From eff8d95991205e874091576e2d225f63246dd0bb Mon Sep 17 00:00:00 2001 From: Giorgio Arena Date: Mon, 2 Jul 2018 15:29:57 +0100 Subject: COMPMID-1316 Using 8 bit dot product instruction in CLDepthWiseConvolution with QASYMM8 Change-Id: I3fc37bdceaae8b4b1effa51129b71bf352388564 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/138374 Tested-by: Jenkins Reviewed-by: Anthony Barbier Reviewed-by: Gian Marco Iodice --- .../cl_kernels/depthwise_convolution_quantized.cl | 918 ++++++++++++++++----- 1 file changed, 689 insertions(+), 229 deletions(-) (limited to 'src/core/CL/cl_kernels/depthwise_convolution_quantized.cl') diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl index 88e009d678..ca8efcdd87 100644 --- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl +++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl @@ -37,12 +37,22 @@ #define ACTIVATION_FUNC(x) (x) #endif /* defined(FUSED_ACTIVATION) */ -#if defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) +#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) +#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) +#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val = arm_dot_acc((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3), val); +#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) +#define ARM_DOT(x0, x1, x2, x3, y0, y1, y2, y3, val) val += arm_dot((uchar4)(x0, x1, x2, x3), (uchar4)(y0, y1, y2, y3)); +#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) +#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) + +#if defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) #if CONV_STRIDE_X > 3 #error "Stride X not supported" #endif /* CONV_STRIDE_X > 3 */ +#if !defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) + #if CONV_STRIDE_X == 1 #define GET_VALUES(first_value, left, middle, right) \ ({ \ @@ -250,7 +260,248 @@ __kernel void depthwise_convolution_3x3_quantized_nchw( #endif /* CONV_STRIDE_Y == 1 */ } -#endif /* defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) */ +#else // !defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) + +#if CONV_STRIDE_X == 1 +#define GET_VALUES(first_value, left, middle, right) \ + ({ \ + uchar8 temp0 = vload8(0, first_value); \ + uchar2 temp1 = vload2(0, (first_value + 8 * sizeof(uchar))); \ + \ + left = temp0.s01234567; \ + middle = (uchar8)(temp0.s1234, temp0.s567, temp1.s0); \ + right = (uchar8)(temp0.s2345, temp0.s67, temp1.s01); \ + }) +#elif CONV_STRIDE_X == 2 +#define GET_VALUES(first_value, left, middle, right) \ + ({ \ + uchar16 temp0 = vload16(0, first_value); \ + uchar temp1 = *(first_value + 16 * sizeof(uchar)); \ + \ + left = temp0.s02468ace; \ + middle = temp0.s13579bdf; \ + right = (uchar8)(temp0.s2468, temp0.sace, temp1); \ + }) +#else /* CONV_STRIDE_X */ +#define GET_VALUES(first_value, left, middle, right) \ + ({ \ + uchar16 temp0 = vload16(0, first_value); \ + uchar8 temp1 = vload8(0, (first_value + 16 * sizeof(uchar))); \ + \ + left = (uchar8)(temp0.s0369, temp0.scf, temp1.s25); \ + middle = (uchar8)(temp0.s147a, temp0.sd, temp1.s036); \ + right = (uchar8)(temp0.s258b, temp0.se, temp1.s147); \ + }) +#endif /* CONV_STRIDE_X */ +/** This function computes the depthwise convolution quantized using dot product when the data layout is NCHW. + * + * @param[in] src_ptr Pointer to the source image. Supported data types: QASYMM8 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: QASYMM8 + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8 + * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes) + * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes) + * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes) + * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor + * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: QASYMM8 + * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes) + * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector + */ + +__kernel void depthwise_convolution_3x3_quantized_dot8_nchw( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst), + TENSOR3D_DECLARATION(weights) +#if defined(HAS_BIAS) + , + VECTOR_DECLARATION(biases) +#endif //defined(HAS_BIAS) +) +{ + Image src = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(src); + Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); + Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT(weights); +#if defined(HAS_BIAS) + Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases); + + const int bias_value = *((__global int *)(vector_offset(&biases, get_global_id(2)))); +#endif //defined(HAS_BIAS) + + src.ptr -= (get_global_id(2) - get_global_id(2) / DEPTH_MULTIPLIER) * src_step_z; + + uchar3 w0 = vload3(0, weights.ptr + 0 * weights_stride_y); + uchar3 w1 = vload3(0, weights.ptr + 1 * weights_stride_y); + uchar3 w2 = vload3(0, weights.ptr + 2 * weights_stride_y); + + uchar8 left0, middle0, right0; + uchar8 left1, middle1, right1; + uchar8 left2, middle2, right2; + + int8 values0 = 0; + int8 sum0 = 0; + + GET_VALUES(src.ptr + 0 * src_stride_y, left0, middle0, right0); + GET_VALUES(src.ptr + 1 * src_stride_y, left1, middle1, right1); + GET_VALUES(src.ptr + 2 * src_stride_y, left2, middle2, right2); + +#if WEIGHTS_OFFSET != 0 + sum0 += convert_int8(left0) + convert_int8(middle0) + convert_int8(right0); + sum0 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1); + sum0 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2); +#endif /* WEIGHTS_OFFSET != 0 */ + +#if CONV_STRIDE_Y == 1 + // If conv_stride_y is equals to 1, we compute two output rows + + uchar8 left3, middle3, right3; + int8 values1 = 0; + int8 sum1 = 0; + + GET_VALUES(src.ptr + 3 * src_stride_y, left3, middle3, right3); + +#if WEIGHTS_OFFSET != 0 + sum1 += convert_int8(left1) + convert_int8(middle1) + convert_int8(right1); + sum1 += convert_int8(left2) + convert_int8(middle2) + convert_int8(right2); + sum1 += convert_int8(left3) + convert_int8(middle3) + convert_int8(right3); +#endif /* WEIGHTS_OFFSET != 0 */ +#endif // CONV_STRIDE_Y == 1 + + ARM_DOT(left0.s0, middle0.s0, right0.s0, left1.s0, w0.s0, w0.s1, w0.s2, w1.s0, values0.s0); + ARM_DOT(middle1.s0, right1.s0, left2.s0, middle2.s0, w1.s1, w1.s2, w2.s0, w2.s1, values0.s0); + values0.s0 += right2.s0 * w2.s2; + + ARM_DOT(left0.s1, middle0.s1, right0.s1, left1.s1, w0.s0, w0.s1, w0.s2, w1.s0, values0.s1); + ARM_DOT(middle1.s1, right1.s1, left2.s1, middle2.s1, w1.s1, w1.s2, w2.s0, w2.s1, values0.s1); + values0.s1 += right2.s1 * w2.s2; + + ARM_DOT(left0.s2, middle0.s2, right0.s2, left1.s2, w0.s0, w0.s1, w0.s2, w1.s0, values0.s2); + ARM_DOT(middle1.s2, right1.s2, left2.s2, middle2.s2, w1.s1, w1.s2, w2.s0, w2.s1, values0.s2); + values0.s2 += right2.s2 * w2.s2; + + ARM_DOT(left0.s3, middle0.s3, right0.s3, left1.s3, w0.s0, w0.s1, w0.s2, w1.s0, values0.s3); + ARM_DOT(middle1.s3, right1.s3, left2.s3, middle2.s3, w1.s1, w1.s2, w2.s0, w2.s1, values0.s3); + values0.s3 += right2.s3 * w2.s2; + + ARM_DOT(left0.s4, middle0.s4, right0.s4, left1.s4, w0.s0, w0.s1, w0.s2, w1.s0, values0.s4); + ARM_DOT(middle1.s4, right1.s4, left2.s4, middle2.s4, w1.s1, w1.s2, w2.s0, w2.s1, values0.s4); + values0.s4 += right2.s4 * w2.s2; + + ARM_DOT(left0.s5, middle0.s5, right0.s5, left1.s5, w0.s0, w0.s1, w0.s2, w1.s0, values0.s5); + ARM_DOT(middle1.s5, right1.s5, left2.s5, middle2.s5, w1.s1, w1.s2, w2.s0, w2.s1, values0.s5); + values0.s5 += right2.s5 * w2.s2; + + ARM_DOT(left0.s6, middle0.s6, right0.s6, left1.s6, w0.s0, w0.s1, w0.s2, w1.s0, values0.s6); + ARM_DOT(middle1.s6, right1.s6, left2.s6, middle2.s6, w1.s1, w1.s2, w2.s0, w2.s1, values0.s6); + values0.s6 += right2.s6 * w2.s2; + + ARM_DOT(left0.s7, middle0.s7, right0.s7, left1.s7, w0.s0, w0.s1, w0.s2, w1.s0, values0.s7); + ARM_DOT(middle1.s7, right1.s7, left2.s7, middle2.s7, w1.s1, w1.s2, w2.s0, w2.s1, values0.s7); + values0.s7 += right2.s7 * w2.s2; + +#if CONV_STRIDE_Y == 1 + ARM_DOT(left1.s0, middle1.s0, right1.s0, left2.s0, w0.s0, w0.s1, w0.s2, w1.s0, values1.s0); + ARM_DOT(middle2.s0, right2.s0, left3.s0, middle3.s0, w1.s1, w1.s2, w2.s0, w2.s1, values1.s0); + values1.s0 += right3.s0 * w2.s2; + + ARM_DOT(left1.s1, middle1.s1, right1.s1, left2.s1, w0.s0, w0.s1, w0.s2, w1.s0, values1.s1); + ARM_DOT(middle2.s1, right2.s1, left3.s1, middle3.s1, w1.s1, w1.s2, w2.s0, w2.s1, values1.s1); + values1.s1 += right3.s1 * w2.s2; + + ARM_DOT(left1.s2, middle1.s2, right1.s2, left2.s2, w0.s0, w0.s1, w0.s2, w1.s0, values1.s2); + ARM_DOT(middle2.s2, right2.s2, left3.s2, middle3.s2, w1.s1, w1.s2, w2.s0, w2.s1, values1.s2); + values1.s2 += right3.s2 * w2.s2; + + ARM_DOT(left1.s3, middle1.s3, right1.s3, left2.s3, w0.s0, w0.s1, w0.s2, w1.s0, values1.s3); + ARM_DOT(middle2.s3, right2.s3, left3.s3, middle3.s3, w1.s1, w1.s2, w2.s0, w2.s1, values1.s3); + values1.s3 += right3.s3 * w2.s2; + + ARM_DOT(left1.s4, middle1.s4, right1.s4, left2.s4, w0.s0, w0.s1, w0.s2, w1.s0, values1.s4); + ARM_DOT(middle2.s4, right2.s4, left3.s4, middle3.s4, w1.s1, w1.s2, w2.s0, w2.s1, values1.s4); + values1.s4 += right3.s4 * w2.s2; + + ARM_DOT(left1.s5, middle1.s5, right1.s5, left2.s5, w0.s0, w0.s1, w0.s2, w1.s0, values1.s5); + ARM_DOT(middle2.s5, right2.s5, left3.s5, middle3.s5, w1.s1, w1.s2, w2.s0, w2.s1, values1.s5); + values1.s5 += right3.s5 * w2.s2; + + ARM_DOT(left1.s6, middle1.s6, right1.s6, left2.s6, w0.s0, w0.s1, w0.s2, w1.s0, values1.s6); + ARM_DOT(middle2.s6, right2.s6, left3.s6, middle3.s6, w1.s1, w1.s2, w2.s0, w2.s1, values1.s6); + values1.s6 += right3.s6 * w2.s2; + + ARM_DOT(left1.s7, middle1.s7, right1.s7, left2.s7, w0.s0, w0.s1, w0.s2, w1.s0, values1.s7); + ARM_DOT(middle2.s7, right2.s7, left3.s7, middle3.s7, w1.s1, w1.s2, w2.s0, w2.s1, values1.s7); + values1.s7 += right3.s7 * w2.s2; +#endif // CONV_STRIDE_Y == 1 + +#if defined(HAS_BIAS) + values0 += (int8)(bias_value); +#if CONV_STRIDE_Y == 1 + values1 += (int8)(bias_value); +#endif /* CONV_STRIDE_Y == 1 */ +#endif //defined(HAS_BIAS) + +#if WEIGHTS_OFFSET != 0 + values0 += sum0 * (int8)(WEIGHTS_OFFSET); +#if CONV_STRIDE_Y == 1 + values1 += sum1 * (int8)(WEIGHTS_OFFSET); +#endif /* CONV_STRIDE_Y == 1 */ +#endif /* WEIGHTS_OFFSET != 0 */ + +#if INPUT_OFFSET != 0 + ushort sum_weights = 0; + ushort3 tmp_we = convert_ushort3(w0) + convert_ushort3(w1) + convert_ushort3(w2); + sum_weights += tmp_we.s0 + tmp_we.s1 + tmp_we.s2; + values0 += sum_weights * (int8)(INPUT_OFFSET); +#if CONV_STRIDE_Y == 1 + values1 += sum_weights * (int8)(INPUT_OFFSET); +#endif /* CONV_STRIDE_Y == 1 */ +#endif /* INPUT_OFFSET != 0 */ + +#if K_OFFSET != 0 + values0 += (int8)(K_OFFSET); +#if CONV_STRIDE_Y == 1 + values1 += (int8)(K_OFFSET); +#endif /* CONV_STRIDE_Y == 1 */ +#endif /* K_OFFSET != 0 */ + + values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8); + values0 += (int8)OUTPUT_OFFSET; + uchar8 res0 = convert_uchar8_sat(values0); + res0 = max(res0, (uchar8)0); + res0 = min(res0, (uchar8)255); + + vstore8(ACTIVATION_FUNC(res0), 0, dst.ptr); +#if CONV_STRIDE_Y == 1 + + values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8); + values1 += (int8)OUTPUT_OFFSET; + uchar8 res1 = convert_uchar8_sat(values1); + res1 = max(res1, (uchar8)0); + res1 = min(res1, (uchar8)255); + + vstore8(ACTIVATION_FUNC(res1), 0, dst.ptr + dst_stride_y); +#endif /* CONV_STRIDE_Y == 1 */ +} + +#endif // ARM_COMPUTE_OPENCL_DOT8_ENABLED + +#endif /* defined(CONV_STRIDE_Y) && defined(CONV_STRIDE_X) && defined(DEPTH_MULTIPLIER) */ #if defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) @@ -272,7 +523,47 @@ __kernel void depthwise_convolution_3x3_quantized_nchw( #define MULTIPLY_ADD_ACCUMULATE(x, y, acc, sum) MULTIPLY_ADD(x, y, acc) #endif /* WEIGHTS_OFFSET != 0 */ -/** This function computes the depthwise convolution quantized. +#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) +#define DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) \ + ({ \ + ARM_DOT(val0.s0, val1.s0, val2.s0, val3.s0, w0.s0, w1.s0, w2.s0, w3.s0, acc.s0); \ + ARM_DOT(val4.s0, val5.s0, val6.s0, val7.s0, w4.s0, w5.s0, w6.s0, w7.s0, acc.s0); \ + acc.s0 += val8.s0 * w8.s0; \ + \ + ARM_DOT(val0.s1, val1.s1, val2.s1, val3.s1, w0.s1, w1.s1, w2.s1, w3.s1, acc.s1); \ + ARM_DOT(val4.s1, val5.s1, val6.s1, val7.s1, w4.s1, w5.s1, w6.s1, w7.s1, acc.s1); \ + acc.s1 += val8.s1 * w8.s1; \ + \ + ARM_DOT(val0.s2, val1.s2, val2.s2, val3.s2, w0.s2, w1.s2, w2.s2, w3.s2, acc.s2); \ + ARM_DOT(val4.s2, val5.s2, val6.s2, val7.s2, w4.s2, w5.s2, w6.s2, w7.s2, acc.s2); \ + acc.s2 += val8.s2 * w8.s2; \ + \ + ARM_DOT(val0.s3, val1.s3, val2.s3, val3.s3, w0.s3, w1.s3, w2.s3, w3.s3, acc.s3); \ + ARM_DOT(val4.s3, val5.s3, val6.s3, val7.s3, w4.s3, w5.s3, w6.s3, w7.s3, acc.s3); \ + acc.s3 += val8.s3 * w8.s3; \ + }) + +#if WEIGHTS_OFFSET != 0 +#define DOT_PRODUCT_ACCUMULATE(acc, sum, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) \ + ({ \ + sum += CONVERT(val0, VEC_INT) + CONVERT(val1, VEC_INT) + CONVERT(val2, VEC_INT) + CONVERT(val3, VEC_INT) + CONVERT(val4, VEC_INT) + CONVERT(val5, VEC_INT) + CONVERT(val6, VEC_INT) + CONVERT(val7, VEC_INT) + CONVERT(val8, VEC_INT); \ + DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8); \ + }) +#else /* WEIGHTS_OFFSET != 0 */ +#define DOT_PRODUCT_ACCUMULATE(acc, sum, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) DOT_PRODUCT(acc, val0, val1, val2, val3, val4, val5, val6, val7, val8, w0, w1, w2, w3, w4, w5, w6, w7, w8) +#endif /* WEIGHTS_OFFSET != 0 */ + +#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) + +#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) +/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width or height is not 1. + * + * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2) + * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1) + * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X) + * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1) * * @param[in] src_ptr Pointer to the source image. Supported data types: QASYMM8 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) @@ -282,7 +573,7 @@ __kernel void depthwise_convolution_3x3_quantized_nchw( * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) - * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: QASYMM8 + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) @@ -290,7 +581,7 @@ __kernel void depthwise_convolution_3x3_quantized_nchw( * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor - * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8 + * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes) * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes) @@ -298,160 +589,304 @@ __kernel void depthwise_convolution_3x3_quantized_nchw( * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes) * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes) * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor - * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: QASYMM8 + * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes) * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes) * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector + * @param[in] max_offset Max offset for the input tensor */ - -__kernel void