From 48717a3d38fef8d316cd4b9fd9a3bc1a43db736b Mon Sep 17 00:00:00 2001 From: SiCongLi Date: Thu, 28 Oct 2021 18:42:51 +0100 Subject: Remove padding in FP Cl Gemm kernels * Remove rhs and bias padding in ClGemmMatrixMultiplyNativeKernel * Rework ClGemmMatrixMultiplyReshapedOnlyRHSKernel to use the same padding boundary condition as the other kernels Partially resolves COMPMID-4435 Change-Id: I1c17af9cca0b5cb3be087ce160948b7b0e62d297 Signed-off-by: SiCongLi Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6549 Reviewed-by: Gian Marco Iodice Comments-Addressed: Arm Jenkins Tested-by: Arm Jenkins --- src/core/CL/cl_kernels/common/gemm.cl | 94 ++++++++++++---------- .../kernels/ClGemmMatrixMultiplyNativeKernel.cpp | 49 ++--------- 2 files changed, 60 insertions(+), 83 deletions(-) diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl index dd03147ad6..9732588b31 100644 --- a/src/core/CL/cl_kernels/common/gemm.cl +++ b/src/core/CL/cl_kernels/common/gemm.cl @@ -1096,9 +1096,6 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); - const bool cond_y = y == 0; - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1107,7 +1104,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; // Compute RHS reshaped matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; @@ -1124,7 +1121,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1223,14 +1220,18 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), rhs_offset += sizeof(DATA_TYPE); } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary + const bool cond_y = ((y + 1) * M0 >= M); + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -1263,7 +1264,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -1392,9 +1393,6 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); - const bool cond_y = y == 0; - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1403,7 +1401,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 @@ -1421,7 +1419,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1569,14 +1567,18 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), #endif // LEFTOVER_K != 0 - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary + const bool cond_y = ((y + 1) * M0 >= M); + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -1609,7 +1611,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -1813,9 +1815,6 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); - const bool cond_y = y == 0; - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -1824,7 +1823,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; // Compute RHS reshaped matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + (x % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (x / (uint)H0) * rhs_stride_y; @@ -1842,7 +1841,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -1966,13 +1965,17 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE); } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary + const bool cond_y = ((y + 1) * M0 >= M); + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -2005,7 +2008,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -2130,9 +2133,6 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), uint y = get_global_id(1); uint z = get_global_id(2); - const bool cond_y = y == 0; - const bool cond_x = ((x + 1) * N0 >= N); - #if defined(DUMMY_WORK_ITEMS) if((x * N0 >= N) || (y * M0 >= M)) { @@ -2141,7 +2141,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; #if defined(MATRIX_B_DEPTH) // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3 @@ -2160,7 +2160,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zin, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zin, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -2275,13 +2275,17 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), x_rhs += RHS_STEP_X; } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0; + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary + const bool cond_y = ((y + 1) * M0 >= M); + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -2314,7 +2318,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * bias_stride_y) + z * bias_stride_z; LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); @@ -2706,6 +2710,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -2977,6 +2982,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -3287,6 +3293,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs), const uint y = get_global_id(1); const uint z = get_global_id(2); + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -3842,6 +3849,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs), REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary const bool cond_y = ((get_global_id(1) + 1) * M0 >= M); const bool cond_x = ((get_global_id(0) + 1) * N0 >= N); @@ -4111,7 +4119,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #endif // defined(DUMMY_WORK_ITEMS) // Compute LHS matrix address - uint lhs_offset = lhs_offset_first_element_in_bytes + COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * (uint)lhs_stride_y; + uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y; // Compute RHS matrix address uint rhs_offset = rhs_offset_first_element_in_bytes + x * N0 * sizeof(DATA_TYPE); @@ -4128,7 +4136,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #if defined(REINTERPRET_INPUT_AS_3D) // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zlhs, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zlhs, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply lhs_stride_z by DEPTH_GEMM3D @@ -4235,13 +4243,17 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), rhs_offset += rhs_stride_y; } - __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y); + __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * M0 * dst_stride_y); REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); + // Boundary conditions: detect if current block is at the "bottom" or "right" boundary + const bool cond_y = ((y + 1) * M0 >= M); + const bool cond_x = ((x + 1) * N0 >= N); + #if defined(REINTERPRET_OUTPUT_AS_3D) // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D - CALCULATE_Z_OFFSET(M0, uint, zout, COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0), HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); + CALCULATE_Z_OFFSET(M0, uint, zout, y * M0, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y); // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we // multiply dst_stride_z by DEPTH_GEMM3D @@ -4264,7 +4276,7 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), #if defined(BROADCAST_BIAS) __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)); - LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero); + LOAD_BLOCK_BOUNDARY_AWARE(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, 1, PARTIAL_STORE_N0, false, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(1, DATA_TYPE, bias, BETA); @@ -4274,9 +4286,10 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), ADD_BLOCK_BROADCAST(M0, c, bias0); #else // defined(BROADCAST_BIAS) - __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * bias_stride_y) + z * bias_stride_z; + __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id( + 2) * bias_stride_z; - LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero); + LOAD_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); #ifndef UNIT_BETA SCALE_BLOCK(M0, DATA_TYPE, bias, BETA); @@ -4292,9 +4305,6 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs), ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, c, A_VAL, B_VAL); #endif // defined(ACTIVATION_TYPE) - const bool cond_y = y == 0; - const bool cond_x = ((x + 1) * N0 >= N); - // Store output block STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x); } diff --git a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp index 6c872fd48c..e389ce5b0c 100644 --- a/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp +++ b/src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.cpp @@ -119,15 +119,12 @@ std::pair validate_and_configure_window(ITensorInfo *src0, ITens const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed) { + ARM_COMPUTE_UNUSED(src0, src1, src2); unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0]; unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1]; bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d; bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0; - Window win{}; - Window win_out{}; - bool window_changed = false; - // In case both input and dst have to be reinterpreted as 3D tensors, // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false. if(reinterpret_input_as_3d == reinterpret_output_as_3d) @@ -135,9 +132,6 @@ std::pair validate_and_configure_window(ITensorInfo *src0, ITens reinterpret_output_as_3d = false; } - // dst tensor auto initialization if not yet initialized - auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info))); - TensorInfo tmp_info(*dst); if(reinterpret_output_as_3d) @@ -153,44 +147,14 @@ std::pair validate_and_configure_window(ITensorInfo *src0, ITens num_elems_processed_per_iteration_x = rhs_info.n0; num_elems_processed_per_iteration_y = lhs_info.m0; - win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); - win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); - - AccessWindowStatic src0_access(src0, 0, 0, - src0->dimension(0), - src0->dimension(1)); - AccessWindowStatic src1_access(src1, 0, 0, - ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x), - src1->dimension(1)); - AccessWindowStatic dst_access(dst, 0, 0, - dst->dimension(0), - dst->dimension(1)); - - if(src2 != nullptr) - { - const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x; - - AccessWindowStatic src2_access(src2, 0, 0, - ceil_to_multiple(src2->dimension(0), bias_processed_per_iteration_x), - src2->dimension(1)); - - window_changed = update_window_and_padding(win, src0_access, src1_access, src2_access) || // window used by the execute_window_loop - update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor - } - else - { - window_changed = update_window_and_padding(win, src0_access, src1_access) || // window used by the execute_window_loop - update_window_and_padding(win_out, dst_access); // window used to update the padding requirements of dst tensor - } + Window win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y)); // Collapse along the Z direction // This collapse needs to be here in order to tune the Z dimension of LWS - Window collapsed = win; const unsigned int dimension_to_collapse = std::min(static_cast(dst->num_dimensions()), 2u); - collapsed = win.collapse(win, dimension_to_collapse); + Window collapsed = win.collapse(win, dimension_to_collapse); - Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{}; - return std::make_pair(err, collapsed); + return std::make_pair(Status{}, collapsed); } } // namespace @@ -208,7 +172,10 @@ void ClGemmMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, src2, dst, alpha, beta, lhs_info, rhs_info, gemm_info)); - auto padding_info = get_padding_info({ src0, dst }); + // dst tensor auto initialization if not yet initialized + auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info))); + + auto padding_info = get_padding_info({ src0, src1, src2, dst }); _reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d; _reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0; _use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device()); -- cgit v1.2.1