From 71cbd28b7cf5115b0451d43e5c84cce4ae4d8ec7 Mon Sep 17 00:00:00 2001 From: SiCongLi Date: Wed, 3 Nov 2021 12:17:06 +0000 Subject: Fix out-of-bound reads in cl gemm kernels * Revert "Remove padding in FP Cl Gemm kernels" This reverts commit 48717a3d38fef8d316cd4b9fd9a3bc1a43db736b. * Allow different boundary row handling strategies across native, reshaped and reshaped_only_rhs kernels by introducing a ELTWISE_OPERAND_ROW parameter to the macro Resolves COMPMID-4919 Change-Id: Icefc23c0760a6abb838fef1d0d5bda06b07c79e3 Signed-off-by: SiCongLi Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6569 Comments-Addressed: Arm Jenkins Tested-by: Arm Jenkins Reviewed-by: Gian Marco Iodice --- src/core/CL/cl_kernels/common/gemm.cl | 94 ++++++++++++++++------------------- 1 file changed, 42 insertions(+), 52 deletions(-) (limited to 'src/core/CL/cl_kernels/common/gemm.cl') diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl index 6502dd496a..a76ad458a6 100644 --- a/src/core/CL/cl_kernels/common/gemm.cl +++ b/src/core/CL/cl_kernels/common/gemm.cl @@ -1097,6 +1097,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1105,7 +1108,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; // Compute RHS reshaped matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; @@ -1122,7 +1125,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1221,18 +1224,14 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), rhs_offset += sizeof(DATA_TYPE); } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary - const bool cond_y = ((y + 1) * M0 >= M); - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -1265,7 +1264,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -1395,6 +1394,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1403,7 +1405,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 @@ -1421,7 +1423,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1569,18 +1571,14 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #endif // LEFTOVER_K != 0 - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary - const bool cond_y = ((y + 1) * M0 >= M); - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -1613,7 +1611,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -1818,6 +1816,9 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1826,7 +1827,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; // Compute RHS reshaped matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; @@ -1844,7 +1845,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1968,17 +1969,13 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE); } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary - const bool cond_y = ((y + 1) * M0 >= M); - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -2011,7 +2008,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -2137,6 +2134,9 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -2145,7 +2145,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 @@ -2164,7 +2164,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -2279,17 +2279,13 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), x_rhs += RHS_STEP_X; } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary - const bool cond_y = ((y + 1) * M0 >= M); - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -2322,7 +2318,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -2714,7 +2710,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -2986,7 +2981,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -3297,7 +3291,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs), const uint y = get_global_id(1); const uint z = get_global_id(2); - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -3853,7 +3846,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -4124,7 +4116,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; // Compute RHS matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE); @@ -4141,7 +4133,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -4248,17 +4240,13 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), rhs_offset += rhs_stride_y; } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); - // Boundary conditions: detect if current block is at the "bottom" or "right" boundary - const bool cond_y = ((y + 1) * M0 >= M); - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -4281,7 +4269,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); - LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); + LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); @@ -4291,10 +4279,9 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( - 2) * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; - LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); + LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); @@ -4310,6 +4297,9 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); #endif // defined(ACTIVATION_TYPE) + const bool cond_y = y == 0; + const bool cond_x = ((x + 1) * N0 >= N); + // Store output block STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); } -- cgit v1.2.1