aboutsummaryrefslogtreecommitdiff
path: root/src/runtime
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime')
-rw-r--r--src/runtime/CL/functions/CLSoftmaxLayer.cpp172
-rw-r--r--src/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.cpp6
-rw-r--r--src/runtime/NEON/functions/NESoftmaxLayer.cpp124
3 files changed, 89 insertions, 213 deletions
diff --git a/src/runtime/CL/functions/CLSoftmaxLayer.cpp b/src/runtime/CL/functions/CLSoftmaxLayer.cpp
index f7b2935622..720f9111a5 100644
--- a/src/runtime/CL/functions/CLSoftmaxLayer.cpp
+++ b/src/runtime/CL/functions/CLSoftmaxLayer.cpp
@@ -36,96 +36,45 @@ namespace arm_compute
{
template <bool IS_LOG>
CLSoftmaxLayerGeneric<IS_LOG>::CLSoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
- : _memory_group(std::move(memory_manager)), _max_shift_exp_sum_kernel(), _norm_kernel(), _flatten_ptr(), _reshape(), _max(), _sum(), _tmp(), _input_flattened(), _output_flattened(),
- _needs_flattening(false)
+ : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_shift_exp_sum_kernel(), _norm_kernel(), _max(), _sum(), _tmp(), _input_permuted(), _output_permuted(),
+ _needs_permute()
{
}
template <bool IS_LOG>
-void CLSoftmaxLayerGeneric<IS_LOG>::configure_reshape_input_kernel(const ICLTensor *input, const ICLTensor *output, size_t first_n_reduce_axes)
-{
- configure_reshape_input_kernel(CLKernelLibrary::get().get_compile_context(), input, output, first_n_reduce_axes);
-}
-
-template <bool IS_LOG>
-void CLSoftmaxLayerGeneric<IS_LOG>::configure_reshape_input_kernel(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *output, size_t first_n_reduce_axes)
-{
- // Flatten the input
- const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), first_n_reduce_axes);
-
- // Initialize the flat input
- _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
-
- // If we need to flatten the input, we can use CLFlattenKernel or CLReshapeKernel
- // If the number of reduced axes is 3 (max dimension), which means collapsing all axes except the batch axis, we use CLFlattenKernel.
- // In all other cases we have to use CLReshapeKernel
- // Note that the "other cases" include both:
- // 1. first_n_reduce_axes < 3: Reduce the first 1 (no need to reduce) or 2 dimensions (inclusive)
- // 2. first_n_reduce_axes == 4: Reduce all 4 dimensions. This can only be handled by CLReshapeKernel instead of CLFlattenKernel.
- if(first_n_reduce_axes == 3)
- {
- auto flatten = support::cpp14::make_unique<CLFlattenLayer>();
- flatten->configure(compile_context, input, &_input_flattened);
- _flatten_ptr = std::move(flatten);
- }
- else
- {
- auto reshape_ptr = support::cpp14::make_unique<CLReshapeLayer>();
- reshape_ptr->configure(compile_context, input, &_input_flattened);
- _flatten_ptr = std::move(reshape_ptr);
- }
-
- // We need to init the output tensor here. Indeed, the reshape kernel expects
- // both tensors to be already initialized
- auto_init_if_empty(*output->info(), *input->info()->clone());
-}
-
-template <bool IS_LOG>
-void CLSoftmaxLayerGeneric<IS_LOG>::configure(const ICLTensor *input, ICLTensor *output, float beta, size_t axis)
+void CLSoftmaxLayerGeneric<IS_LOG>::configure(const ICLTensor *input, ICLTensor *output, float beta, int32_t axis)
{
configure(CLKernelLibrary::get().get_compile_context(), input, output, beta, axis);
}
template <bool IS_LOG>
-void CLSoftmaxLayerGeneric<IS_LOG>::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, float beta, size_t axis)
+void CLSoftmaxLayerGeneric<IS_LOG>::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, float beta, int32_t axis)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(CLSoftmaxLayerGeneric<IS_LOG>::validate(input->info(), output->info(), beta, axis));
- // Convert reduce-before axis (inclusive) to first n axes to reduce
- size_t first_n_reduce_axes = dim_index_2_num_dims(axis, input->info()->num_dimensions());
-
- // We only need flattening when the number of axes to reduce is greater than 1
- _needs_flattening = first_n_reduce_axes > 1;
+ const size_t actual_axis = static_cast<size_t>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
- // If we are dealing with a 4D tensor, we will:
- // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor
- // - Execute all the pipeline (reduction + normalization) on the flattened tensor
- // - Reshape the flattened output into the real output
- if(_needs_flattening)
+ _needs_permute = actual_axis != 0;
+ ICLTensor *tmp_output = output;
+ const ICLTensor *tmp_input = _needs_permute ? &_input_permuted : input;
+ if(_needs_permute)
{
- // Add to the memory manager _input_flattened
- _memory_group.manage(&_input_flattened);
-
