From 9cca592c13f1e688a35698641069bcd37a525f0c Mon Sep 17 00:00:00 2001 From: ramelg01 Date: Thu, 11 Nov 2021 10:05:00 +0000 Subject: Improve start-up timer for GeMM (floating-point): - Pass M,N,K at runtime as kernel parameters - Add a guard macro to compile only kernel of interest - Move reshpaing kernels to gemm_utils.cl - Remove the fallback reshaping kernel with Y-Padding support Resolves: COMPMID-4888 Signed-off-by: Ramy Elgammal Change-Id: Ida3851326f0b77e410633271de9ecca106e37931 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6662 Tested-by: Arm Jenkins Reviewed-by: Gian Marco Iodice Comments-Addressed: Arm Jenkins --- src/core/CL/cl_kernels/common/gemm_utils.cl | 874 ++++++++++++++++++++++++++++ 1 file changed, 874 insertions(+) create mode 100644 src/core/CL/cl_kernels/common/gemm_utils.cl (limited to 'src/core/CL/cl_kernels/common/gemm_utils.cl') diff --git a/src/core/CL/cl_kernels/common/gemm_utils.cl b/src/core/CL/cl_kernels/common/gemm_utils.cl new file mode 100644 index 0000000000..89c00b553c --- /dev/null +++ b/src/core/CL/cl_kernels/common/gemm_utils.cl @@ -0,0 +1,874 @@ +/* + * Copyright (c) 2017-2021 Arm Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#include "gemm_helpers.h" +#include "repeat.h" + +#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0) +#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1) +#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2) +#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3) +#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7) +#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) +#define CONCAT_INC(K0) INC##K0 +#define INC(K0) CONCAT_INC(K0) + +#if(SRC_WIDTH % K0) +#define BOUNDARY_CONDITION_X(x, a) \ + ({ \ + a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \ + }) +#else // (SRC_WIDTH % K0) +#define BOUNDARY_CONDITION_X(x, a) \ + ({}) +#endif // (SRC_WIDTH % K0) + +#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \ + ({ \ + if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \ + { \ + if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \ + { \ + LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ + } \ + else \ + { \ + LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ + } \ + } \ + else \ + { \ + if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \ + { \ + LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ + } \ + else \ + { \ + LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \ + } \ + } \ + }) + +/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in + * the output matrix unrolling the values. + * + * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) + * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16) + * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) + * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2). + * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2) + * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1) + * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1) + * @note Only the following values for M0, K0 and V0 are supported: + * M0: 2,3,4,5,6,7,8 + * K0: 2,3,4,8,16 + * V0: greater than 0 + * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped + * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. + * + * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All + * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + */ +__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst) +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D + ) +{ + // Block size +#define BLOCK_SIZE ((M0) * (K0)) + + // Output offset X +#if defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (K0) +#else // defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (BLOCK_SIZE) +#endif // defined(INTERLEAVE) + + // Output step X +#if defined(INTERLEAVE) +#define OUTPUT_STEP_X (K0) * (V0) +#else // Do not interleave +#define OUTPUT_STEP_X (K0) +#endif // defined(INTERLEAVE) + + // Compute source and destination addresses + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + // ------------------ Compute input/output addresses --------------------------- + + // Compute the input address + __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y; + + // Compute the output address + __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) * + (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)); + + // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0; + REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply src_stride_z by DEPTH_GEMM3D + + input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D; + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y); + +#else // defined(REINTERPRET_INPUT_AS_3D) + + input_ptr += z * (uint)src_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + output_ptr += z * (uint)dst_stride_z; + + // ---------------------------Load input values -------------------------------- + // Load values from the LHS matrix + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0); + + LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); + + // ---------------------------Store output values ------------------------------ + REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0); + STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout); + +#undef BLOCK_SIZE +#undef OUTPUT_OFFSET_X +#undef OUTPUT_STEP_X +} + +#if M0 == 2 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, M0) \ + res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \ + VSTORE(M0) \ + (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + }) +#elif M0 == 3 // M0 == 3 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, M0) \ + res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \ + VSTORE(M0) \ + (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + }) +#elif M0 == 4 // M0 == 4 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, M0) \ + res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ + VSTORE(M0) \ + (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + }) +#elif M0 == 5 // M0 == 5 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, 4) \ + res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ + DATA_TYPE res1 = a4.s##i; \ + VSTORE(4) \ + (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \ + }) +#elif M0 == 6 // M0 == 6 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, 4) \ + res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ + VEC_DATA_TYPE(DATA_TYPE, 2) \ + res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \ + VSTORE(4) \ + (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + VSTORE(2) \ + (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \ + }) +#elif M0 == 7 // M0 == 7 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, 4) \ + res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \ + VEC_DATA_TYPE(DATA_TYPE, 