TYPE, 3) - data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); - VEC_DATA_TYPE(ACC_DATA_TYPE, 3) - data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(ACC_DATA_TYPE, 3) - data2 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 = POW2_OP(data0, 3); - data1 = POW2_OP(data1, 3); - data2 = POW2_OP(data2, 3); -#endif /* defined(POOL_L2) */ - - // Perform calculations - data0 = POOL_OP(data0, data1); - data0 = POOL_OP(data0, data2); - ACC_DATA_TYPE res = POOL_OP(POOL_OP(data0.s0, data0.s1), data0.s2); - -#if defined(POOL_AVG) || defined(POOL_L2) - // Divide by pool region in case of average pooling - res = DIV_OP(res, calculate_avg_scale(3, 3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)); -#endif /* defined(POOL_AVG) || defined(POOL_L2) */ - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res = SQRT_OP(res); -#endif /* defined(POOL_L2) */ - - // Store result - *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res; -} - -#if defined(POOLING3x3) - -#define CONVERT_OP(data_type) convert_##data_type##4 -#define CONVERT_VECTOR4(data_type) CONVERT_OP(data_type) - -VEC_DATA_TYPE(ACC_DATA_TYPE, 4) -calculate_avg_scale4(const int pool_size, const int upper_bound_w, const int upper_bound_h, - const int pad_x, const int pad_y, const int stride_x, const int stride_y) -{ - int4 start_x = ((int4)get_global_id(0) * 4 + (int4)(0, 1, 2, 3)) * (int4)stride_x - (int4)pad_x; - int start_y = get_global_id(1) * stride_y - pad_y; - const int4 end_x = min(start_x + (int4)pool_size, (int4)upper_bound_w); - const int end_y = min(start_y + pool_size, upper_bound_h); -#if defined(EXCLUDE_PADDING) - start_x = max((int4)0, start_x); - start_y = max(0, start_y); -#endif /* defined(EXCLUDE_PADDING) */ - return (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(1.f) / CONVERT_VECTOR4(ACC_DATA_TYPE)(((int4)(end_y - start_y)) * (end_x - start_x)); -} - -/** Performs an optimized pooling function of pool size equal to 3 when the stride_x is less equal than 3 - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32; - * @note In case of average pooling the following information must be passed at compile time: - * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed. - * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad) - * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - */ -__kernel void pooling_layer_optimized_3( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) - res; - - // Perform pooling 3x3 for 4 output elements - POOLING3x3(res, input, output); - -#if defined(POOL_AVG) || defined(POOL_L2) - // Divide by pool region in case of average pooling - res *= calculate_avg_scale4(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y); -#endif /* defined(POOL_AVG) || defined(POOL_L2) */ - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res = SQRT_OP(res); -#endif /* defined(POOL_L2) */ - - vstore4(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)output.ptr); -} -#endif // defined(POOLING3x3) - -#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) - -/** Performs a pooling function of pool size equal to N (NCHW) - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32; - * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13; - * @note In case of average pooling the following information must be passed at compile time: - * -DPOOL_AVG must be provided otherwise max pooling will be performed. - * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad) - * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension - * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16/F32 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - */ -__kernel void pooling_layer_MxN_nchw( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) - vdata = INITIAL_VALUE; - ACC_DATA_TYPE sdata = INITIAL_VALUE; - - // Load data - for(int y = 0; y < POOL_SIZE_Y; y++) - { - int x = 0; - for(; x <= ((int)POOL_SIZE_X - 8); x += 8) - { - VEC_DATA_TYPE(ACC_DATA_TYPE, 8) - data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0)); -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 *= data0; -#endif /* defined(POOL_L2) */ - vdata = POOL_OP(vdata, data0); - } - - // Leftover - for(; x < (int)POOL_SIZE_X; ++x) - { - ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0))); -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 *= data0; -#endif /* defined(POOL_L2) */ - sdata = POOL_OP(sdata, data0); - } - } - - // Reduce result - VEC_DATA_TYPE(ACC_DATA_TYPE, 4) - reduce4 = POOL_OP(vdata.s0123, vdata.s4567); - VEC_DATA_TYPE(ACC_DATA_TYPE, 2) - reduce2 = POOL_OP(reduce4.s01, reduce4.s23); - ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1); - res = POOL_OP(res, sdata); - -#if defined(POOL_AVG) || defined(POOL_L2) - // Divide by pool region in case of average pooling - res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)); -#endif /* defined(POOL_AVG) || defined(POOL_L2) */ - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res = SQRT_OP(res); -#endif /* defined(POOL_L2) */ - - // Store result - *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res; -} -#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) - -#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) - -inline void offset_no_padding_nchw(const Tensor3D *input, uint *offset_top, uint *offset_bottom) -{ - const int pad_horiz = PAD_TENSOR_LEFT + PAD_TENSOR_RIGHT; - const int pad_vert = PAD_TENSOR_TOP + PAD_TENSOR_BOTTOM; - - const int x = get_global_id(0) * STRIDE_X; - const int y = get_global_id(1) * STRIDE_Y; - const int z = get_global_id(2); - - //x axis: width, y axis: height, z axis: component - const uint padded_offset = input->offset_first_element_in_bytes - + x * input->stride_x - + y * input->stride_y - + z * input->stride_z; - - const uint offset_base = padded_offset - - y * pad_horiz * sizeof(DATA_TYPE) /* Horizontal padding for each row */ - - PAD_TENSOR_TOP * input->stride_y /* top padding */ - - z * MAX_HEIGHT * pad_horiz * sizeof(DATA_TYPE) - z * pad_vert * input->stride_y /* Z plane padding */ - - PAD_TENSOR_LEFT * sizeof(DATA_TYPE); - -#if defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) - *offset_top = (uint)((offset_base / sizeof(DATA_TYPE)) % (TENSOR_CHANNEL * TENSOR_WIDTH * TENSOR_HEIGHT)); -#else /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */ - *offset_top = (uint)(offset_base / sizeof(DATA_TYPE)); -#endif /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */ - - *offset_bottom = *offset_top + input->stride_y / sizeof(DATA_TYPE) - pad_horiz; - - return; -} - -#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) - -/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW. - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32 - * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13; - * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT - * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - * @param[in] indices_ptr Pointer to the indices tensor. Supported data types: U32 - * @param[in] indices_stride_x Stride of the indices tensor in X dimension (in bytes) - * @param[in] indices_step_x indices_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] indices_stride_y Stride of the indices tensor in Y dimension (in bytes) - * @param[in] indices_step_y indices_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] indices_stride_z Stride of the indices tensor in Z dimension (in bytes) - * @param[in] indices_step_z indices_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] indices_offset_first_element_in_bytes The offset of the first element in the indices tensor - */ -__kernel void pooling_layer_2_nchw_indices_fp32( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output), - TENSOR3D_DECLARATION(indices)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices); - - // Load data - float2 data0 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 0, 0)); - float2 data1 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - - // Perform calculations - float data0_max = POOL_OP(data0.s0, data0.s1); - float data1_max = POOL_OP(data1.s0, data1.s1); - float res = POOL_OP(data0_max, data1_max); - // Store result - *(__global float *)output.ptr = res; - -#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) - - uint offset_top = 0; - uint offset_bottom = 0; - - offset_no_padding_nchw(&input, &offset_top, &offset_bottom); - - uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1)); - uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1)); - uint index = select(index1, index0, isgreaterequal(data0_max, data1_max)); - - *(__global uint *)indices.ptr = index; - -#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) -} - -/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW. - * - * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F16 - * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13; - * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT - * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F16 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - * @param[in] indices_ptr Pointer to the indices tensor. Supported data types: U32 - * @param[in] indices_stride_x Stride of the indices tensor in X dimension (in bytes) - * @param[in] indices_step_x indices_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] indices_stride_y Stride of the indices tensor in Y dimension (in bytes) - * @param[in] indices_step_y indices_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] indices_stride_z Stride of the indices tensor in Z dimension (in bytes) - * @param[in] indices_step_z indices_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] indices_offset_first_element_in_bytes The offset of the first element in the indices tensor - */ -__kernel void pooling_layer_2_nchw_indices_fp16( - TENSOR3D_DECLARATION(input), - TENSOR3D_DECLARATION(output), - TENSOR3D_DECLARATION(indices)) -{ - // Get pixels pointer - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); - Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices); - - // Load data - half2 data0 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 0, 0)); - half2 data1 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 1, 0)); - - // Perform calculations - half data0_max = POOL_OP(data0.s0, data0.s1); - half data1_max = POOL_OP(data1.s0, data1.s1); - half res = POOL_OP(data0_max, data1_max); - // Store result - *(__global half *)output.ptr = res; - -#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) - - uint offset_top = 0; - uint offset_bottom = 0; - - offset_no_padding_nchw(&input, &offset_top, &offset_bottom); - - uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1)); - uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1)); - uint index = select(index1, index0, isgreaterequal(data0_max, data1_max)); - - *(__global uint *)indices.ptr = index; - -#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM) -} - -#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) - -#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) -/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types: - * -# max, -DPOOL_MAX must be passed at compile time - * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time - * -# l2 normalisation, -DPOOL_L2 must be passed at compile time - * - * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16 - * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float - * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result - * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4 - * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT - * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE - * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y - * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 - * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE - * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) - * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) - * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - */ -__kernel void pooling_layer_MxN_nhwc( - TENSOR4D_DECLARATION(input), - TENSOR4D_DECLARATION(output)) -{ - // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0 - // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side - int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER); - int idx_out_w = GET_SPATIAL_IDX(1, 1, 0); -#if DST_BATCH_SIZE != 1 - // If batch size != 1, the batch size dimension is collapsed over the height dimension - int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT; - int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT; -#else //DST_BATCH_SIZE != 1 - int idx_out_h = GET_SPATIAL_IDX(2, 1, 0); - int idx_out_n = 0; -#endif // DST_BATCH_SIZE != 1 - - __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w; - - __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n * - output_stride_w; - - VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) - res0 = INITIAL_VALUE; - - int idx_in_w = idx_out_w * STRIDE_X - PAD_X; - int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y; - - int pool_x_s = max((int)0, -idx_in_w); - int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w); - int pool_y_s = max((int)0, -idx_in_h); - int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h); - -#if defined(EXCLUDE_PADDING) - int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s); -#else // defined(EXCLUDE_PADDING) - int filter_size = POOL_SIZE_X * POOL_SIZE_Y; -#endif // defined(EXCLUDE_PADDING) - -#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 - // Global pooling path - for(int y = 0; y < POOL_SIZE_Y; ++y) - { -#pragma unroll 8 - for(int x = 0; x < POOL_SIZE_X; ++x) - { -#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 - for(int y = pool_y_s; y < pool_y_e; ++y) - { -#pragma unroll 8 - for(int x = pool_x_s; x < pool_x_e; ++x) - { -#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0 - VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) - data0; -#if defined(FP_MIXED_PRECISION) - // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE - data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); -#else // defined(FP_MIXED_PRECISION) - data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)); -#endif // defined(FP_MIXED_PRECISION) - -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 *= data0; -#endif // defined(POOL_L2) - res0 = POOL_OP(res0, data0); - } - } - -#if defined(POOL_AVG) || defined(POOL_L2) - res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size; -#endif // defined(POOL_AVG) || defined(POOL_L2) - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res0 = SQRT_OP(res0); -#endif // defined(POOL_L2) - - // Store result -#if defined(FP_MIXED_PRECISION) - VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) - res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); - STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); -#else // defined(FP_MIXED_PRECISION) - STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); -#endif // defined(FP_MIXED_PRECISION) -} -#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y) - -#define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) - -/** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types: - * -# max, -DPOOL_MAX must be passed at compile time - * -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time - * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time - * -# l2 normalisation, -DPOOL_L2 must be passed at compile time - * - * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16 - * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float - * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result - * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT - * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE - * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions - * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y - * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16 - * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE - * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0 - * - * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16 - * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) - * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) - * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr - * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes) - * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes) - * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes) - * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes) - * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor - * @param[in] indices_ptr (Optional) Pointer to the indices tensor. Supported data types: U32 - * @param[in] indices_stride_x (Optional) Stride of the indices tensor in X dimension (in bytes) - * @param[in] indices_step_x (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] indices_stride_y (Optional) Stride of the indices tensor in Y dimension (in bytes) - * @param[in] indices_step_y (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] indices_stride_z (Optional) Stride of the indices tensor