- // Cofigure _flatten_kernel and _input_flattened
- configure_reshape_input_kernel(input, output, first_n_reduce_axes);
+ _memory_group.manage(&_input_permuted);
+ _memory_group.manage(&_output_permuted);
+ _permute_input.configure(compile_context, input, &_input_permuted, get_permutation_vector_from_softmax_axis(actual_axis));
+ tmp_output = &_output_permuted;
}
- // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case)
- // or it is the original input case (2D case)
- const ICLTensor *input_2D = (_needs_flattening ? &_input_flattened : input);
-
- // Create intermediate tensors shapes
- TensorInfo input_info = input_2D->info()->clone()->reset_padding().set_is_resizable(true);
- DataType tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::S32 : input_2D->info()->data_type();
- TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
+ // Create intermediate tensors
+ DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->info()->data_type()) ? DataType::S32 : tmp_input->info()->data_type();
+ TensorInfo tensor_info_tmp(tmp_input->info()->clone()->set_data_type(tmp_data_type));
_tmp.allocator()->init(tensor_info_tmp);
-
- TensorShape max_sum_shape = input_2D->info()->tensor_shape();
+ TensorShape max_sum_shape = tmp_input->info()->tensor_shape();
max_sum_shape.set(0, 1);
- _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
- _sum.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type));
+ _max.allocator()->init(tmp_input->info()->clone()->set_tensor_shape(max_sum_shape));
+ _sum.allocator()->init(tmp_input->info()->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type));
// Set GPU target to kernels
_max_shift_exp_sum_kernel.set_target(CLScheduler::get().target());
@@ -138,49 +87,43 @@ void CLSoftmaxLayerGeneric<IS_LOG>::configure(const CLCompileContext &compile_co
SoftmaxKernelInfo softmax_info;
softmax_info.beta = beta;
softmax_info.is_log = IS_LOG;
- softmax_info.input_data_type = input_2D->info()->data_type();
+ softmax_info.input_data_type = tmp_input->info()->data_type();
// Configure kernels
- _max_shift_exp_sum_kernel.configure(compile_context, input_2D, &_max, &_tmp, &_sum, softmax_info);
-
- if(_needs_flattening)
- {
- // Add to the memory manager _output_flattened
- _memory_group.manage(&_output_flattened);
-
- // The normalization kernel stores the result in a flat output tensor
- _norm_kernel.configure(compile_context, &_tmp, &_sum, &_output_flattened, softmax_info);
-
- // Reshape the flat output into a the requested (4D) output
- _reshape.configure(compile_context, &_output_flattened, output);
-
- // Allocate the intermediate flat tensors
- _input_flattened.allocator()->allocate();
- _output_flattened.allocator()->allocate();
- }
- else
- {
- // Softmax 2D case
- _norm_kernel.configure(compile_context, &_tmp, &_sum, output, softmax_info);
- }
+ _max_shift_exp_sum_kernel.configure(compile_context, tmp_input, &_max, &_tmp, &_sum, softmax_info);
+ _norm_kernel.configure(compile_context, &_tmp, &_sum, tmp_output, softmax_info);
// Allocate intermediate buffers
_tmp.allocator()->allocate();
_max.allocator()->allocate();
_sum.allocator()->allocate();
+ if(_needs_permute)
+ {
+ _permute_output.configure(compile_context, &_output_permuted, output, get_permutation_vector_from_softmax_axis(actual_axis));
+ _input_permuted.allocator()->allocate();
+ _output_permuted.allocator()->allocate();
+ }
}
template <bool IS_LOG>
-Status CLSoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, size_t axis)
+Status CLSoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const ITensorInfo *output, float beta, int32_t axis)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis != 0, "Only axis 0 supported in tensors");
ARM_COMPUTE_UNUSED(beta);
- ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() <= axis);
+ ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-input->num_dimensions()) || static_cast<int32_t>(input->num_dimensions()) <= axis);
- // Convert reduce-before axis (inclusive) to first n axes to reduce
- size_t first_n_reduce_axes = dim_index_2_num_dims(axis, input->num_dimensions());
+ const size_t actual_axis = static_cast<size_t>(wrap_around(axis, static_cast<int32_t>(input->num_dimensions())));
+ const bool needs_permute = actual_axis != 0;
+ if(needs_permute)
+ {
+ const PermutationVector permutation_vector = get_permutation_vector_from_softmax_axis(actual_axis);
+ const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector);
+ TensorInfo input_permuted(input->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(input, &input_permuted, permutation_vector));
+ TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(&output_permuted, output, permutation_vector));
