From 7075fe2c5ee6f7cfe7cfd9454d905235e70b9ac4 Mon Sep 17 00:00:00 2001 From: Adnan AlSinan Date: Mon, 5 Jul 2021 13:12:52 +0100 Subject: Reorganize the kernels into nhwc, nchw and common folders The Following kernels have been split into nchw/nhwc kernels files: - batchnormalization_layer - batch_to_space - channel_shuffle - depth_to_space - dequantization_layer - im2col - normalization_layer - normalize_planar_yuv_layer - normalize_planar_yuv_layer_quantized - pooling_layer - pooling_layer_quantized - remap - reorg_layer - scale - scale_quantized - space_to_batch - space_to_depth - upsample_layer - winograd_filter_transform - winograd_input_transform - winograd_output_transform The following kernels have been moved to nchw folder: - direct_convolution1x1 - direct_convolution3x3 - direct_convolution5x5 - direct_convolution_quantized - prior_box_layer The following kernels have been moved to nhwc folder: - direct_convolution - dwc_native_fp_nhwc - dwc_native_quantized_nhwc The following kernels have been removed: - sobel_filter While the rest kerenls have been moved to the common folder. Partially resolves COMPMID-4453 Signed-off-by: Adnan AlSinan Change-Id: Ic327ac935687ec351c610c65a3c6357f364a5a58 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/5919 Tested-by: Arm Jenkins Reviewed-by: Georgios Pinitas Comments-Addressed: Arm Jenkins --- src/core/CL/cl_kernels/fft.cl | 1880 ----------------------------------------- 1 file changed, 1880 deletions(-) delete mode 100644 src/core/CL/cl_kernels/fft.cl (limited to 'src/core/CL/cl_kernels/fft.cl') diff --git a/src/core/CL/cl_kernels/fft.cl b/src/core/CL/cl_kernels/fft.cl deleted file mode 100644 index 51763a620a..0000000000 --- a/src/core/CL/cl_kernels/fft.cl +++ /dev/null @@ -1,1880 +0,0 @@ -/* - * Copyright (c) 2019-2020 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#include "helpers.h" - -#if defined(DATA_TYPE) -/** Calculates and applies the twiddle factor to a given input. - * - * @param[in] phi The angle. - * @param[in,out] input The input on which the factor should be applied. - */ -#define TWIDDLE_FACTOR_MULTIPLICATION(phi, input) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - w, tmp; \ - w.x = cos(phi); \ - w.y = sin(phi); \ - tmp.x = (w.x * input.x) - (w.y * input.y); \ - tmp.y = (w.x * input.y) + (w.y * input.x); \ - input = tmp; \ - } - -/** Computes radix-2 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - */ -#define DFT_2(c0, c1) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0; \ - v0 = c0; \ - c0 = v0 + c1; \ - c1 = v0 - c1; \ - } - -// radix-3 butterfly unit factors -#define SQRT3DIV2 0.86602540378443f - -/** Computes radix-3 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - * @param[in,out] c2 Complex input 2. - */ -#define DFT_3(c0, c1, c2) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0 = c1 + c2; \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v1 = c1 - c2; \ - c1.x = c0.x - 0.5f * v0.x + v1.y * SQRT3DIV2; \ - c1.y = c0.y - 0.5f * v0.y - v1.x * SQRT3DIV2; \ - c2.x = c0.x - 0.5f * v0.x - v1.y * SQRT3DIV2; \ - c2.y = c0.y - 0.5f * v0.y + v1.x * SQRT3DIV2; \ - c0 = c0 + v0; \ - } - -/**Computes radix-4 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - * @param[in,out] c2 Complex input 2. - * @param[in,out] c3 Complex input 3. - */ -#define DFT_4(c0, c1, c2, c3) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0, v1, v2, v3; \ - v0 = c0 + c2; \ - v1 = c1 + c3; \ - v2 = c0 - c2; \ - v3.x = c1.y - c3.y; \ - v3.y = c3.x - c1.x; \ - c0 = v0 + v1; \ - c2 = v0 - v1; \ - c1 = v2 + v3; \ - c3 = v2 - v3; \ - } - -// radix-5 butterfly unit factors -#define W5_A (DATA_TYPE)0.30901699437494f -#define W5_B (DATA_TYPE)0.95105651629515f -#define W5_C (DATA_TYPE)0.80901699437494f -#define W5_D (DATA_TYPE)0.58778525229247f - -/** Computes radix-5 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - * @param[in,out] c2 Complex input 2. - * @param[in,out] c3 Complex input 3. - * @param[in,out] c4 Complex input 4. - */ -#define DFT_5(c0, c1, c2, c3, c4) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0, v1, v2, v3, v4; \ - v0 = c0; \ - v1 = W5_A * (c1 + c4) - W5_C * (c2 + c3); \ - v2 = W5_C * (c1 + c4) - W5_A * (c2 + c3); \ - v3 = W5_D * (c1 - c4) - W5_B * (c2 - c3); \ - v4 = W5_B * (c1 - c4) + W5_D * (c2 - c3); \ - c0 = v0 + c1 + c2 + c3 + c4; \ - c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \ - c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v3.y, -v3.x); \ - c3 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v3.y, v3.x); \ - c4 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \ - } - -// radix-7 butterfly unit factors -#define W7_A (DATA_TYPE)0.62348980185873f -#define W7_B (DATA_TYPE)0.78183148246802f -#define W7_C (DATA_TYPE)0.22252093395631f -#define W7_D (DATA_TYPE)0.97492791218182f -#define W7_E (DATA_TYPE)0.90096886790241f -#define W7_F (DATA_TYPE)0.43388373911755f - -/** Computes radix-7 