From ea7de7babc319e2fa31c5e1c986e48d6c5370689 Mon Sep 17 00:00:00 2001 From: Giorgio Arena Date: Thu, 10 Dec 2020 16:49:39 +0000 Subject: Enable FFT for FP16 Resolves: COMPMID-4051 Change-Id: I0c0bf97212dd281c19d5081e6247e7dc0c23cd6b Signed-off-by: Giorgio Arena Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4687 Tested-by: Arm Jenkins Reviewed-by: Gian Marco Iodice Comments-Addressed: Arm Jenkins --- src/core/CL/cl_kernels/fft.cl | 815 ++++++++++++++++++++++++------------------ 1 file changed, 462 insertions(+), 353 deletions(-) (limited to 'src/core/CL/cl_kernels/fft.cl') diff --git a/src/core/CL/cl_kernels/fft.cl b/src/core/CL/cl_kernels/fft.cl index eb1eec56e7..b257451652 100644 --- a/src/core/CL/cl_kernels/fft.cl +++ b/src/core/CL/cl_kernels/fft.cl @@ -1,5 +1,5 @@ /* - * Copyright (c) 2019 Arm Limited. + * Copyright (c) 2019-2020 Arm Limited. * * SPDX-License-Identifier: MIT * @@ -23,6 +23,7 @@ */ #include "helpers.h" +#if defined(DATA_TYPE) /** Calculates and applies the twiddle factor to a given input. * * @param[in] phi The angle. @@ -30,7 +31,8 @@ */ #define TWIDDLE_FACTOR_MULTIPLICATION(phi, input) \ { \ - float2 w, tmp; \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + w, tmp; \ w.x = native_cos(phi); \ w.y = native_sin(phi); \ tmp.x = (w.x * input.x) - (w.y * input.y); \ @@ -43,12 +45,13 @@ * @param[in,out] c0 Complex input 0. * @param[in,out] c1 Complex input 1. */ -#define DFT_2(c0, c1) \ - { \ - float2 v0; \ - v0 = c0; \ - c0 = v0 + c1; \ - c1 = v0 - c1; \ +#define DFT_2(c0, c1) \ + { \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0; \ + v0 = c0; \ + c0 = v0 + c1; \ + c1 = v0 - c1; \ } // radix-3 butterfly unit factors @@ -60,15 +63,17 @@ * @param[in,out] c1 Complex input 1. * @param[in,out] c2 Complex input 2. */ -#define DFT_3(c0, c1, c2) \ - { \ - float2 v0 = c1 + c2; \ - float2 v1 = c1 - c2; \ - c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \ - c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \ - c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \ - c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \ - c0 = c0 + v0; \ +#define DFT_3(c0, c1, c2) \ + { \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0 = c1 + c2; \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v1 = c1 - c2; \ + c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \ + c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \ + c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \ + c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \ + c0 = c0 + v0; \ } /**Computes radix-4 butterfly unit. @@ -78,25 +83,26 @@ * @param[in,out] c2 Complex input 2. * @param[in,out] c3 Complex input 3. */ -#define DFT_4(c0, c1, c2, c3) \ - { \ - float2 v0, v1, v2, v3; \ - v0 = c0 + c2; \ - v1 = c1 + c3; \ - v2 = c0 - c2; \ - v3.x = c1.y - c3.y; \ - v3.y = c3.x - c1.x; \ - c0 = v0 + v1; \ - c2 = v0 - v1; \ - c1 = v2 + v3; \ - c3 = v2 - v3; \ +#define DFT_4(c0, c1, c2, c3) \ + { \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0, v1, v2, v3; \ + v0 = c0 + c2; \ + v1 = c1 + c3; \ + v2 = c0 - c2; \ + v3.x = c1.y - c3.y; \ + v3.y = c3.x - c1.x; \ + c0 = v0 + v1; \ + c2 = v0 - v1; \ + c1 = v2 + v3; \ + c3 = v2 - v3; \ } // radix-5 butterfly unit factors -#define W5_A 0.30901699437494f -#define W5_B 0.95105651629515f -#define W5_C 0.80901699437494f -#define W5_D 0.58778525229247f +#define W5_A (DATA_TYPE)0.30901699437494f +#define W5_B (DATA_TYPE)0.95105651629515f +#define W5_C (DATA_TYPE)0.80901699437494f +#define W5_D (DATA_TYPE)0.58778525229247f /** Computes radix-5 butterfly unit. * @@ -106,28 +112,29 @@ * @param[in,out] c3 Complex input 3. * @param[in,out] c4 Complex input 4. */ -#define DFT_5(c0, c1, c2, c3, c4) \ - { \ - float2 v0, v1, v2, v3, v4; \ - v0 = c0; \ - v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \ - v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \ - v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \ - v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \ - c0 = v0 + c1 + c2 + c3 + c4; \ - c1 = v0 + v1 + (float2)(v4.y, -v4.x); \ - c2 = v0 - v2 + (float2)(v3.y, -v3.x); \ - c3 = v0 - v2 + (float2)(-v3.y, v3.x); \ - c4 = v0 + v1 + (float2)(-v4.y, v4.x); \ +#define DFT_5(c0, c1, c2, c3, c4) \ + { \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0, v1, v2, v3, v4; \ + v0 = c0; \ + v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \ + v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \ + v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \ + v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \ + c0 = v0 + c1 + c2 + c3 + c4; \ + c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \ + c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v3.y, -v3.x); \ + c3 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v3.y, v3.x); \ + c4 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \ } // radix-7 butterfly unit factors -#define W7_A 0.62348980185873f -#define W7_B 0.78183148246802f -#define W7_C 0.22252093395631f -#define W7_D 0.97492791218182f -#define W7_E 0.90096886790241f -#define W7_F 0.43388373911755f +#define W7_A (DATA_TYPE)0.62348980185873f +#define W7_B (DATA_TYPE)0.78183148246802f +#define W7_C (DATA_TYPE)0.22252093395631f +#define W7_D (DATA_TYPE)0.97492791218182f +#define W7_E (DATA_TYPE)0.90096886790241f +#define W7_F (DATA_TYPE)0.43388373911755f /** Computes radix-7 butterfly unit. * @@ -141,7 +148,8 @@ */ #define DFT_7(c0, c1, c2, c3, c4, c5, c6) \ { \ - float2 v0, v1, v2, v3, v4, v5, v6; \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0, v1, v2, v3, v4, v5, v6; \ v0 = c0; \ v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \ v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \ @@ -150,12 +158,12 @@ v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \ v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \ c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6; \ - c1 = v0 + v1 + (float2)(v4.y, -v4.x); \ - c2 = v0 - v2 + (float2)(v5.y, -v5.x); \ - c3 = v0 - v3 + (float2)(v6.y, -v6.x); \ - c4 = v0 - v3 + (float2)(-v6.y, v6.x); \ - c5 = v0 - v2 + (float2)(-v5.y, v5.x); \ - c6 = v0 + v1 + (float2)(-v4.y, v4.x); \ + c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \ + c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v5.y, -v5.x); \ + c3 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v6.y, -v6.x); \ + c4 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v6.y, v6.x); \ + c5 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v5.y, v5.x); \ + c6 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \ } /** Computes radix-8 butterfly unit. @@ -169,52 +177,55 @@ * @param[in,out] c6 Complex input 6. * @param[in,out] c7 Complex input 7. */ -#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \ - { \ - float2 v0, v1, v2, v3, v4, v5, v6, v7; \ - float2 s0, s1, s2, s3, s4, s5, s6, s7; \ - float2 t0, t1, t2; \ - v0 = c0 + c4; \ - v1 = c1 + c5; \ - v2 = c2 + c6; \ - v3 = c3 + c7; \ - v4 = c0 - c4; \ - v5 = c1 - c5; \ - v6 = c2 - c6; \ - v7 = c3 - c7; \ - s0 = v0 + v2; \ - s1 = v1 + v3; \ - s2 = v0 - v2; \ - s3 = v1 - v3; \ - s4.x = v4.x - v6.y; \ - s4.y = v4.y + v6.x; \ - s5.x = v5.x - v7.y; \ - s5.y = v5.y + v7.x; \ - s6.x = v4.x + v6.y; \ - s6.y = v4.y - v6.x; \ - s7.x = v5.x + v7.y; \ - s7.y = v5.y - v7.x; \ - t0.x = -s3.y; \ - t0.y = s3.x; \ - t1.x = M_SQRT1_2_F * (s5.x - s5.y); \ - t1.y = M_SQRT1_2_F * (s5.x + s5.y); \ - t2.x = -M_SQRT1_2_F * (s7.x + s7.y); \ - t2.y = M_SQRT1_2_F * (s7.x - s7.y); \ - c0 = s0 + s1; \ - c1 = s6 - t2; \ - c2 = s2 - t0; \ - c3 = s4 - t1; \ - c4 = s0 - s1; \ - c5 = s6 + t2; \ - c6 = s2 + t0; \ - c7 = s4 + t1; \ +#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \ + { \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + v0, v1, v2, v3, v4, v5, v6, v7; \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + s0, s1, s2, s3, s4, s5, s6, s7; \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + t0, t1, t2; \ + v0 = c0 + c4; \ + v1 = c1 + c5; \ + v2 = c2 + c6; \ + v3 = c3 + c7; \ + v4 = c0 - c4; \ + v5 = c1 - c5; \ + v6 = c2 - c6; \ + v7 = c3 - c7; \ + s0 = v0 + v2; \ + s1 = v1 + v3; \ + s2 = v0 - v2; \ + s3 = v1 - v3; \ + s4.x = v4.x - v6.y; \ + s4.y = v4.y + v6.x; \ + s5.x = v5.x - v7.y; \ + s5.y = v5.y + v7.x; \ + s6.x = v4.x + v6.y; \ + s6.y = v4.y - v6.x; \ + s7.x = v5.x + v7.y; \ + s7.y = v5.y - v7.x; \ + t0.x = -s3.y; \ + t0.y = s3.x; \ + t1.x = M_SQRT1_2_F * (s5.x - s5.y); \ + t1.y = M_SQRT1_2_F * (s5.x + s5.y); \ + t2.x = -M_SQRT1_2_F * (s7.x + s7.y); \ + t2.y = M_SQRT1_2_F * (s7.x - s7.y); \ + c0 = s0 + s1; \ + c1 = s6 - t2; \ + c2 = s2 - t0; \ + c3 = s4 - t1; \ + c4 = s0 - s1; \ + c5 = s6 + t2; \ + c6 = s2 + t0; \ + c7 = s4 + t1; \ } /** Computes the first stage of a radix-2 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -231,7 +242,7 @@ * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_2_first_stage_axis_0( +__kernel void fft_radix_2_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -248,20 +259,21 @@ kernel void fft_radix_2_first_stage_axis_0( #endif /* IN_PLACE */ // Load two complex input values - float4 data = vload4(0, (__global float *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 