in Z dimension (in bytes) - * @param[in] indices_step_z (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] indices_stride_w (Optional) Stride of the indices tensor in W dimension (in bytes) - * @param[in] indices_step_w (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes) - * @param[in] indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor - */ -__kernel void pooling_layer_2x2_nhwc( - TENSOR4D_DECLARATION(input), - TENSOR4D_DECLARATION(output) -#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) - , - TENSOR4D_DECLARATION(indices) -#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) -) -{ - // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0 - // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side - int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); - int idx_out_w = get_global_id(1); -#if DST_BATCH_SIZE != 1 - // If batch size != 1, the batch size dimension is collapsed over the height dimension - int idx_out_h = get_global_id(2) % DST_HEIGHT; - int idx_out_n = get_global_id(2) / DST_HEIGHT; -#else //SRC_BATCH_SIZE != 1 - int idx_out_h = get_global_id(2); - int idx_out_n = 0; -#endif // SRC_BATCH_SIZE != 1 - - int idx_in_w = idx_out_w * STRIDE_X - PAD_X; - int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y; - - __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w; - - __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n * - output_stride_w; - - int pool_x_s = max((int)0, -idx_in_w); - int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w); - int pool_y_s = max((int)0, -idx_in_h); - int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h); - - int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s); - - int x0 = pool_x_s + idx_in_w; - int y0 = pool_y_s + idx_in_h; - int x1 = pool_x_e - 1 + idx_in_w; - int y1 = pool_y_e - 1 + idx_in_h; - - REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0); - -#if defined(FP_MIXED_PRECISION) - // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE - data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); - data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); - data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); - data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)); -#else // defined(FP_MIXED_PRECISION) - data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)); - data1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)); - data2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)); - data3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)); -#endif // defined(FP_MIXED_PRECISION) - -#if !defined(POOL_MAX) - if(filter_size != 4) - { - SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0; - SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1); - SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0; - SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1); - - // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound) - data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s)); - data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s)); - data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e)); - data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e)); - } -#endif // !defined(POOL_MAX) - -#if defined(POOL_L2) - // Raise to power of 2 for L2 Pooling - data0 *= data0; - data1 *= data1; - data2 *= data2; - data3 *= data3; -#endif /* defined(POOL_L2) */ - - VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE) - res0 = data0; - res0 = POOL_OP(res0, data1); - res0 = POOL_OP(res0, data2); - res0 = POOL_OP(res0, data3); - -#if defined(POOL_AVG) || defined(POOL_L2) -#if defined(EXCLUDE_PADDING) - res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size; -#else // !defined(EXCLUDE_PADDING) - res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4; -#endif // defined(EXCLUDE_PADDING) -#endif // defined(POOL_AVG) || defined(POOL_L2) - -#if defined(POOL_L2) - // Take square root of the result in L2 pooling - res0 = SQRT_OP(res0); -#endif // defined(POOL_L2) - - // Store result -#if defined(FP_MIXED_PRECISION) - VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) - res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)); - STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); -#else // defined(FP_MIXED_PRECISION) - STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0); -#endif // defined(FP_MIXED_PRECISION) - -#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) - - // This part is used to return the index of the maximum value - // Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor - - // note: Batch dimension does not contribute in the offset contribution - VEC_DATA_TYPE(uint, VEC_SIZE) - base_index = (uint)idx_out_c; - - base_index += VEC_OFFS(uint, VEC_SIZE); - - VEC_DATA_TYPE(uint, VEC_SIZE) - index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH); - VEC_DATA_TYPE(uint, VEC_SIZE) - index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH); - VEC_DATA_TYPE(uint, VEC_SIZE) - index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH); - VEC_DATA_TYPE(uint, VEC_SIZE) - index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH); - - index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE))); - index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE))); - index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE))); - - __global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n * - indices_stride_w; - - // Store result - STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0)); -#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX) -} -#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) \ No newline at end of file -- cgit v1.2.1