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - * @param[in,out] c2 Complex input 2. - * @param[in,out] c3 Complex input 3. - * @param[in,out] c4 Complex input 4. - * @param[in,out] c5 Complex input 5. - * @param[in,out] c6 Complex input 6. - */ -#define DFT_7(c0, c1, c2, c3, c4, c5, c6) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0, v1, v2, v3, v4, v5, v6; \ - v0 = c0; \ - v1 = W7_A * (c1 + c6) - W7_C * (c2 + c5) - W7_E * (c3 + c4); \ - v2 = W7_C * (c1 + c6) + W7_E * (c2 + c5) - W7_A * (c3 + c4); \ - v3 = W7_E * (c1 + c6) - W7_A * (c2 + c5) + W7_C * (c3 + c4); \ - v4 = W7_B * (c1 - c6) + W7_D * (c2 - c5) + W7_F * (c3 - c4); \ - v5 = W7_D * (c1 - c6) - W7_F * (c2 - c5) - W7_B * (c3 - c4); \ - v6 = W7_F * (c1 - c6) - W7_B * (c2 - c5) + W7_D * (c3 - c4); \ - c0 = v0 + c1 + c2 + c3 + c4 + c5 + c6; \ - c1 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v4.y, -v4.x); \ - c2 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v5.y, -v5.x); \ - c3 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(v6.y, -v6.x); \ - c4 = v0 - v3 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v6.y, v6.x); \ - c5 = v0 - v2 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v5.y, v5.x); \ - c6 = v0 + v1 + (VEC_DATA_TYPE(DATA_TYPE, 2))(-v4.y, v4.x); \ - } - -/** Computes radix-8 butterfly unit. - * - * @param[in,out] c0 Complex input 0. - * @param[in,out] c1 Complex input 1. - * @param[in,out] c2 Complex input 2. - * @param[in,out] c3 Complex input 3. - * @param[in,out] c4 Complex input 4. - * @param[in,out] c5 Complex input 5. - * @param[in,out] c6 Complex input 6. - * @param[in,out] c7 Complex input 7. - */ -#define DFT_8(c0, c1, c2, c3, c4, c5, c6, c7) \ - { \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - v0, v1, v2, v3, v4, v5, v6, v7; \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - s0, s1, s2, s3, s4, s5, s6, s7; \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - t0, t1, t2; \ - v0 = c0 + c4; \ - v1 = c1 + c5; \ - v2 = c2 + c6; \ - v3 = c3 + c7; \ - v4 = c0 - c4; \ - v5 = c1 - c5; \ - v6 = c2 - c6; \ - v7 = c3 - c7; \ - s0 = v0 + v2; \ - s1 = v1 + v3; \ - s2 = v0 - v2; \ - s3 = v1 - v3; \ - s4.x = v4.x - v6.y; \ - s4.y = v4.y + v6.x; \ - s5.x = v5.x - v7.y; \ - s5.y = v5.y + v7.x; \ - s6.x = v4.x + v6.y; \ - s6.y = v4.y - v6.x; \ - s7.x = v5.x + v7.y; \ - s7.y = v5.y - v7.x; \ - t0.x = -s3.y; \ - t0.y = s3.x; \ - t1.x = M_SQRT1_2_F * (s5.x - s5.y); \ - t1.y = M_SQRT1_2_F * (s5.x + s5.y); \ - t2.x = -M_SQRT1_2_F * (s7.x + s7.y); \ - t2.y = M_SQRT1_2_F * (s7.x - s7.y); \ - c0 = s0 + s1; \ - c1 = s6 - t2; \ - c2 = s2 - t0; \ - c3 = s4 - t1; \ - c4 = s0 - s1; \ - c5 = s6 + t2; \ - c6 = s2 + t0; \ - c7 = s4 + t1; \ - } - -/** Computes the first stage of a radix-2 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_2_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load two complex input values - VEC_DATA_TYPE(DATA_TYPE, 4) - data = vload4(0, (__global DATA_TYPE *)input.ptr); - - // Compute DFT N = 2 - DFT_2(data.s01, data.s23); - - // Store two complex output values - vstore4(data, 0, (__global DATA_TYPE *)output.ptr); -} - -/** Computes the first stage of a radix-2 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_2_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load two complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - - // Compute DFT N = 2 - DFT_2(data1, data2); - - // Store two complex output values - vstore2(data1, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); -} - -/** Computes the first stage of a radix-3 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_3_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load three complex input values - VEC_DATA_TYPE(DATA_TYPE, 4) - data0 = vload4(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2, 0, 0)); - - // Compute DFT N = 3 - DFT_3(data0.s01, data0.s23, data1.s01); - - // Store three complex output values - vstore4(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2, 0, 0)); -} - -/** Computes the first stage of a radix-3 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_3_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load three complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - - // Compute DFT N = 3 - DFT_3(data0, data1, data2); - - // Store three complex output values - vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); -} - -/** Computes the first stage of a radix-4 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_4_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load four complex input values - VEC_DATA_TYPE(DATA_TYPE, 8) - data = vload8(0, (__global DATA_TYPE *)input.ptr); - - // Compute DFT N = 4 - DFT_4(data.s01, data.s23, data.s45, data.s67); - - // Store four complex output values - vstore8(data, 0, (__global DATA_TYPE *)output.ptr); -} - -/** Computes the first stage of a radix-4 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_4_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load four complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); - - // Compute DFT N = 4 - DFT_4(data0, data1, data2, data3); - - // Store four complex output values - vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); -} - -/** Computes the first stage of a radix-5 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_5_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load five complex input values - VEC_DATA_TYPE(DATA_TYPE, 8) - data0 = vload8(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0)); - - // Compute DFT N = 5 - DFT_5(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01); - - // Store five complex output values - vstore8(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0)); -} - -/** Computes the first stage of a radix-5 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_5_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load five complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); - - // Compute DFT N = 5 - DFT_5(data0, data1, data2, data3, data4); - - // Store five complex output values - vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); -} - -/** Computes the first stage of a radix-7 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_7_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load seven complex input values - VEC_DATA_TYPE(DATA_TYPE, 8) - data0 = vload8(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 4) - data1 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6, 0, 0)); - - // Compute DFT N = 7 - DFT_7(data0.s01, data0.s23, data0.s45, data0.s67, data1.s01, data1.s23, data2.s01); - - // Store seven complex output values - vstore8(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore4(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4, 0, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6, 0, 0)); -} - -/** Computes the first stage of a radix-7 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_7_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load seven complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0)); - - // Compute DFT N = 7 - DFT_7(data0, data1, data2, data3, data4, data5, data6); - - // Store seven complex output values - vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); - vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0)); - vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0)); -} - -/** Computes the first stage of a radix-8 DFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_8_first_stage_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load eight complex input values - VEC_DATA_TYPE(DATA_TYPE, 16) - data = vload16(0, (__global DATA_TYPE *)input.ptr); - - // Compute DFT N = 8 - DFT_8(data.s01, data.s23, data.s45, data.s67, data.s89, data.sAB, data.sCD, data.sEF); - - // Store eight complex output values - vstore16(data, 0, (__global DATA_TYPE *)output.ptr); -} - -/** Computes the first stage of a radix-8 DFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - */ -__kernel void fft_radix_8_first_stage_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ -) -{ - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input); -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output); -#endif /* IN_PLACE */ - - // Load eight complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - data0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - data1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - data7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7, 0)); - - // Compute DFT N = 8 - DFT_8(data0, data1, data2, data3, data4, data5, data6, data7); - - // Store eight complex output values - vstore2(data0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(data1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 1, 0)); - vstore2(data2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2, 0)); - vstore2(data3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3, 0)); - vstore2(data4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4, 0)); - vstore2(data5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5, 0)); - vstore2(data6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6, 0)); - vstore2(data7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7, 0)); -} - -/** Computes a stage of a radix-2 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_2_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-2 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load two complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - - // Compute DFT N = 2 - DFT_2(c0, c1); - - // Store two complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); -} - -/** Computes a stage of a radix-2 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_2_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-2 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load two complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - - // Compute DFT N = 2 - DFT_2(c0, c1); - - // Store two complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); -} - -/** Computes a stage of a radix-3 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_3_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-3 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load three complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - - // Compute DFT N = 3 - DFT_3(c0, c1, c2); - - // Store three complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); -} - -/** Computes a stage of a radix-3 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_3_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-3 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load three complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - - // Compute DFT N = 3 - DFT_3(c0, c1, c2); - - // Store three complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); -} - -/** Computes a stage of a radix-4 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_4_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-4 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load four complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - - // Compute DFT N = 4 - DFT_4(c0, c1, c2, c3); - - // Store four complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); -} - -/** Computes a stage of a radix-4 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_4_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-4 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load four complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - - // Compute DFT N = 4 - DFT_4(c0, c1, c2, c3); - - // Store four complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); -} - -/** Computes a stage of a radix-5 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_5_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-5 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load five complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - - // Compute DFT N = 5 - DFT_5(c0, c1, c2, c3, c4); - - // Store five complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); -} - -/** Computes a stage of a radix-5 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_5_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-5 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load five complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - - // Compute DFT N = 5 - DFT_5(c0, c1, c2, c3, c4); - - // Store five complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); -} - -/** Computes a stage of a radix-7 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_7_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-7 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load seven complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5); - TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6); - - // Compute DFT N = 7 - DFT_7(c0, c1, c2, c3, c4, c5, c6); - - // Store seven complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); - vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0)); - vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0)); -} - -/** Computes a stage of a radix-7 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_7_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-7 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load seven complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5); - TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6); - - // Compute DFT N = 7 - DFT_7(c0, c1, c2, c3, c4, c5, c6); - - // Store seven complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); - vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0)); - vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0)); -} - -/** Computes a stage of a radix-8 FFT on axis 0. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_8_axis_0( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-8 - uint kx = get_global_id(0); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += n * input.stride_x + get_global_id(1) * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += n * output.stride_x + get_global_id(1) * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load eight complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 2 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 3 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 4 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 5 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 6 * Nx, 0, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 7 * Nx, 0, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5); - TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6); - TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7); - - // Compute DFT N = 8 - DFT_8(c0, c1, c2, c3, c4, c5, c6, c7); - - // Store eight complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, Nx, 0, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 2 * Nx, 0, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 3 * Nx, 0, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 4 * Nx, 0, 0)); - vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 5 * Nx, 0, 0)); - vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 6 * Nx, 0, 0)); - vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 7 * Nx, 0, 0)); -} - -/** Computes a stage of a radix-8 FFT on axis 1. - * - * @note In order to perform the FFT function "in-place", the pre-processor -DIN_PLACE must be passed at compile time - * - * @param[in,out] input_ptr Pointer to the source tensor. Supported data types: F16/f32 - * @param[in,out] input_stride_x Stride of the source tensor in X dimension (in bytes) - * @param[in,out] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in,out] input_stride_y Stride of the source tensor in Y dimension (in bytes) - * @param[in,out] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in,out] input_stride_z Stride of the source tensor in Z dimension (in bytes) - * @param[in,out] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in,out] input_offset_first_element_in_bytes The offset of the first element in the source tensor - * @param[out] output_ptr (Optional) Pointer to the destination image. Supported data types: same as @p input_ptr - * @param[in] output_stride_x (Optional) Stride of the destination image in X dimension (in bytes) - * @param[in] output_step_x (Optional) output_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] output_stride_y (Optional) Stride of the destination image in Y dimension (in bytes) - * @param[in] output_step_y (Optional) output_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] output_stride_z (Optional) Stride of the source tensor in Z dimension (in bytes) - * @param[in] output_step_z (Optional) output_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] output_offset_first_element_in_bytes (Optional) The offset of the first element in the destination image - * @param[in] Nx The butterfly span. Products of radix order of previous radix's stage - * @param[in] Ni Nx * Ny. - * @param[in] exp_const Exponent constant - */ -__kernel void fft_radix_8_axis_1( - TENSOR3D_DECLARATION(input) -#ifndef IN_PLACE - , - TENSOR3D_DECLARATION(output) -#endif /* not IN_PLACE */ - , - uint Nx, uint Ni, float exp_const) -{ - // Each work-item computes a single radix-8 - uint kx = get_global_id(1); - - // Compute nx - uint nx = kx % Nx; - - // Compute n index - uint n = nx + (kx / Nx) * Ni; - - // Get tensor pointers - Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input); - input.ptr += get_global_id(0) * input.stride_x + n * input.stride_y + get_global_id(2) * input.stride_z; -#ifdef IN_PLACE - Tensor3D output = input; -#else /* IN_PLACE */ - Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output); - output.ptr += get_global_id(0) * output.stride_x + n * output.stride_y + get_global_id(2) * output.stride_z; -#endif /* IN_PLACE */ - - // Load eight complex input values - VEC_DATA_TYPE(DATA_TYPE, 2) - c0 = vload2(0, (__global DATA_TYPE *)input.ptr); - VEC_DATA_TYPE(DATA_TYPE, 2) - c1 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c2 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c3 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 3 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c4 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 4 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c5 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 5 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c6 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 6 * Nx, 0)); - VEC_DATA_TYPE(DATA_TYPE, 2) - c7 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 7 * Nx, 0)); - - // Compute phi - DATA_TYPE phi = (DATA_TYPE)nx * (DATA_TYPE)exp_const; - - // Multiply by twiddle factor - TWIDDLE_FACTOR_MULTIPLICATION(phi, c1); - TWIDDLE_FACTOR_MULTIPLICATION(2 * phi, c2); - TWIDDLE_FACTOR_MULTIPLICATION(3 * phi, c3); - TWIDDLE_FACTOR_MULTIPLICATION(4 * phi, c4); - TWIDDLE_FACTOR_MULTIPLICATION(5 * phi, c5); - TWIDDLE_FACTOR_MULTIPLICATION(6 * phi, c6); - TWIDDLE_FACTOR_MULTIPLICATION(7 * phi, c7); - - // Compute DFT N = 8 - DFT_8(c0, c1, c2, c3, c4, c5, c6, c7); - - // Store eight complex output values - vstore2(c0, 0, (__global DATA_TYPE *)output.ptr); - vstore2(c1, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, Nx, 0)); - vstore2(c2, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 2 * Nx, 0)); - vstore2(c3, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 3 * Nx, 0)); - vstore2(c4, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 4 * Nx, 0)); - vstore2(c5, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 5 * Nx, 0)); - vstore2(c6, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 6 * Nx, 0)); - vstore2(c7, 0, (__global DATA_TYPE *)tensor3D_offset(&output, 0, 7 * Nx, 0)); -} -#endif // defined(DATA_TYPE) \ No newline at end of file -- cgit v1.2.1