depthwise_convolution_3x3_quantized_nhwc_stride1( +__kernel void depthwise_convolution_3x3_quantized_nhwc( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), TENSOR3D_DECLARATION(weights), #if defined(HAS_BIAS) - VECTOR_DECLARATION(biases) + VECTOR_DECLARATION(biases), #endif /* defined(HAS_BIAS) */ -) + int max_offset) { - int x = get_global_id(0); - int y = get_global_id(1); - int z = get_global_id(2); + const int x = get_global_id(0); // channels + const int y = get_global_id(1); // spatial coordinate x + const int z = get_global_id(2); // spatial coordinate y - Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Vector weights = CONVERT_TO_VECTOR_STRUCT(weights); -#if defined(HAS_BIAS) - Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); - VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr); -#endif /* defined(HAS_BIAS) */ + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE; - __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * src_step_x; - int8 y_coord = (int8)(y * (src_step_y / src_stride_y)) + (int8)(0, 1, 2, 3, 4, 5, 0, 0) - CONV_PAD_LEFT; - int z_coord = z * (src_step_z / src_stride_z) - CONV_PAD_TOP; + int z_coord = 0; + int4 offset = 0; + const int4 y_offset = ((int4)(y * CONV_STRIDE_X) + (int4)(0, 1, 2, 3) - CONV_PAD_LEFT) * (int4)src_stride_y; - VEC_INT sum_we = 0; - VEC_INT acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0; - VEC_INT sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0; + // We compute 2x1x1 [C,W,H] elements + VEC_INT acc = 0, sum = 0; - // z == 0 - VEC_UCHAR w0, w1, w2; - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); + // Load weights + VEC_UCHAR w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w3 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w4 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w5 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w6 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w7 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w8 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z); #if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); + VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT) + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT) + CONVERT(w6, VEC_INT) + CONVERT(w7, + VEC_INT) + + CONVERT(w8, VEC_INT); #endif /* INPUT_OFFSET != 0 */ - int valid_z = z_coord; - int8 valid_y = select(y_coord, -1, (int8)valid_z < 0); // If z < 0, set y to -1 - valid_y = select(valid_y, SRC_DIM_1, (int8)valid_z >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2 - valid_z = clamp(valid_z, 0, SRC_DIM_2 - 1); // Clamp z coordinate - - VEC_UCHAR values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc1, sum1); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc3, sum3); + // Load input values + // z == 0 + // Clamp z_coord as for z = 0, it can be negative + // z_coord is casted to unsigned int in order to use just a min() operation + // A "-1" 32 bit signed variable converted to unsigned gives 4294967295 + z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP; + z_coord = min((uint)z_coord, (uint)SRC_DIM_2); + offset = y_offset + (int4)(z_coord * src_stride_z); + offset = min(offset, max_offset); + + VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc3, sum3); + // z == 1 + // z_coord can be only negative for z = 0 so we do not need to clamp it + // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset + z_coord = z * CONV_STRIDE_Y - (int)CONV_PAD_TOP + 1; + offset = y_offset + (int4)(z_coord * src_stride_z); + VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s5 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc3, sum3); + // z == 2 + // After z = 1 we can simply add src_stride_z to offset without updating z_coord + // However offset can be out-of-bound so we need to check if it is greater than max_offset + offset += (int4)src_stride_z; + offset = min(offset, max_offset); + VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values8 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + + MULTIPLY_ADD_ACCUMULATE(values0, w0, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values1, w1, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values2, w2, acc, sum); + + MULTIPLY_ADD_ACCUMULATE(values3, w3, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values4, w4, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values5, w5, acc, sum); + + MULTIPLY_ADD_ACCUMULATE(values6, w6, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values7, w7, acc, sum); + MULTIPLY_ADD_ACCUMULATE(values8, w8, acc, sum); - weights.ptr += weights_stride_z; +#if defined(HAS_BIAS) + Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); + VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr); + acc += bias_values; +#endif // defined(HAS_BIAS) - // z == 1 - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); +#if WEIGHTS_OFFSET != 0 + acc += WEIGHTS_OFFSET * sum; +#endif /* WEIGHTS_OFFSET != 0 */ #if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); + acc += INPUT_OFFSET * sum_we; #endif /* INPUT_OFFSET != 0 */ - // Only unit pad_top/bottom allowed, this can never be out of bound - valid_z = z_coord + 1; - valid_y = y_coord; - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); +#if K_OFFSET != 0 + acc += (VEC_INT)K_OFFSET; +#endif /* K_OFFSET != 0 */ - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc1, sum1); + acc = asymm_mult_by_quant_multiplier_less_than_one(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT); + acc += (VEC_INT)OUTPUT_OFFSET; - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); + VEC_UCHAR res = CONVERT_SAT(acc, VEC_UCHAR); + res = CLAMP(res, (VEC_UCHAR)0, (VEC_UCHAR)255); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc3, sum3); + Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); + VSTORE(VEC_SIZE) + (res, 0, dst.ptr); +} +#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc3, sum3); +#if defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED) +/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1 + * + * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2) + * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112) + * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2) + * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1). + * + * @param[in] src_ptr Pointer to the source image. Supported data types: QASYMM8 + * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr + * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes) + * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes) + * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes) + * @param[in] weights_step_z weights_stride_z * number of elements along Y processed per workitem(in bytes) + * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor + * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: same as @p src_ptr + * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes) + * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector + * @param[in] max_offset Max offset for the input tensor + */ - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s5 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc3, sum3); +__kernel void depthwise_convolution_3x3_quantized_nhwc_stride1( + TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst), + TENSOR3D_DECLARATION(weights), +#if defined(HAS_BIAS) + VECTOR_DECLARATION(biases), +#endif /* defined(HAS_BIAS) */ + int max_offset) +{ + int x = get_global_id(0); + int y = get_global_id(1); + int z = get_global_id(2); - weights.ptr += weights_stride_z; + Vector weights = CONVERT_TO_VECTOR_STRUCT(weights); - // z == 2 - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE; + + int z_coord = 0; + int4 offset = 0; + int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - CONV_PAD_LEFT) * (int4)src_stride_y; + + // We compute 2x2x2 [C,W,H] elements + VEC_INT acc0 = 0, sum0 = 0; + VEC_INT acc1 = 0, sum1 = 0; + VEC_INT acc2 = 0, sum2 = 0; + VEC_INT acc3 = 0, sum3 = 0; + + // Load weights + VEC_UCHAR w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w3 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w4 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w5 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w6 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w7 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w8 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z); #if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); + VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT) + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT) + CONVERT(w6, VEC_INT) + CONVERT(w7, + VEC_INT) + + CONVERT(w8, VEC_INT); #endif /* INPUT_OFFSET != 0 */ - valid_z = z_coord + 2; - valid_y = select(y_coord, -1, (int8)valid_z < 0); - valid_y = select(valid_y, SRC_DIM_1, (int8)valid_z >= SRC_DIM_2); - valid_z = clamp(valid_z, 0, SRC_DIM_2 - 1); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc1, sum1); + // Load input values + // z == 0 + // Clamp z_coord as for z = 0, it can be negative + // z_coord is casted to unsigned int in order to use just a min() operation + // A "-1" 32 bit signed variable converted to unsigned gives 4294967295 + z_coord = z * NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP; + z_coord = min((uint)z_coord, (uint)SRC_DIM_2); + offset = y_offset + (int4)(z_coord * src_stride_z); + offset = min(offset, max_offset); + + VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); + // z == 1 + // z_coord can be only negative for z = 0 so we do not need to clamp it + // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset + z_coord = z * NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1; + offset = y_offset + (int4)(z_coord * src_stride_z); + VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc1, sum1); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc3, sum3); + // z == 2 + // After z = 1 we can simply add src_stride_z to offset without updating z_coord + // However offset can be out-of-bound so we need to check if it is greater than max_offset + offset += (int4)src_stride_z; + offset = min(offset, max_offset); + VEC_UCHAR values8 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values9 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values10 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values11 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); + + // z == 3 + // After z = 1 we can simply add src_stride_z to offset without updating z_coord + // However offset can be out-of-bound so we need to check if it is greater than max_offset + offset += (int4)(src_stride_z); + offset = min(offset, max_offset); + VEC_UCHAR values12 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values13 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values14 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values15 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); + + MULTIPLY_ADD_ACCUMULATE(values0, w0, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values1, w1, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values2, w2, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values1, w0, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values2, w1, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values3, w2, acc1, sum1); + + MULTIPLY_ADD_ACCUMULATE(values4, w3, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values5, w4, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values6, w5, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values5, w3, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values6, w4, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values7, w5, acc1, sum1); + + MULTIPLY_ADD_ACCUMULATE(values8, w6, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values9, w7, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values10, w8, acc0, sum0); + MULTIPLY_ADD_ACCUMULATE(values9, w6, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values10, w7, acc1, sum1); + MULTIPLY_ADD_ACCUMULATE(values11, w8, acc1, sum1); + + MULTIPLY_ADD_ACCUMULATE(values4, w0, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values5, w1, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values6, w2, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values5, w0, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values6, w1, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values7, w2, acc3, sum3); + + MULTIPLY_ADD_ACCUMULATE(values8, w3, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values9, w4, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values10, w5, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values9, w3, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values10, w4, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values11, w5, acc3, sum3); + + MULTIPLY_ADD_ACCUMULATE(values12, w6, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values13, w7, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values14, w8, acc2, sum2); + MULTIPLY_ADD_ACCUMULATE(values13, w6, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values14, w7, acc3, sum3); + MULTIPLY_ADD_ACCUMULATE(values15, w8, acc3, sum3); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc3, sum3); +#if defined(HAS_BIAS) + Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s5 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc3, sum3); + VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr); -#if defined(HAS_BIAS) acc0 += bias_values; acc1 += bias_values; acc2 += bias_values; @@ -501,17 +936,33 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1( res2 = CLAMP(res2, (VEC_UCHAR)0, (VEC_UCHAR)255); res3 = CLAMP(res3, (VEC_UCHAR)0, (VEC_UCHAR)255); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z; + VSTORE(VEC_SIZE) - (res0, 0, dst.ptr + 0 * dst_stride_y); - VSTORE(VEC_SIZE) - (res1, 0, dst.ptr + 1 * dst_stride_y); - VSTORE(VEC_SIZE) - (res2, 0, dst.ptr + 2 * dst_stride_y); + (res0, 0, dst_addr + 0 * dst_stride_y); VSTORE(VEC_SIZE) - (res3, 0, dst.ptr + 3 * dst_stride_y); + (res1, 0, dst_addr + 1 * dst_stride_y); + +#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0) + if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2) +#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0) + { + VSTORE(VEC_SIZE) + (res2, 0, dst_addr + 0 * dst_stride_y + 1 * dst_stride_z); + VSTORE(VEC_SIZE) + (res3, 0, dst_addr + 1 * dst_stride_y + 1 * dst_stride_z); + } } -/** This function computes the depthwise convolution quantized. +#if ARM_COMPUTE_OPENCL_DOT8_ENABLED +/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1 using dot product + * + * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2) + * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112) + * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2) + * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1) + * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1). * * @param[in] src_ptr Pointer to the source image. Supported data types: QASYMM8 * @param[in] src_stride_x Stride of the source image in X dimension (in bytes) @@ -543,166 +994,175 @@ __kernel