+ }
// Create intermediate tensor info
DataType tmp_data_type = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type();
@@ -191,23 +134,6 @@ Status CLSoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const I
TensorInfo tensor_info_max(input->clone()->set_tensor_shape(max_sum_shape).set_is_resizable(true));
TensorInfo tensor_info_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(QuantizationInfo()).set_is_resizable(true));
- const bool needs_flattening = (first_n_reduce_axes > 1);
-
- if(needs_flattening)
- {
- const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, first_n_reduce_axes);
- TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));
-
- if(first_n_reduce_axes == 3)
- {
- ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayer::validate(input, &tensor_info_flat));
- }
- else
- {
- ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(input, &tensor_info_flat));
- }
- }
-
SoftmaxKernelInfo softmax_info;
softmax_info.beta = beta;
softmax_info.is_log = IS_LOG;
@@ -216,12 +142,6 @@ Status CLSoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const I
ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum));
ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DNormKernel::validate(&tensor_info_tmp, &tensor_info_sum, output, softmax_info));
- if(needs_flattening)
- {
- const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input);
- TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));
- }
-
return Status{};
}
@@ -230,17 +150,17 @@ void CLSoftmaxLayerGeneric<IS_LOG>::run()
{
MemoryGroupResourceScope scope_mg(_memory_group);
- if(_needs_flattening)
+ if(_needs_permute)
{
- _flatten_ptr->run();
+ _permute_input.run();
}
CLScheduler::get().enqueue(_max_shift_exp_sum_kernel, false);
- CLScheduler::get().enqueue(_norm_kernel, !_needs_flattening);
+ CLScheduler::get().enqueue(_norm_kernel, !_needs_permute);
- if(_needs_flattening)
+ if(_needs_permute)
{
- _reshape.run();
+ _permute_output.run();
}
}
diff --git a/src/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.cpp b/src/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.cpp
index 48d8cb576b..fdb9a42f13 100644
--- a/src/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.cpp
+++ b/src/runtime/GLES_COMPUTE/functions/GCSoftmaxLayer.cpp
@@ -34,13 +34,13 @@ GCSoftmaxLayer::GCSoftmaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
{
}
-void GCSoftmaxLayer::configure(const IGCTensor *input, IGCTensor *output, float beta, size_t reduce_end_axis)
+void GCSoftmaxLayer::configure(const IGCTensor *input, IGCTensor *output, float beta, int32_t axis)
{
- ARM_COMPUTE_UNUSED(beta, reduce_end_axis);
+ ARM_COMPUTE_UNUSED(beta, axis);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON(beta != 1.0f);
- ARM_COMPUTE_ERROR_ON_MSG(reduce_end_axis != 0, "Reduce_end_axis must be 0 for GLES");
+ ARM_COMPUTE_ERROR_ON_MSG(axis != 0, "axis must be 0 for GLES");
// Create intermediate tensors shapes
_tmp.allocator()->init(TensorInfo(input->info()->tensor_shape(), input->info()->num_channels(), input->info()->data_type()));
diff --git a/src/runtime/NEON/functions/NESoftmaxLayer.cpp b/src/runtime/NEON/functions/NESoftmaxLayer.cpp
index 750992fca6..e763caa3a3 100644
--- a/src/runtime/NEON/functions/NESoftmaxLayer.cpp
+++ b/src/runtime/NEON/functions/NESoftmaxLayer.cpp
@@ -32,78 +32,41 @@ namespace arm_compute
{
template <bool IS_LOG>
NESoftmaxLayerGeneric<IS_LOG>::NESoftmaxLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
- : _memory_group(std::move(memory_manager)), _max_kernel(), _softmax_kernel(), _flat_or_reshape_ptr(nullptr), _fill_border_kernel(), _reshape(), _max(), _tmp(), _input_flattened(), _output_flattened(),
- _needs_flattening(false)
+ : _memory_group(std::move(memory_manager)), _permute_input(), _permute_output(), _max_kernel(), _softmax_kernel(), _fill_border_kernel(), _max(), _tmp(), _input_permuted(), _output_permuted(),
+ _needs_permute(false)
{
}
template <bool IS_LOG>
-void NESoftmaxLayerGeneric<IS_LOG>::configure_reshape_input_kernel(const ITensor *input, const ITensor *output, int32_t first_n_reduce_axes)
-{
- // Flatten the input
- const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input->info(), first_n_reduce_axes);
-
- // Initialize the flat input
- _input_flattened.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
-
- // Note that the "other cases" include both:
- // 1. first_n_reduce_axes < 3: Reduce the first 1 (no need to reduce) or 2 dimensions (inclusive)
- // 2. first_n_reduce_axes == 4: Reduce all 4 dimensions. This can only be handled by NEReshapeKernel instead of NEFlattenKernel.
