From 3e155a52f19db046f83e30c25182460b00d108c7 Mon Sep 17 00:00:00 2001 From: Adnan AlSinan Date: Fri, 10 Dec 2021 12:34:02 +0000 Subject: Rework gemm_reshape_lhs_ with new macros Resolves COMPMID-4892 Signed-off-by: Adnan AlSinan Change-Id: I52f23ca293506fc693ae829daccc6e889a050752 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6833 Comments-Addressed: Arm Jenkins Reviewed-by: SiCong Li Reviewed-by: Giorgio Arena Tested-by: Arm Jenkins --- src/core/CL/cl_kernels/common/gemm_utils.cl | 421 ++++++++++------------------ 1 file changed, 143 insertions(+), 278 deletions(-) (limited to 'src/core/CL/cl_kernels/common') diff --git a/src/core/CL/cl_kernels/common/gemm_utils.cl b/src/core/CL/cl_kernels/common/gemm_utils.cl index 2e49614f81..be57d94ce6 100644 --- a/src/core/CL/cl_kernels/common/gemm_utils.cl +++ b/src/core/CL/cl_kernels/common/gemm_utils.cl @@ -21,56 +21,12 @@ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ -#include "helpers.h" -#include "tile_helpers.h" #include "gemm_helpers.h" +#include "helpers.h" #include "repeat.h" +#include "tile_helpers.h" -#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0) -#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1) -#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2) -#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3) -#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7) -#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) -#define CONCAT_INC(K0) INC##K0 -#define INC(K0) CONCAT_INC(K0) - -#if(SRC_WIDTH % K0) -#define BOUNDARY_CONDITION_X(x, a) \ - ({ \ - a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \ - }) -#else // (SRC_WIDTH % K0) -#define BOUNDARY_CONDITION_X(x, a) \ - ({}) -#endif // (SRC_WIDTH % K0) - -#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \ - ({ \ - if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \ - { \ - if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \ - { \ - LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ - } \ - else \ - { \ - LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ - } \ - } \ - else \ - { \ - if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \ - { \ - LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ - } \ - else \ - { \ - LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ - } \ - } \ - }) - +#if defined(RESHAPE_LHS_NT) /** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in * the output matrix unrolling the values. * @@ -78,45 +34,35 @@ * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16) * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2). - * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2) - * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1) - * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1) + * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_M0 (e.g. -DPARTIAL_M0=1) + * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_K0 (e.g. -DPARTIAL_K0=1) * @note Only the following values for M0, K0 and V0 are supported: * M0: 2,3,4,5,6,7,8 * K0: 2,3,4,8,16 * V0: greater than 0 - * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time: - * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D - * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor. - * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor - * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. * - * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All - * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes) - * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes) - * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes) - * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) - * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) - * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix - * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] src_ptr Pointer to the source tensor. Supported data types: All + * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_w The size of the width dimension of the source tensor + * @param[in] src_h The size of the height dimension of the source tensor + * @param[in] src_n The size of the depth dimension of the source tensor + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: All + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_w The size of the width dimension of the destination tensor + * @param[in] dst_h The size of the height dimension of the destination tensor + * @param[in] dst_n The size of the depth dimension of the destination tensor + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + * @param[in] M The size of height dimension of the source tensor, affected by reinterpret_input_as_3d + * @param[in] V0 The number of blocks to place on the same row. It must be greater than 0. */ -__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src), - TENSOR3D_DECLARATION(dst) -#if defined(REINTERPRET_INPUT_AS_3D) - , - uint cross_plane_pad -#endif // REINTERPRET_INPUT_AS_3D - ) +__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_T(src, BUFFER), + TENSOR3D_T(dst, BUFFER), + const int M, + const int V0) { // Block size #define BLOCK_SIZE ((M0) * (K0)) @@ -135,126 +81,63 @@ __kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src), #define OUTPUT_STEP_X (K0) #endif // defined(INTERLEAVE) - // Compute source and destination addresses - uint x = get_global_id(0); - uint y = get_global_id(1); - uint z = get_global_id(2); - - // ------------------ Compute input/output addresses --------------------------- - - // Compute the input address - __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y; - - // Compute the output address - __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) * - (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)); + const int x = GET_SPATIAL_IDX(0, 1, 0); // K + const int y = GET_SPATIAL_IDX(1, 1, 0); // M + const int z = GET_SPATIAL_IDX(2, 1, 0); // Batch size - // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0; - REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0); + const int xi = x * K0; + const int yi = y * M0; -#if defined(REINTERPRET_INPUT_AS_3D) - // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we - // multiply src_stride_z by DEPTH_GEMM3D + const int xo = x * BLOCK_SIZE * V0 + (y % V0) * OUTPUT_OFFSET_X; + const int yo = (y / V0); - input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D; - - // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y); - -#else // defined(REINTERPRET_INPUT_AS_3D) - - input_ptr += z * (uint)src_stride_z; + // src_stride_z is expressed as M * src_stride_y, to handle case where reinterpret_input_as_3d=true + src_offset_first_element_in_bytes += yi * src_stride_y + z * M * src_stride_y; + dst_offset_first_element_in_bytes += yo * dst_stride_y + z * dst_stride_z; -#endif // defined(REINTERPRET_INPUT_AS_3D) + TILE(DATA_TYPE, M0, K0, in); - // Add offset for batched GEMM - output_ptr += z * (uint)dst_stride_z; + // Initialize the input tile to zero + LOOP_UNROLLING(int, _i, 0, 1, M0, + { + in[_i].v = 0; + }); - // ---------------------------Load input values -------------------------------- - // Load values from the LHS matrix - REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0); + bool x_cond = (xi + K0 >= src_w) && (PARTIAL_K0 != 0); + bool y_cond = (yi + M0 >= M) && (PARTIAL_M0 != 0); + // Load input tile + TILE(uint, M0, 1, in_indirect_y); + LOOP_UNROLLING(int, _i, 0, 1, M0, + { + in_indirect_y[_i].v = _i; - LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); + }); +#if PARTIAL_M0 != 0 + if(y_cond) + { + T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, PARTIAL_M0, K0, PARTIAL_K0, BUFFER, src, xi, src_stride_y, x_cond, in, in_indirect_y); + } + else +#endif // PARTIAL_M0 != 0 + { + T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, K0, PARTIAL_K0, BUFFER, src, xi, src_stride_y, x_cond, in, in_indirect_y); + } - // ---------------------------Store output values ------------------------------ - REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0); - STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout); + // Store output tile + TILE(uint, M0, 1, dst_indirect_y); + LOOP_UNROLLING(int, _i, 0, 1, M0, + { + dst_indirect_y[_i].v = _i; + }); + T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, K0, 0, BUFFER, dst, xo, (OUTPUT_STEP_X * sizeof(DATA_TYPE)), false, in, dst_indirect_y); #undef BLOCK_SIZE #undef OUTPUT_OFFSET_X #undef OUTPUT_STEP_X } +#endif // defined(RESHAPE_LHS_NT) -#if M0 == 2 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, M0) \ - res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \ - VSTORE(M0) \ - (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - }) -#elif M0 == 3 // M0 == 3 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, M0) \ - res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \ - VSTORE(M0) \ - (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - }) -#elif M0 == 4 // M0 == 4 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, M0) \ - res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ - VSTORE(M0) \ - (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - }) -#elif M0 == 5 // M0 == 5 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, 4) \ - res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ - DATA_TYPE res1 = a4.s##i; \ - VSTORE(4) \ - (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \ - }) -#elif M0 == 6 // M0 == 6 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, 4) \ - res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ - VEC_DATA_TYPE(DATA_TYPE, 2) \ - res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \ - VSTORE(4) \ - (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - VSTORE(2) \ - (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \ - }) -#elif M0 == 7 // M0 == 7 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, 4) \ - res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ - VEC_DATA_TYPE(DATA_TYPE, 3) \ - res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \ - VSTORE(4) \ - (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - VSTORE(3) \ - (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \ - }) -#elif M0 == 8 // M0 == 8 -#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ - ({ \ - VEC_DATA_TYPE(DATA_TYPE, M0) \ - res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \ - VSTORE(M0) \ - (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ - }) -#else // M0 not supported -#error "M0 value not supported" -#endif // N0 conditions - +#if defined(RESHAPE_LHS_T) /** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in * the output matrix unrolling the values. * @@ -262,45 +145,35 @@ __kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src), * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16) * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2). - * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2) - * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1) - * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1) + * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_M0 (e.g. -DPARTIAL_M0=1) + * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_K0 (e.g. -DPARTIAL_K0=1) * @note Only the following values for M0, K0 and V0 are supported: - * M0: 2,3,4,5,6,7,8 + * M0: 2,3,4,8,16 * K0: 2,3,4,8,16 * V0: greater than 0 - * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time: - * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D - * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor. - * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor - * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. * - * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All - * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes) - * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes) - * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes) - * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor - * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr - * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) - * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) - * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) - * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) - * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) - * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) - * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix - * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + * @param[in] src_ptr Pointer to the source tensor. Supported data types: All + * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) + * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes) + * @param[in] src_w The size of the width dimension of the source tensor + * @param[in] src_h The size of the height dimension of the source tensor + * @param[in] src_n