4) + data = vload4(0, (__global DATA_TYPE *)input.ptr); // Compute DFT N = 2 DFT_2(data.s01, data.s23); // Store two complex output values - vstore4(data, 0, (__global float *)output.ptr); + vstore4(data, 0, (__global DATA_TYPE *)output.ptr); } /** Computes the first stage of a radix-2 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -278,7 +290,7 @@ kernel void fft_radix_2_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_2_first_stage_axis_1( +__kernel void fft_radix_2_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -295,22 +307,24 @@ kernel void fft_radix_2_first_stage_axis_1( #endif /* IN_PLACE */ // Load two complex input values - float2 data1 = vload2(0, (__global float *)input.ptr); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); // Compute DFT N = 2 DFT_2(data1, data2); // Store two complex output values - vstore2(data1, 0, (__global float *)output.ptr); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data1, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); } /** Computes the first stage of a radix-3 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -327,7 +341,7 @@ kernel void fft_radix_2_first_stage_axis_1( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_3_first_stage_axis_0( +__kernel void fft_radix_3_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -344,22 +358,24 @@ kernel void fft_radix_3_first_stage_axis_0( #endif /* IN_PLACE */ // Load three complex input values - float4 data0 = vload4(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 2, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 4) + data0 = vload4(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2, 0, 0)); // Compute DFT N = 3 DFT_3(data0.s01, data0.s23, data1.s01); // Store three complex output values - vstore4(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 2, 0, 0)); + vstore4(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2, 0, 0)); } /** Computes the first stage of a radix-3 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -376,7 +392,7 @@ kernel void fft_radix_3_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_3_first_stage_axis_1( +__kernel void fft_radix_3_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -393,24 +409,27 @@ kernel void fft_radix_3_first_stage_axis_1( #endif /* IN_PLACE */ // Load three complex input values - float2 data0 = vload2(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); // Compute DFT N = 3 DFT_3(data0, data1, data2); // Store three complex output values - vstore2(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0)); + vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); } /** Computes the first stage of a radix-4 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -427,7 +446,7 @@ kernel void fft_radix_3_first_stage_axis_1( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_4_first_stage_axis_0( +__kernel void fft_radix_4_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -444,20 +463,21 @@ kernel void fft_radix_4_first_stage_axis_0( #endif /* IN_PLACE */ // Load four complex input values - float8 data = vload8(0, (__global float *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 8) + data = vload8(0, (__global DATA_TYPE *)input.ptr); // Compute DFT N = 4 DFT_4(data.s01, data.s23, data.s45, data.s67); // Store four complex output values - vstore8(data, 0, (__global float *)output.ptr); + vstore8(data, 0, (__global DATA_TYPE *)output.ptr); } /** Computes the first stage of a radix-4 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -474,7 +494,7 @@ kernel void fft_radix_4_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_4_first_stage_axis_1( +__kernel void fft_radix_4_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -491,26 +511,30 @@ kernel void fft_radix_4_first_stage_axis_1( #endif /* IN_PLACE */ // Load four complex input values - float2 data0 = vload2(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0)); - float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); // Compute DFT N = 4 DFT_4(data0, data1, data2, data3); // Store four complex output values - vstore2(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0)); + vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); + vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); } /** Computes the first stage of a radix-5 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -527,7 +551,7 @@ kernel void fft_radix_4_first_stage_axis_1( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_5_first_stage_axis_0( +__kernel void fft_radix_5_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -544,22 +568,24 @@ kernel void fft_radix_5_first_stage_axis_0( #endif /* IN_PLACE */ // Load five complex input values - float8 data0 = vload8(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 4, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 8) + data0 = vload8(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0)); // Compute DFT N = 5 DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01); // Store five complex output values - vstore8(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0)); + vstore8(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0)); } /** Computes the first stage of a radix-5 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -576,7 +602,7 @@ kernel void fft_radix_5_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_5_first_stage_axis_1( +__kernel void fft_radix_5_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -593,28 +619,33 @@ kernel void fft_radix_5_first_stage_axis_1( #endif /* IN_PLACE */ // Load five complex input values - float2 data0 = vload2(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0)); - float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0)); - float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); // Compute DFT N = 5 DFT_5(data0, data1, data2, data3, data4); // Store five complex output values - vstore2(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0)); + vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); + vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); + vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); } /** Computes the first stage of a radix-7 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -631,7 +662,7 @@ kernel void fft_radix_5_first_stage_axis_1( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_7_first_stage_axis_0( +__kernel void fft_radix_7_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -648,24 +679,27 @@ kernel void fft_radix_7_first_stage_axis_0( #endif /* IN_PLACE */ // Load seven complex input values - float8 data0 = vload8(0, (__global float *)input.ptr); - float4 data1 = vload4(0, (__global float *)tensor3D_offset(&input, 4, 0, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 6, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 8) + data0 = vload8(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 4) + data1 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6, 0, 0)); // Compute DFT N = 7 DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01); // Store seven complex output values - vstore8(data0, 0, (__global float *)output.ptr); - vstore4(data1, 0, (__global float *)tensor3D_offset(&output, 4, 0, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 6, 0, 0)); + vstore8(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore4(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6, 0, 0)); } /** Computes the first stage of a radix-7 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -682,7 +716,7 @@ kernel void fft_radix_7_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_7_first_stage_axis_1( +__kernel void fft_radix_7_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -699,32 +733,39 @@ kernel void fft_radix_7_first_stage_axis_1( #endif /* IN_PLACE */ // Load seven complex input values - float2 data0 = vload2(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0)); - float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0)); - float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0)); - float2 data5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5, 0)); - float2 data6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0)); // Compute DFT N = 7 DFT_7(data0, data1, data2, data3, data4, data5, data6); // Store seven complex output values - vstore2(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0)); - vstore2(data5, 0, (__global float *)tensor3D_offset(&output, 0, 5, 0)); - vstore2(data6, 0, (__global float *)tensor3D_offset(&output, 0, 6, 0)); + vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); + vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); + vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); + vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0)); + vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0)); } /** Computes the first stage of a radix-8 DFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -741,7 +782,7 @@ kernel void fft_radix_7_first_stage_axis_1( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_8_first_stage_axis_0( +__kernel void fft_radix_8_first_stage_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -758,20 +799,21 @@ kernel