- if(first_n_reduce_axes == 3)
- {
- auto flatten_kernel_ptr = support::cpp14::make_unique<NEFlattenLayer>();
- flatten_kernel_ptr->configure(input, &_input_flattened);
- _flat_or_reshape_ptr = std::move(flatten_kernel_ptr);
- }
- else
- {
- auto reshape_kernel_ptr = support::cpp14::make_unique<NEReshapeLayer>();
- reshape_kernel_ptr->configure(input, &_input_flattened);
- _flat_or_reshape_ptr = std::move(reshape_kernel_ptr);
- }
-
- // We need to init the output tensor here. Indeed, the reshape kernel expects
- // both tensors to be already initialized
- auto_init_if_empty(*output->info(), *input->info()->clone());
-}
-
-template <bool IS_LOG>
void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, float beta, int32_t axis)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_ERROR_THROW_ON(NESoftmaxLayerGeneric::validate(input->info(), output->info(), beta, axis));
- // Convert reduce-before axis (inclusive) to first n axes to reduce
- size_t first_n_reduce_axes = dim_index_2_num_dims(axis, static_cast<int32_t>(input->info()->num_dimensions()));
+ const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->info()->num_dimensions())));
- // We only need flattening when the number of axes to reduce is greater than 1
- _needs_flattening = first_n_reduce_axes > 1;
+ _needs_permute = actual_axis > 0;
- // If we are dealing with a 4D tensor, we will:
- // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor
- // - Execute all the pipeline (reduction + normalization) on the flattened tensor
- // - Reshape the flattened output into the real output
- if(_needs_flattening)
+ if(_needs_permute)
{
- // Add to the memory manager _input_flattened
- _memory_group.manage(&_input_flattened);
+ // Add to the memory manager _input_permuted
+ _memory_group.manage(&_input_permuted);
- // Configure _flatten_kernel and _input_flattened
- configure_reshape_input_kernel(input, output, first_n_reduce_axes);
+ _permute_input.configure(input, &_input_permuted, get_permutation_vector_from_softmax_axis(actual_axis));
}
- // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case)
+ // We want to deal with a 2D input. Either it is the permuted version of the original input (4D case)
// or it is the original input case (2D case)
- ITensor *input_2D = (_needs_flattening ? &_input_flattened : input);
+ ITensor *tmp_input = (_needs_permute ? &_input_permuted : input);
// Create intermediate tensors shapes
- const TensorInfo input_info = input_2D->info()->clone()->reset_padding().set_is_resizable(true);
- DataType tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::F32 : input_2D->info()->data_type();
+ const TensorInfo input_info = tmp_input->info()->clone()->reset_padding().set_is_resizable(true);
+ DataType tmp_data_type = is_data_type_quantized_asymmetric(tmp_input->info()->data_type()) ? DataType::F32 : tmp_input->info()->data_type();
TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
// Init intermediate tensors
- TensorShape max_sum_shape = input_2D->info()->tensor_shape();
+ TensorShape max_sum_shape = tmp_input->info()->tensor_shape();
max_sum_shape.set(0, 1);
_max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
_tmp.allocator()->init(tensor_info_tmp);
@@ -113,27 +76,27 @@ void NESoftmaxLayerGeneric<IS_LOG>::configure(ITensor *input, ITensor *output, f
_memory_group.manage(&_tmp);
// Configure Kernels
- _max_kernel.configure(input_2D, &_max);
- if(_needs_flattening)
+ _max_kernel.configure(tmp_input, &_max);
+ if(_needs_permute)
{
- // Add to the memory manager _output_flattened
- _memory_group.manage(&_output_flattened);
+ // Add to the memory manager _output_permuted
+ _memory_group.manage(&_output_permuted);
- // The normalization kernel stores the result in a flat output tensor
- _softmax_kernel.configure(input_2D, &_max, &_output_flattened, beta, &_tmp);
- _input_flattened.allocator()->allocate();