void depthwise_convolution_3x3_quantized_nhwc_stride1( * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector */ -__kernel void depthwise_convolution_3x3_quantized_nhwc_stride2( +__kernel void depthwise_convolution_3x3_quantized_dot8_nhwc_stride1( TENSOR3D_DECLARATION(src), TENSOR3D_DECLARATION(dst), TENSOR3D_DECLARATION(weights), #if defined(HAS_BIAS) - VECTOR_DECLARATION(biases) + VECTOR_DECLARATION(biases), #endif /* defined(HAS_BIAS) */ -) + int max_offset) { int x = get_global_id(0); int y = get_global_id(1); int z = get_global_id(2); - Image dst = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(dst); Vector weights = CONVERT_TO_VECTOR_STRUCT(weights); -#if defined(HAS_BIAS) - Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); - VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr); -#endif /* defined(HAS_BIAS) */ - - __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * src_step_x; - int8 y_coord = (int8)(y * (src_step_y / src_stride_y)) + (int8)(0, 1, 2, 3, 4, 5, 0, 0) - CONV_PAD_LEFT; - int z_coord = z * (src_step_z / src_stride_z) - CONV_PAD_TOP; - - VEC_INT sum_we = 0; - VEC_INT acc0 = 0, acc2 = 0; - VEC_INT sum0 = 0, sum2 = 0; - - // z == 0 - VEC_UCHAR w0, w1, w2; - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); + __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE; + + int z_coord = 0; + int4 offset = 0; + int4 y_offset = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3) - CONV_PAD_LEFT) * (int4)src_stride_y; + + // We compute 2x2x2 [C,W,H] elements + VEC_INT acc0 = 0, sum0 = 0; + VEC_INT acc1 = 0, sum1 = 0; + VEC_INT acc2 = 0, sum2 = 0; + VEC_INT acc3 = 0, sum3 = 0; + + // Load weights + VEC_UCHAR w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 0 * weights_stride_z); + VEC_UCHAR w3 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w4 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w5 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 1 * weights_stride_z); + VEC_UCHAR w6 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w7 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y + 2 * weights_stride_z); + VEC_UCHAR w8 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y + 2 * weights_stride_z); #if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); + VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT) + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT) + CONVERT(w6, VEC_INT) + CONVERT(w7, + VEC_INT) + + CONVERT(w8, VEC_INT); #endif /* INPUT_OFFSET != 0 */ - int valid_z = z_coord; - int8 valid_y = select(y_coord, -1, (int8)valid_z < 0); // If z < 0, set y to -1 - valid_y = select(valid_y, SRC_DIM_1, (int8)valid_z >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2 - valid_z = clamp(valid_z, 0, SRC_DIM_2 - 1); // Clamp z coordinate - - VEC_UCHAR values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); - - weights.ptr += weights_stride_z; + // Load input values + // z == 0 + // Clamp z_coord as for z = 0, it can be negative + // z_coord is casted to unsigned int in order to use just a min() operation + // A "-1" 32 bit signed variable converted to unsigned gives 4294967295 + z_coord = z * NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP; + z_coord = min((uint)z_coord, (uint)SRC_DIM_2); + offset = y_offset + (int4)(z_coord * src_stride_z); + offset = min(offset, max_offset); + + VEC_UCHAR values0 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values1 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values2 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values3 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); // z == 1 - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); - -#if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); -#endif /* INPUT_OFFSET != 0 */ - - // Only unit pad_top/bottom allowed, this can never be out of bound - valid_z = z_coord + 1; - valid_y = y_coord; - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); - - weights.ptr += weights_stride_z; + // z_coord can be only negative for z = 0 so we do not need to clamp it + // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset + z_coord = z * NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1; + offset = y_offset + (int4)(z_coord * src_stride_z); + VEC_UCHAR values4 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values5 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values6 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values7 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); // z == 2 - w0 = VLOAD(VEC_SIZE)(0, weights.ptr + 0 * weights_stride_y); - w1 = VLOAD(VEC_SIZE)(0, weights.ptr + 1 * weights_stride_y); - w2 = VLOAD(VEC_SIZE)(0, weights.ptr + 2 * weights_stride_y); - -#if INPUT_OFFSET != 0 - sum_we += CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT); -#endif /* INPUT_OFFSET != 0 */ - - valid_z = z_coord + 2; - valid_y = select(y_coord, -1, (int8)valid_z < 0); - valid_y = select(valid_y, SRC_DIM_1, (int8)valid_z >= SRC_DIM_2); - valid_z = clamp(valid_z, 0, SRC_DIM_2 - 1); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s0 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc0, sum0); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s1 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc0, sum0); + // After z = 1 we can simply add src_stride_z to offset without updating z_coord + // However offset can be out-of-bound so we need to check if it is greater than max_offset + offset += (int4)src_stride_z; + offset = min(offset, max_offset); + VEC_UCHAR values8 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values9 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values10 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values11 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); + + // z == 3 + // After z = 1 we can simply add src_stride_z to offset without updating z_coord + // However offset can be out-of-bound so we need to check if it is greater than max_offset + offset += (int4)(src_stride_z); + offset = min(offset, max_offset); + VEC_UCHAR values12 = VLOAD(VEC_SIZE)(0, src_addr + offset.s0); + VEC_UCHAR values13 = VLOAD(VEC_SIZE)(0, src_addr + offset.s1); + VEC_UCHAR values14 = VLOAD(VEC_SIZE)(0, src_addr + offset.s2); + VEC_UCHAR values15 = VLOAD(VEC_SIZE)(0, src_addr + offset.s3); + + DOT_PRODUCT_ACCUMULATE(acc0, sum0, values0, values1, values2, values4, values5, values6, values8, values9, values10, w0, w1, w2, w3, w4, w5, w6, w7, w8); + DOT_PRODUCT_ACCUMULATE(acc1, sum1, values1, values2, values3, values5, values6, values7, values9, values10, values11, w0, w1, w2, w3, w4, w5, w6, w7, w8); + DOT_PRODUCT_ACCUMULATE(acc2, sum2, values4, values5, values6, values8, values9, values10, values12, values13, values14, w0, w1, w2, w3, w4, w5, w6, w7, w8); + DOT_PRODUCT_ACCUMULATE(acc3, sum3, values5, values6, values7, values9, values10, values11, values13, values14, values15, w0, w1, w2, w3, w4, w5, w6, w7, w8); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s2 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc0, sum0); - MULTIPLY_ADD_ACCUMULATE(values, w0, acc2, sum2); - - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s3 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w1, acc2, sum2); +#if defined(HAS_BIAS) + Vector biases = CONVERT_TO_VECTOR_STRUCT(biases); - values = VLOAD(VEC_SIZE)(0, src_addr + valid_y.s4 * (int)src_stride_y + valid_z * src_stride_z); - MULTIPLY_ADD_ACCUMULATE(values, w2, acc2, sum2); + VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr); -#if defined(HAS_BIAS) acc0 += bias_values; + acc1 += bias_values; acc2 += bias_values; + acc3 += bias_values; #endif /* defined(HAS_BIAS) */ #if WEIGHTS_OFFSET != 0 acc0 += WEIGHTS_OFFSET * sum0; + acc1 += WEIGHTS_OFFSET * sum1; acc2 += WEIGHTS_OFFSET * sum2; + acc3 += WEIGHTS_OFFSET * sum3; #endif /* WEIGHTS_OFFSET != 0 */ #if INPUT_OFFSET != 0 VEC_INT offs = INPUT_OFFSET * sum_we; acc0 += offs; + acc1 += offs; acc2 += offs; + acc3 += offs; #endif /* INPUT_OFFSET != 0 */ #if K_OFFSET != 0 acc0 += (VEC_INT)K_OFFSET; + acc1 += (VEC_INT)K_OFFSET; acc2 += (VEC_INT)K_OFFSET; + acc3 += (VEC_INT)K_OFFSET; #endif /* K_OFFSET != 0 */ acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT); + acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT); acc2 = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT); + acc3 = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT); + acc0 += (VEC_INT)OUTPUT_OFFSET; + acc1 += (VEC_INT)OUTPUT_OFFSET; acc2 += (VEC_INT)OUTPUT_OFFSET; + acc3 += (VEC_INT)OUTPUT_OFFSET; + VEC_UCHAR res0 = CONVERT_SAT(acc0, VEC_UCHAR); + VEC_UCHAR res1 = CONVERT_SAT(acc1, VEC_UCHAR); VEC_UCHAR res2 = CONVERT_SAT(acc2, VEC_UCHAR); - res0 = CLAMP(res0, (VEC_UCHAR)0, (VEC_UCHAR)255); - res2 = CLAMP(res2, (VEC_UCHAR)0, (VEC_UCHAR)255); + VEC_UCHAR res3 = CONVERT_SAT(acc3, VEC_UCHAR); + + res0 = CLAMP(res0, (VEC_UCHAR)0, (VEC_UCHAR)255); + res1 = CLAMP(res1, (VEC_UCHAR)0, (VEC_UCHAR)255); + res2 = CLAMP(res2, (VEC_UCHAR)0, (VEC_UCHAR)255); + res3 = CLAMP(res3, (VEC_UCHAR)0, (VEC_UCHAR)255); + + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z; VSTORE(VEC_SIZE) - (res0, 0, dst.ptr + 0 * dst_stride_y); + (res0, 0, dst_addr + 0 * dst_stride_y); VSTORE(VEC_SIZE) - (res2, 0, dst.ptr + 1 * dst_stride_y); + (res1, 0, dst_addr + 1 * dst_stride_y); + +#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0) + if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2) +#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0) + { + VSTORE(VEC_SIZE) + (res2, 0, dst_addr + 0 * dst_stride_y + 1 * dst_stride_z); + VSTORE(VEC_SIZE) + (res3, 0, dst_addr + 1 * dst_stride_y + 1 * dst_stride_z); + } } +#endif // ARM_COMPUTE_OPENCL_DOT8_ENABLED + +#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED) -#endif /* defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) */ +#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT) -#endif /* defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT) */ +#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT) -- cgit v1.2.1