The size of the depth dimension of the source tensor + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor + * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: All + * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_w The size of the width dimension of the destination tensor + * @param[in] dst_h The size of the height dimension of the destination tensor + * @param[in] dst_n The size of the depth dimension of the destination tensor + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor + * @param[in] M The size of height dimension of the source tensor, affected by reinterpret_input_as_3d + * @param[in] V0 The number of blocks to place on the same row. It must be greater than 0 */ -__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src), - TENSOR3D_DECLARATION(dst) -#if defined(REINTERPRET_INPUT_AS_3D) - , - uint cross_plane_pad -#endif // REINTERPRET_INPUT_AS_3D - ) +__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_T(src, BUFFER), + TENSOR3D_T(dst, BUFFER), + const int M, + const int V0) { // Block size #define BLOCK_SIZE ((M0) * (K0)) @@ -319,78 +192,72 @@ __kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src), #define OUTPUT_STEP_X (M0) #endif // defined(INTERLEAVE) - // Compute source and destination addresses - uint x = get_global_id(0); - uint y = get_global_id(1); - uint z = get_global_id(2); - - // ------------------ Compute input/output addresses --------------------------- - - // Compute the input address - __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y; + const int x = GET_SPATIAL_IDX(0, 1, 0); // K + const int y = GET_SPATIAL_IDX(1, 1, 0); // M + const int z = GET_SPATIAL_IDX(2, 1, 0); // Batch size - // Compute the output address - __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) * - (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)); + const int xi = x * K0; + const int yi = y * M0; - // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0; - REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0); + const int xo = x * BLOCK_SIZE * V0 + ((y % V0) * OUTPUT_OFFSET_X); + const int yo = (y / V0); -#if defined(REINTERPRET_INPUT_AS_3D) - // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we - // multiply src_stride_z by DEPTH_GEMM3D - - input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D; - - // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y); - -#else // defined(REINTERPRET_INPUT_AS_3D) + // src_stride_z is expressed as M * src_stride_y, to handle case where reinterpret_input_as_3d=true + src_offset_first_element_in_bytes += yi * src_stride_y + z * M * src_stride_y; + dst_offset_first_element_in_bytes += yo * dst_stride_y + z * dst_stride_z; - input_ptr += z * (uint)src_stride_z; + TILE(DATA_TYPE, M0, K0, in); + TILE(DATA_TYPE, K0, M0, in_tr); -#endif // defined(REINTERPRET_INPUT_AS_3D) + // Initialize the tile to zero + LOOP_UNROLLING(int, _i, 0, 1, M0, + { + in[_i].v = 0; + }); - // Add offset for batched GEMM - output_ptr += z * (uint)dst_stride_z; + // Load input tile + bool x_cond = (xi + K0 >= src_w) && (PARTIAL_K0 != 0); + bool y_cond = (yi + M0 >= M) && (PARTIAL_M0 != 0); - // ---------------------------Load input values -------------------------------- - REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0); + TILE(uint, M0, 1, in_indirect_y); + LOOP_UNROLLING(int, _i, 0, 1, M0, + { + in_indirect_y[_i].v = _i; - LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); + }); +#if PARTIAL_M0 != 0 + if(y_cond) + { + T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, PARTIAL_M0, K0, PARTIAL_K0, BUFFER, src, xi, src_stride_y, x_cond, in, in_indirect_y); + } + else +#endif // PARTIAL_M0 != 0 + { + T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, K0, PARTIAL_K0, BUFFER, src, xi, src_stride_y, x_cond, in, in_indirect_y); + } + // Transpose input tile + LOOP_UNROLLING(int, m0, 0, 1, M0, + { + LOOP_UNROLLING(int, k0, 0, 1, K0, + { + in_tr[k0].s[m0] = in[m0].s[k0]; + }) + }); - // ---------------------------Transpose and store block ----------------------- + TILE(uint, K0, 1, dst_indirect_y); + LOOP_UNROLLING(int, _i, 0, 1, K0, + { + dst_indirect_y[_i].v = _i; + }); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1); -#if K0 > 2 - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2); -#endif // K0 > 2 -#if K0 > 3 - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3); -#endif // K0 > 3 -#if K0 > 4 - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7); -#endif // K0 > 4 -#if K0 > 8 - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E); - TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F); -#endif // K0 > 8 + // Store output tile + T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, K0, M0, 0, BUFFER, dst, xo, (OUTPUT_STEP_X * sizeof(DATA_TYPE)), false, in_tr, dst_indirect_y); #undef BLOCK_SIZE #undef OUTPUT_OFFSET_X #undef OUTPUT_STEP_X } -#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0) +#endif // defined(RESHAPE_LHS_T) #if defined(RESHAPE_RHS_NT) /** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in @@ -398,7 +265,6 @@ __kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src), * * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2). - * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2) * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. * @note Only the following values for K0, N0 and H0 are supported: * N0: 2,3,4,8,16 @@ -419,7 +285,7 @@ __kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src), * @param[in] dst_h The size of the height dimension of the destination tensor * @param[in] dst_n The size of the depth dimension of the destination tensor * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor - * @param[in] H0 The number of blocks to place on the same row. It must be greater than 0. + * @param[in] H0 The number of blocks to place on the same row. It must be greater than 0 */ __kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_T(src, BUFFER), TENSOR3D_T(dst, BUFFER), @@ -492,7 +358,6 @@ __kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_T(src, BUFFER), * * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2). - * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2) * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. * @note The option -DTRANSPOSE must passed at compile time. * @note Only the following values for K0, N0 and H0 are supported: -- cgit v1.2.1