+ // The normalization kernel stores the result in a permuted output tensor
+ _softmax_kernel.configure(tmp_input, &_max, &_output_permuted, beta, &_tmp);
+ _input_permuted.allocator()->allocate();
- // Reshape the flat output into the requested (4D) output
- _reshape.configure(&_output_flattened, output);
+ // Re-permute the permuted output into the requested (4D) output
+ _permute_output.configure(&_output_permuted, output, get_permutation_vector_from_softmax_axis(actual_axis));
- // Allocate the intermediate flat tensors
- _output_flattened.allocator()->allocate();
+ // Allocate the intermediate permuted tensors
+ _output_permuted.allocator()->allocate();
}
else
{
// Softmax 2D case
- _fill_border_kernel.configure(input_2D, _max_kernel.border_size(), BorderMode::REPLICATE);
- _softmax_kernel.configure(input_2D, &_max, output, beta, &_tmp);
+ _fill_border_kernel.configure(tmp_input, _max_kernel.border_size(), BorderMode::REPLICATE);
+ _softmax_kernel.configure(tmp_input, &_max, output, beta, &_tmp);
}
// Allocate intermediate buffers
@@ -148,12 +111,8 @@ Status NESoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const I
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");
ARM_COMPUTE_UNUSED(beta);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(axis != 0, "Only axis 0 supported");
ARM_COMPUTE_RETURN_ERROR_ON(axis < static_cast<int32_t>(-input->num_dimensions()) || static_cast<int32_t>(input->num_dimensions()) <= axis);
- // Convert reduce-before axis (inclusive) to first n axes to reduce
- size_t first_n_reduce_axes = dim_index_2_num_dims(axis, static_cast<int32_t>(input->num_dimensions()));
-
// Create intermediate tensor info
DataType tmp_data_type = input->data_type();
const TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));
@@ -163,21 +122,18 @@ Status NESoftmaxLayerGeneric<IS_LOG>::validate(const ITensorInfo *input, const I
const TensorInfo tensor_info_max_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(input->quantization_info()).set_is_resizable(true));
const TensorInfo dont_care;
- const bool needs_flattening = (first_n_reduce_axes > 1);
+ const unsigned int actual_axis = static_cast<unsigned int>(wrap_around(axis, static_cast<int32_t>(input->num_dimensions())));
+
+ const bool needs_permute = actual_axis > 0;
- if(needs_flattening)
+ if(needs_permute)
{
- const TensorShape shape_flatten = misc::shape_calculator::compute_softmax_shape(input, first_n_reduce_axes);
- TensorInfo tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));
-
- if(first_n_reduce_axes == 3)
- {
- ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayer::validate(input, &tensor_info_flat));
- }
- else
- {
- ARM_COMPUTE_RETURN_ON_ERROR(NEReshapeLayer::validate(input, &tensor_info_flat));
- }
+ const PermutationVector permutation_vector = get_permutation_vector_from_softmax_axis(actual_axis);
+ const TensorShape permuted_shape = misc::shape_calculator::compute_permutation_output_shape(*input, permutation_vector);
+ TensorInfo input_permuted(input->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(input, &input_permuted, permutation_vector));
+ TensorInfo output_permuted(output->clone()->set_tensor_shape(permuted_shape));
+ ARM_COMPUTE_RETURN_ON_ERROR(NEPermute::validate(&output_permuted, output, permutation_vector));
}
ARM_COMPUTE_RETURN_ON_ERROR(NELogits1DMaxKernel::validate(input, &tensor_info_max_sum));
@@ -191,18 +147,18 @@ void NESoftmaxLayerGeneric<IS_LOG>::run()
{
MemoryGroupResourceScope scope_mg(_memory_group);
- if(_needs_flattening)
+ if(_needs_permute)
{
- _flat_or_reshape_ptr->run();
+ _permute_input.run();
}
NEScheduler::get().schedule(&_fill_border_kernel, Window::DimY);
NEScheduler::get().schedule(&_max_kernel, Window::DimY);
NEScheduler::get().schedule(&_softmax_kernel, Window::DimY);
- if(_needs_flattening)
+ if(_needs_permute)
{
- _reshape.run();
+ _permute_output.run();
}
}