3) \ + res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \ + VSTORE(4) \ + (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + VSTORE(3) \ + (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \ + }) +#elif M0 == 8 // M0 == 8 +#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \ + ({ \ + VEC_DATA_TYPE(DATA_TYPE, M0) \ + res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \ + VSTORE(M0) \ + (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \ + }) +#else // M0 not supported +#error "M0 value not supported" +#endif // N0 conditions + +/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in + * the output matrix unrolling the values. + * + * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) + * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16) + * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) + * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2). + * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2) + * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1) + * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1) + * @note Only the following values for M0, K0 and V0 are supported: + * M0: 2,3,4,5,6,7,8 + * K0: 2,3,4,8,16 + * V0: greater than 0 + * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time: + * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D + * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor. + * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor + * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped + * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. + * + * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All + * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D) + */ +__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst) +#if defined(REINTERPRET_INPUT_AS_3D) + , + uint cross_plane_pad +#endif // REINTERPRET_INPUT_AS_3D + ) +{ + // Block size +#define BLOCK_SIZE ((M0) * (K0)) + + // Output offset X +#if defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (M0) +#else // defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (BLOCK_SIZE) +#endif // defined(INTERLEAVE) + + // Output step X +#if defined(INTERLEAVE) +#define OUTPUT_STEP_X (M0) * (V0) +#else // Do not interleave +#define OUTPUT_STEP_X (M0) +#endif // defined(INTERLEAVE) + + // Compute source and destination addresses + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + // ------------------ Compute input/output addresses --------------------------- + + // Compute the input address + __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y; + + // Compute the output address + __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) * + (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)); + + // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0; + REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0); + +#if defined(REINTERPRET_INPUT_AS_3D) + // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we + // multiply src_stride_z by DEPTH_GEMM3D + + input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D; + + // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D + CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y); + +#else // defined(REINTERPRET_INPUT_AS_3D) + + input_ptr += z * (uint)src_stride_z; + +#endif // defined(REINTERPRET_INPUT_AS_3D) + + // Add offset for batched GEMM + output_ptr += z * (uint)dst_stride_z; + + // ---------------------------Load input values -------------------------------- + REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0); + + LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); + + // ---------------------------Transpose and store block ----------------------- + + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1); +#if K0 > 2 + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2); +#endif // K0 > 2 +#if K0 > 3 + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3); +#endif // K0 > 3 +#if K0 > 4 + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7); +#endif // K0 > 4 +#if K0 > 8 + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E); + TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F); +#endif // K0 > 8 + +#undef BLOCK_SIZE +#undef OUTPUT_OFFSET_X +#undef OUTPUT_STEP_X +} +#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0) + +#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT) +/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in + * the output matrix unrolling the values. + * + * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) + * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) + * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2). + * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. + * @note Only the following values for K0, N0 and H0 are supported: + * N0: 2,3,4,8,16 + * K0: 1,2,3,4,8,16 + * H0: greater than 0 + * + * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All + * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + */ +__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + // Block size +#define BLOCK_SIZE ((K0) * (N0)) + + // Output offset X +#if defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (N0) +#else // defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (BLOCK_SIZE) +#endif // defined(INTERLEAVE) + + // Output step X +#if defined(INTERLEAVE) +#define OUTPUT_STEP_X (N0) * (H0) +#else // Do not interleave +#define OUTPUT_STEP_X (N0) +#endif // defined(INTERLEAVE) + + // Compute source and destination addresses + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + // ------------------ Compute input/output addresses --------------------------- + + // Compute the input address + __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z; + + // Compute the output address + __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + (( + x / (uint)H0) + * (uint)dst_stride_y) + + z * (uint)dst_stride_z; + + // ---------------------------Load input values -------------------------------- + + REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0; + + // Load values from the RHS matrix + a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y)); +#if K0 > 1 + if(y * (uint)K0 + 1 < SRC_HEIGHT) + { + a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y)); + } +#endif // K0 > 1 +#if K0 > 2 + if(y * (uint)K0 + 2 < SRC_HEIGHT) + { + a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y)); + } +#endif // K0 > 2 +#if K0 > 3 + if(y * (uint)K0 + 3 < SRC_HEIGHT) + { + a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y)); + } +#endif // K0 > 3 +#if K0 > 4 + if(y * (uint)K0 + 4 < SRC_HEIGHT) + { + a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y)); + } + if(y * (uint)K0 + 5 < SRC_HEIGHT) + { + a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y)); + } + if(y * (uint)K0 + 6 < SRC_HEIGHT) + { + a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y)); + } + if(y * (uint)K0 + 7 < SRC_HEIGHT) + { + a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y)); + } +#endif // K0 > 4 +#if K0 > 8 + if(y * (uint)K0 + 8 < SRC_HEIGHT) + { + a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y)); + } + if(y * (uint)K0 + 9 < SRC_HEIGHT) + { + a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y)); + } + if(y * (uint)K0 + 10 < SRC_HEIGHT) + { + aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y)); + } + if(y * (uint)K0 + 11 < SRC_HEIGHT) + { + aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y)); + } + if(y * (uint)K0 + 12 < SRC_HEIGHT) + { + aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y)); + } + if(y * (uint)K0 + 13 < SRC_HEIGHT) + { + aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y)); + } + if(y * (uint)K0 + 14 < SRC_HEIGHT) + { + aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y)); + } + if(y * (uint)K0 + 15 < SRC_HEIGHT) + { + aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y)); + } +#endif // K0 > 8 + + // ---------------------------Store output values ------------------------------ + REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0); + STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout); + +#undef BLOCK_SIZE +#undef OUTPUT_OFFSET_X +#undef OUTPUT_STEP_X +} + +#if defined(TRANSPOSE) +/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in + * the output matrix unrolling the values. + * + * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float) + * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16) + * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2). + * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2) + * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time. + * @note The option -DTRANSPOSE must passed at compile time. + * @note Only the following values for K0, N0 and H0 are supported: + * N0: 2,3,4,8,16 + * K0: 2,3,4,8,16 + * H0: greater than 0 + * + * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All + * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes) + * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes) + * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes) + * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor + * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr + * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes) + * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes) + * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes) + * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes) + * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes) + * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes) + * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix + */ +__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src), + TENSOR3D_DECLARATION(dst)) +{ + // Block size +#define BLOCK_SIZE ((K0) * (N0)) + + // Output offset X +#if defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (K0) +#else // defined(INTERLEAVE) +#define OUTPUT_OFFSET_X (BLOCK_SIZE) +#endif // defined(INTERLEAVE) + + // Output step X +#if defined(INTERLEAVE) +#define OUTPUT_STEP_X (K0) * (H0) +#else // Do not interleave +#define OUTPUT_STEP_X (K0) +#endif // defined(INTERLEAVE) + + // Compute source and destination addresses + uint x = get_global_id(0); + uint y = get_global_id(1); + uint z = get_global_id(2); + + // ------------------ Compute input/output addresses --------------------------- + + // Compute the input address + __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z; + + // Compute the output address + __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x / + (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z; + + // ---------------------------Load input values -------------------------------- + REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0; + + // Load values from the RHS matrix + a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y)); + if(y * (uint)K0 + 1 < SRC_HEIGHT) + { + a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y)); + } +#if K0 > 2 + if(y * (uint)K0 + 2 < SRC_HEIGHT) + { + a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y)); + } +#endif // K0 > 2 +#if K0 > 3 + if(y * (uint)K0 + 3 < SRC_HEIGHT) + { + a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y)); + } +#endif // K0 > 3 +#if K0 > 4 + if(y * (uint)K0 + 4 < SRC_HEIGHT) + { + a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y)); + } + if(y * (uint)K0 + 5 < SRC_HEIGHT) + { + a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y)); + } + if(y * (uint)K0 + 6 < SRC_HEIGHT) + { + a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y)); + } + if(y * (uint)K0 + 7 < SRC_HEIGHT) + { + a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y)); + } +#endif // K0 > 4 +#if K0 > 8 + if(y * (uint)K0 + 8 < SRC_HEIGHT) + { + a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y)); + } + if(y * (uint)K0 + 9 < SRC_HEIGHT) + { + a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y)); + } + if(y * (uint)K0 + 10 < SRC_HEIGHT) + { + aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y)); + } + if(y * (uint)K0 + 11 < SRC_HEIGHT) + { + aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y)); + } + if(y * (uint)K0 + 12 < SRC_HEIGHT) + { + aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y)); + } + if(y * (uint)K0 + 13 < SRC_HEIGHT) + { + aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y)); + } + if(y * (uint)K0 + 14 < SRC_HEIGHT) + { + aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y)); + } + if(y * (uint)K0 + 15 < SRC_HEIGHT) + { + aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y)); + } +#endif // K0 > 8 + + // ---------------------------Transpose the block ------------------------------ + REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0; + +#if K0 == 2 + // This part computes the following transpositions: + // 2x2 -> 2x2 + // 2x4 -> 4x2 + // 2x8 -> 8x2 + // 2x16 -> 16x2 + res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0); + res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1); +#if N0 > 2 + res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2); +#endif // N0 > 2 +#if N0 > 3 + res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3); +#endif // N0 > 3 +#if N0 > 4 + res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4); + res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5); + res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6); + res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7); +#endif // N0 > 4 +#if N0 > 8 + res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8); + res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9); + resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA); + resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB); + resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC); + resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD); + resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE); + resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF); +#endif // N0 > 8 + +#elif K0 == 3 // K0 == 2 + // This part computes the following transpositions: + // 3x2 -> 2x3 + // 3x4 -> 4x3 + // 3x8 -> 8x3 + // 3x16 -> 16x3 + res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0); + res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1); +#if N0 > 2 + res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2); +#endif // N0 > 2 +#if N0 > 3 + res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3); +#endif // N0 > 3 +#if N0 > 4 + res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4); + res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5); + res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6); + res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7); +#endif // N0 > 4 +#if N0 > 8 + res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8); + res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9); + resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA); + resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB); + resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC); + resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD); + resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE); + resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF); +#endif // N0 > 8 + +#elif K0 == 4 // K0 == 4 + // This part computes the following transpositions: + // 4x2 -> 2x4 + // 4x4 -> 4x4 + // 4x8 -> 8x4 + // 4x16 -> 16x4 + res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0); + res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1); +#if N0 > 2 + res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2); +#endif // N0 > 2 +#if N0 > 3 + res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3); +#endif // N0 > 3 +#if N0 > 4 + res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4); + res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5); + res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6); + res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7); +#endif // N0 > 4 +#if N0 > 8 + res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8); + res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9); + resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA); + resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB); + resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC); + resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD); + resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE); + resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF); +#endif // N0 > 8 + +#elif K0 == 8 // K0 == 8 + // This part computes the following transpositions: + // 8x2 -> 2x8 + // 8x4 -> 4x8 + // 8x8 -> 8x8 + // 8x16 -> 16x8 + res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0); + res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1); +#if N0 > 2 + res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2); +#endif // N0 > 2 +#if N0 > 3 + res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3); +#endif // N0 > 3 +#if N0 > 4 + res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4); + res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5); + res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6); + res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7); +#endif // N0 > 4 +#if N0 > 8 + res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8); + res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9); + resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA); + resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB); + resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC); + resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD); + resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE); + resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF); +#endif // N0 > 8 + +#elif K0 == 16 // K0 == 16 + + // This part computes the following transpositions: + // 16x2 -> 2x16 + // 16x4 -> 4x16 + // 16x8 -> 8x16 + // 16x16 -> 16x16 + res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0, + a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0); + res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1, + a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1); +#if N0 > 2 + res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2, + a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2); +#endif // N0 > 2 +#if N0 > 3 + res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3, + a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3); +#endif // N0 > 3 +#if N0 > 4 + res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4, + a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4); + res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5, + a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5); + res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6, + a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6); + res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7, + a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7); +#endif // N0 > 4 +#if N0 > 8 + res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8, + a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8); + res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9, + a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9); + resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA, + a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA); + resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB, + a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB); + resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC, + a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC); + resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD, + a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD); + resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE, + a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE); + resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF, + a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF); +#endif // N0 > 8 + +#else // N0 == 16 +#error "Not supported N0 value" +#endif // N0 > 2 + + // ---------------------------Store the output values ------------------------------ + REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0); + STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout); + +#undef BLOCK_SIZE +#undef OUTPUT_OFFSET_X +#undef OUTPUT_STEP_X +} +#endif // defined(TRANSPOSE) +#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT) -- cgit v1.2.1