void fft_radix_8_first_stage_axis_0( #endif /* IN_PLACE */ // Load eight complex input values - float16 data = vload16(0, (__global float *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 16) + data = vload16(0, (__global DATA_TYPE *)input.ptr); // Compute DFT N = 8 DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF); // Store eight complex output values - vstore16(data, 0, (__global float *)output.ptr); + vstore16(data, 0, (__global DATA_TYPE *)output.ptr); } /** Computes the first stage of a radix-8 DFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -788,7 +830,7 @@ kernel void fft_radix_8_first_stage_axis_0( * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image */ -kernel void fft_radix_8_first_stage_axis_1( +__kernel void fft_radix_8_first_stage_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -805,34 +847,42 @@ kernel void fft_radix_8_first_stage_axis_1( #endif /* IN_PLACE */ // Load eight complex input values - float2 data0 = vload2(0, (__global float *)input.ptr); - float2 data1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 1, 0)); - float2 data2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2, 0)); - float2 data3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3, 0)); - float2 data4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4, 0)); - float2 data5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5, 0)); - float2 data6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6, 0)); - float2 data7 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 7, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + data7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7, 0)); // Compute DFT N = 8 DFT_8(data0, data1, data2, data3, data4, data5, data6, data7); // Store eight complex output values - vstore2(data0, 0, (__global float *)output.ptr); - vstore2(data1, 0, (__global float *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global float *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global float *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global float *)tensor3D_offset(&output, 0, 4, 0)); - vstore2(data5, 0, (__global float *)tensor3D_offset(&output, 0, 5, 0)); - vstore2(data6, 0, (__global float *)tensor3D_offset(&output, 0, 6, 0)); - vstore2(data7, 0, (__global float *)tensor3D_offset(&output, 0, 7, 0)); + vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); + vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); + vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); + vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); + vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0)); + vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0)); + vstore2(data7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7, 0)); } /** Computes a stage of a radix-2 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -852,7 +902,7 @@ kernel void fft_radix_8_first_stage_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_2_axis_0( +__kernel void fft_radix_2_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -881,11 +931,13 @@ kernel void fft_radix_2_axis_0( #endif /* IN_PLACE */ // Load two complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -894,15 +946,15 @@ kernel void fft_radix_2_axis_0( DFT_2(c0, c1); // Store two complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); } /** Computes a stage of a radix-2 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -922,7 +974,7 @@ kernel void fft_radix_2_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_2_axis_1( +__kernel void fft_radix_2_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -951,11 +1003,13 @@ kernel void fft_radix_2_axis_1( #endif /* IN_PLACE */ // Load two complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -964,15 +1018,15 @@ kernel void fft_radix_2_axis_1( DFT_2(c0, c1); // Store two complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); } /** Computes a stage of a radix-3 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -992,7 +1046,7 @@ kernel void fft_radix_2_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_3_axis_0( +__kernel void fft_radix_3_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1021,12 +1075,15 @@ kernel void fft_radix_3_axis_0( #endif /* IN_PLACE */ // Load three complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1036,16 +1093,16 @@ kernel void fft_radix_3_axis_0( DFT_3(c0, c1, c2); // Store three complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); } /** Computes a stage of a radix-3 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1065,7 +1122,7 @@ kernel void fft_radix_3_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_3_axis_1( +__kernel void fft_radix_3_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1094,12 +1151,15 @@ kernel void fft_radix_3_axis_1( #endif /* IN_PLACE */ // Load three complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1109,16 +1169,16 @@ kernel void fft_radix_3_axis_1( DFT_3(c0, c1, c2); // Store three complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); } /** Computes a stage of a radix-4 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1138,7 +1198,7 @@ kernel void fft_radix_3_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_4_axis_0( +__kernel void fft_radix_4_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1167,13 +1227,17 @@ kernel void fft_radix_4_axis_0( #endif /* IN_PLACE */ // Load four complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1184,17 +1248,17 @@ kernel void fft_radix_4_axis_0( DFT_4(c0, c1, c2, c3); // Store four complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); } /** Computes a stage of a radix-4 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1214,7 +1278,7 @@ kernel void fft_radix_4_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_4_axis_1( +__kernel void fft_radix_4_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1243,13 +1307,17 @@ kernel void fft_radix_4_axis_1( #endif /* IN_PLACE */ // Load four complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1260,17 +1328,17 @@ kernel void fft_radix_4_axis_1( DFT_4(c0, c1, c2, c3); // Store four complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); } /** Computes a stage of a radix-5 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1290,7 +1358,7 @@ kernel void fft_radix_4_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_5_axis_0( +__kernel void fft_radix_5_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1319,14 +1387,19 @@ kernel void fft_radix_5_axis_0( #endif /* IN_PLACE */ // Load five complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1338,18 +1411,18 @@ kernel void fft_radix_5_axis_0( DFT_5(c0, c1, c2, c3, c4); // Store five complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); } /** Computes a stage of a radix-5 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1369,7 +1442,7 @@ kernel void fft_radix_5_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_5_axis_1( +__kernel void fft_radix_5_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1398,14 +1471,19 @@ kernel void fft_radix_5_axis_1( #endif /* IN_PLACE */ // Load five complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1417,18 +1495,18 @@ kernel void fft_radix_5_axis_1( DFT_5(c0, c1, c2, c3, c4); // Store five complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); } /** Computes a stage of a radix-7 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1448,7 +1526,7 @@ kernel void fft_radix_5_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_7_axis_0( +__kernel void fft_radix_7_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1477,16 +1555,23 @@ kernel void fft_radix_7_axis_0( #endif /* IN_PLACE */ // Load seven complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0)); - float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0)); - float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1500,20 +1585,20 @@ kernel void fft_radix_7_axis_0( DFT_7(c0, c1, c2, c3, c4, c5, c6); // Store seven complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0)); - vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0)); - vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); + vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0)); + vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0)); } /** Computes a stage of a radix-7 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1533,7 +1618,7 @@ kernel void fft_radix_7_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_7_axis_1( +__kernel void fft_radix_7_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1562,16 +1647,23 @@ kernel void fft_radix_7_axis_1( #endif /* IN_PLACE */ // Load seven complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0)); - float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5 * Nx, 0)); - float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1585,20 +1677,20 @@ kernel void fft_radix_7_axis_1( DFT_7(c0, c1, c2, c3, c4, c5, c6); // Store seven complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0)); - vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 0, 5 * Nx, 0)); - vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 0, 6 * Nx, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); + vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0)); + vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0)); } /** Computes a stage of a radix-8 FFT on axis 0. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1618,7 +1710,7 @@ kernel void fft_radix_7_axis_1( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_8_axis_0( +__kernel void fft_radix_8_axis_0( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1647,17 +1739,25 @@ kernel void fft_radix_8_axis_0( #endif /* IN_PLACE */ // Load eight complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, Nx, 0, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 4 * Nx, 0, 0)); - float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 5 * Nx, 0, 0)); - float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 6 * Nx, 0, 0)); - float2 c7 = vload2(0, (__global float *)tensor3D_offset(&input, 7 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 7 * Nx, 0, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1672,21 +1772,21 @@ kernel void fft_radix_8_axis_0( DFT_8(c0, c1, c2, c3, c4, c5, c6, c7); // Store eight complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 4 * Nx, 0, 0)); - vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 5 * Nx, 0, 0)); - vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 6 * Nx, 0, 0)); - vstore2(c7, 0, (__global float *)tensor3D_offset(&output, 7 * Nx, 0, 0)); + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); + vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0)); + vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0)); + vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 7 * Nx, 0, 0)); } /** Computes a stage of a radix-8 FFT on axis 1. * * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F32 + * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) @@ -1706,7 +1806,7 @@ kernel void fft_radix_8_axis_0( * @param[in] Ni Nx * Ny. * @param[in] exp_const Exponent constant */ -kernel void fft_radix_8_axis_1( +__kernel void fft_radix_8_axis_1( TENSOR3D_DECLARATION(input) #ifndef IN_PLACE , @@ -1735,17 +1835,25 @@ kernel void fft_radix_8_axis_1( #endif /* IN_PLACE */ // Load eight complex input values - float2 c0 = vload2(0, (__global float *)input.ptr); - float2 c1 = vload2(0, (__global float *)tensor3D_offset(&input, 0, Nx, 0)); - float2 c2 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - float2 c3 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - float2 c4 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 4 * Nx, 0)); - float2 c5 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 5 * Nx, 0)); - float2 c6 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 6 * Nx, 0)); - float2 c7 = vload2(0, (__global float *)tensor3D_offset(&input, 0, 7 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c0 = vload2(0, (__global DATA_TYPE *)input.ptr); + VEC_DATA_TYPE(DATA_TYPE, 2) + c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0)); + VEC_DATA_TYPE(DATA_TYPE, 2) + c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7 * Nx, 0)); // Compute phi - float phi = (float)nx * exp_const; + DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; // Multiply by twiddle factor TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); @@ -1760,12 +1868,13 @@ kernel void fft_radix_8_axis_1( DFT_8(c0, c1, c2, c3, c4, c5, c6, c7); // Store eight complex output values - vstore2(c0, 0, (__global float *)output.ptr); - vstore2(c1, 0, (__global float *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global float *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global float *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global float *)tensor3D_offset(&output, 0, 4 * Nx, 0)); - vstore2(c5, 0, (__global float *)tensor3D_offset(&output, 0, 5 * Nx, 0)); - vstore2(c6, 0, (__global float *)tensor3D_offset(&output, 0, 6 * Nx, 0)); - vstore2(c7, 0, (__global float *)tensor3D_offset(&output, 0, 7 * Nx, 0)); -} \ No newline at end of file + vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); + vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); + vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); + vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); + vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); + vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0)); + vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0)); + vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7 * Nx, 0)); +} +#endif // defined(DATA_TYPE) \ No newline at end of file -- cgit v1.2.1