From ddb93bbf12fc9d685e7ddbef703a886d67cbda9b Mon Sep 17 00:00:00 2001 From: Georgios Pinitas Date: Fri, 2 Oct 2020 16:38:59 +0100 Subject: COMPMID-3637: Move wrapper to src Signed-off-by: Georgios Pinitas Change-Id: I524b0c4b49c7a7035b7d078b9585d77b0d438e10 Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/4083 Reviewed-by: Michele Di Giorgio Reviewed-by: Michalis Spyrou Comments-Addressed: Arm Jenkins --- arm_compute/core/NEON/NESymm.h | 256 ----------------------------------------- 1 file changed, 256 deletions(-) delete mode 100644 arm_compute/core/NEON/NESymm.h (limited to 'arm_compute/core/NEON/NESymm.h') diff --git a/arm_compute/core/NEON/NESymm.h b/arm_compute/core/NEON/NESymm.h deleted file mode 100644 index 6dee8705f4..0000000000 --- a/arm_compute/core/NEON/NESymm.h +++ /dev/null @@ -1,256 +0,0 @@ -/* - * Copyright (c) 2019-2020 Arm Limited. - * - * SPDX-License-Identifier: MIT - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to - * deal in the Software without restriction, including without limitation the - * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or - * sell copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ -#ifndef ARM_COMPUTE_NESYMM_H -#define ARM_COMPUTE_NESYMM_H - -#include "arm_compute/core/NEON/NEMath.h" -#include "arm_compute/core/utils/quantization/AsymmHelpers.h" -#include - -namespace arm_compute -{ -using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */ -using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */ - -using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */ -using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */ - -/** Performs final quantization step on 8 signed 16-bit elements - * - * @tparam is_bounded_relu Specified if a fused bounded relu should be applied - * - * @param[in] in_s32 Input to be quantized. - * @param[in] result_fixedpoint_multiplier Result multiplier parameter - * @param[in] result_shift Result shift parameter - * @param[in] min_s16 Relu lower bound - * @param[in] max_s16 Relu upper bound - * - * @return Quantized values - */ -template -int16x8_t finalize_quantization_int16(int32x4x2_t &in_s32, - int result_fixedpoint_multiplier, - int32_t result_shift, - int16x8_t min_s16, - int16x8_t max_s16) -{ - if(result_shift < 0) - { - in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift)); - in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift)); - - in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier); - in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier); - } - else - { - // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar - in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier); - in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier); - // Round to the nearest division by a power-of-two using result_shift_s32 - in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift); - in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift); - } - - // Convert S32 to S16 - int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])); - - if(is_bounded_relu) - { - out_s16 = vmaxq_s16(out_s16, min_s16); - out_s16 = vminq_s16(out_s16, max_s16); - } - - return out_s16; -} - -/** Performs final quantization step on single signed 16-bit element - * - * @tparam is_bounded_relu Specified if a fused bounded relu should be applied - * - * @param[in] in_value Input to be quantized. - * @param[in] result_fixedpoint_multiplier Result multiplier parameter - * @param[in] result_shift Result shift parameter - * @param[in] min_s16 Relu lower bound - * @param[in] max_s16 Relu upper bound - * - * @return Quantized values - */ -template -inline int16_t finalize_quantization_int16(int32_t in_value, int result_fixedpoint_multiplier, - int32_t result_shift, int16_t min_s16, int16_t max_s16) -{ - if(result_shift < 0) - { - const int64_t in_64 = static_cast(in_value) * (1 << (-result_shift)) * static_cast(result_fixedpoint_multiplier); - in_value = static_cast((in_64 + (1 << 30)) >> 31); - } - else - { - // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar - const int64_t in_64 = static_cast(in_value) * static_cast(result_fixedpoint_multiplier); - // Shift value by result_shift_s32 - in_value = rounding_divide_by_pow2(static_cast((in_64 + (1 << 30)) >> 31), result_shift); - } - - // Bound the result - int16_t out_s16 = static_cast(std::max(-32768, std::min(32767, in_value))); - - if(is_bounded_relu) - { - out_s16 = static_cast(std::max(min_s16, std::min(max_s16, out_s16))); - } - - return out_s16; -} - -/** Dequantize a neon vector holding 8 16-bit quantized values. - * - * @param[in] qv Input values to be dequantized. - * @param[in] scale Quantization scale - * - * @return Dequantized values in a neon vector - */ -inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale) -{ - const float32x4_t vscale = vdupq_n_f32(scale); - const float32x4x2_t vdequantized_input = - { - { - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale), - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale) - } - }; - return vdequantized_input; -} - -/** Quantize a neon vector holding 8 floating point values. - * - * @param[in] qv Input values to be quantized. - * @param[in] scale Quantization scale - * - * @return A neon vector holding the quantized values - */ -inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale) -{ - const float32x4_t vinvscale = vdupq_n_f32(1.f / scale); - - const int32x4x2_t rf = - { - { -#ifdef __aarch64__ - vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), - vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)) -#else //__aarch64__ - vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), - vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)) -#endif //__aarch64__ - } - }; - return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])); -} - -/** Dequantize a neon vector holding 16 16-bit quantized values. - * - * @param[in] qv Input values to be dequantized. - * @param[in] qi Quantization information to be used in the computation. - * - * @return Dequantized values in a neon vector - */ -inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi) -{ - const float scale = qi.scale; - const float32x4_t vscale = vdupq_n_f32(scale); - const float32x4x4_t vdequantized_input = - { - { - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale), - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale), - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale), - vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale), - } - }; - return vdequantized_input; -} - -/** Quantize a neon vector holding 16 floating point values. - * - * @param[in] qv Input values to be quantized. - * @param[in] qi Quantization information to be used in the computation. - * - * @return A neon vector holding the quantized values - */ -inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi) -{ - const float scale = qi.scale; - ARM_COMPUTE_ERROR_ON(scale == 0.f); - const float32x4_t vinvscale = vdupq_n_f32(1.f / scale); - const int32x4x4_t rf = - { - { -#ifdef __aarch64__ - vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), - vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)), - vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)), - vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)), -#else //__aarch64__ - vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), - vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)), - vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)), - vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)), -#endif //__aarch64__ - } - }; - const qsymm16x8x2_t res = - { - vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])), - vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])), - }; - - return res; -} - -/** Multiply a neon vector using quantized multiplier and shift - * - * @param[in] input Input vector to mutiply values to be quantized. - * @param[in] qmul Quantized multipler - * @param[in] shift Left bit shift - * - * @return A neon vector holding the multiplied value - */ -inline int32x4x2_t multiply_by_quantized_multiplier_2row(int32x4x2_t input, int32_t qmul, int32_t shift) -{ - const auto left_shift = shift > 0 ? shift : 0; - const auto right_shift = shift > 0 ? 0 : -shift; - const auto one_shifted = 1 << left_shift; - - int32x4x2_t result; - result.val[0] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[0], one_shifted), qmul), right_shift); - result.val[1] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[1], one_shifted), qmul), right_shift); - - return result; -} - -} // namespace arm_compute -#endif // ARM_COMPUTE_NESYMM_H -- cgit v1.2.1