aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/quantized.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/pool2d/neon/quantized.h')
-rw-r--r--src/cpu/kernels/pool2d/neon/quantized.h832
1 files changed, 832 insertions, 0 deletions
diff --git a/src/cpu/kernels/pool2d/neon/quantized.h b/src/cpu/kernels/pool2d/neon/quantized.h
new file mode 100644
index 0000000000..38f1b2f1f9
--- /dev/null
+++ b/src/cpu/kernels/pool2d/neon/quantized.h
@@ -0,0 +1,832 @@
+/*
+ * Copyright (c) 2021-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef SRC_CORE_NEON_KERNELS_QUANTIZED_H
+#define SRC_CORE_NEON_KERNELS_QUANTIZED_H
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/helpers/PoolingHelpers.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/NEFixedPoint.h"
+#include "src/core/NEON/NEMath.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+template <typename T>
+void poolingMxN_q8_neon_nhwc(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 16;
+ const int window_half_step_x = window_step_x / 2;
+
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, window_src);
+ Iterator out(dst0, window_out);
+
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q32_t = typename wrapper::traits::promote_t<q16_t>;
+ using q32x4_t = typename wrapper::traits::neon_vector<q32_t, 4>::type;
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const float32x4_t half_scale_v = vdupq_n_f32(0.5f);
+ const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform();
+
+ const float quant_rescale = dst_qinfo.scale / src_qinfo.scale;
+ // "new_offset" doesn't have to consider the "half_scale_v" in its computation
+ // With a requantization performed in a single step there won't be uncertainties introduced
+ const int32_t new_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / quant_rescale);
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+
+ execute_window_loop(
+ window_out,
+ [&](const Coordinates &id)
+ {
+ const int idx_width = id.y() * pool_stride_x;
+ const int idx_height = id.z() * pool_stride_y;
+ const int pool_limit_y = pool_pad_top - idx_height;
+ const int pool_limit_x = pool_pad_left - idx_width;
+
+ const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
+ const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
+ const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
+ const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
+
+ int x_off = window_start_x;
+ for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32x4_t vres1 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres2 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres3 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+ q32x4_t vres4 = wrapper::vdup_n(static_cast<q32_t>(0.f), wrapper::traits::vector_128_tag{});
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x16_t data = wrapper::vloadq(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+
+ const q16x8_t data_q16 = wrapper::vmovl(wrapper::vgetlow(data));
+ const q16x8_t data2_q16 = wrapper::vmovl(wrapper::vgethigh(data));
+ vres1 = wrapper::vadd(vres1, wrapper::vmovl(wrapper::vgetlow(data_q16)));
+ vres2 = wrapper::vadd(vres2, wrapper::vmovl(wrapper::vgethigh(data_q16)));
+ vres3 = wrapper::vadd(vres3, wrapper::vmovl(wrapper::vgetlow(data2_q16)));
+ vres4 = wrapper::vadd(vres4, wrapper::vmovl(wrapper::vgethigh(data2_q16)));
+ }
+ }
+
+ if (src_qinfo != dst_qinfo)
+ {
+ const float32x4x4_t vres = {{
+ vcvtq_f32_q32(vres1),
+ vcvtq_f32_q32(vres2),
+ vcvtq_f32_q32(vres3),
+ vcvtq_f32_q32(vres4),
+ }};
+ const auto requantized_dst =
+ vrequantize_pooling_with_scale<q8x16_t>(vres, quant_rescale, scale, new_offset);
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, wrapper::vgetlow(requantized_dst));
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8,
+ wrapper::vgethigh(requantized_dst));
+ }
+ else
+ {
+ const float32x4_t scale_v = vdupq_n_f32(scale);
+ // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+ vres1 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres1), scale_v));
+ vres2 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres2), scale_v));
+ vres3 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres3), scale_v));
+ vres4 = vcvtq_q32_f32<q32x4_t>(wrapper::vmla(half_scale_v, vcvtq_f32_q32(vres4), scale_v));
+
+ const q8x8_t res1 =
+ wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres1), wrapper::vmovn(vres2)));
+ const q8x8_t res2 =
+ wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(vres3), wrapper::vmovn(vres4)));
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, res1);
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off + 8, res2);
+ }
+ }
+ else
+ {
+ q8x16_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_128_tag{});
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x16_t data = wrapper::vloadq(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = wrapper::vmax(vres, data);
+ }
+ }
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+ (src_qinfo != dst_qinfo)
+ ? vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(vres),
+ wrapper::vgethigh(vres), requant_qinfo)
+ : vres);
+ }
+ }
+
+ if (pool_info.pool_type == PoolingType::MAX)
+ {
+ for (; x_off <= (window_end_x - window_half_step_x); x_off += window_half_step_x)
+ {
+ q8x8_t vres = wrapper::vdup_n(std::numeric_limits<T>::min(), wrapper::traits::vector_64_tag{});
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const q8x8_t data = wrapper::vload(
+ reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ vres = wrapper::vmax(vres, data);
+ }
+ }
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off,
+ (src_qinfo != dst_qinfo) ? vrequantize_pooling<q8x8_t>(vres, requant_qinfo) : vres);
+ }
+ }
+
+ // Left-overs loop
+ for (; x_off < window_end_x; ++x_off)
+ {
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32_t res = static_cast<q32_t>(0.f);
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const T data =
+ *(reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res += data;
+ }
+ }
+
+ if (src_qinfo != dst_qinfo)
+ {
+ const float res_f = static_cast<float>(res);
+ const float new_scale = quant_rescale / scale;
+ const auto requantized_dst = quantize<T>(res_f, UniformQuantizationInfo(new_scale, new_offset));
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = requantized_dst;
+ }
+ else
+ {
+ // Divide by scale and add 0.5f to round to nearest instead of rounding towards zero
+ res = static_cast<T>(0.5f + static_cast<float>(res) * scale);
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ }
+ else
+ {
+ T res = std::numeric_limits<T>::min();
+
+ for (int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ for (int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const T data =
+ *(reinterpret_cast<const T *>(
+ in.ptr() +
+ (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
+ x_off);
+ res = std::max(res, data);
+ }
+ }
+
+ // Store result
+ if (src_qinfo != dst_qinfo)
+ {
+ const float res_f = static_cast<float>(res);
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = quantize<T>(res_f, requant_qinfo);
+ }
+ else
+ {
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ }
+ }
+ },
+ in, out);
+}
+
+#if defined(ENABLE_NCHW_KERNELS)
+template <typename T, typename TVec>
+inline void scale_vector_q16x8(bool exclude_padding,
+ TVec &v,
+ const Coordinates &id,
+ int id_offset,
+ int step,
+ const int pool_size,
+ const int upper_bound_w,
+ const int upper_bound_h,
+ const int pad_x,
+ const int pad_y,
+ const int stride_x,
+ const int stride_y)
+{
+ int start_x = (id.x() + id_offset) * stride_x - pad_x;
+ int start_y = id.y() * stride_y - pad_y;
+ const int end_y = std::min(start_y + pool_size, upper_bound_h);
+ if (exclude_padding)
+ {
+ start_y = std::max(0, start_y);
+ }
+
+ std::array<T, 8> elems = {{
+ wrapper::vgetlane(v, 0),
+ wrapper::vgetlane(v, 1),
+ wrapper::vgetlane(v, 2),
+ wrapper::vgetlane(v, 3),
+ wrapper::vgetlane(v, 4),
+ wrapper::vgetlane(v, 5),
+ wrapper::vgetlane(v, 6),
+ wrapper::vgetlane(v, 7),
+ }};
+
+ for (auto &el : elems)
+ {
+ int c_start_x = start_x;
+ const int end_x = std::min(c_start_x + pool_size, upper_bound_w);
+ if (exclude_padding)
+ {
+ c_start_x = std::max(0, c_start_x);
+ }
+ float scale = 1.f / ((end_y - start_y) * (end_x - c_start_x));
+ el *= scale;
+ start_x += step * stride_x;
+ }
+
+ v = wrapper::vsetlane(elems[0], v, 0);
+ v = wrapper::vsetlane(elems[1], v, 1);
+ v = wrapper::vsetlane(elems[2], v, 2);
+ v = wrapper::vsetlane(elems[3], v, 3);
+ v = wrapper::vsetlane(elems[4], v, 4);
+ v = wrapper::vsetlane(elems[5], v, 5);
+ v = wrapper::vsetlane(elems[6], v, 6);
+ v = wrapper::vsetlane(elems[7], v, 7);
+}
+
+template <typename T>
+auto load16_boundary_aware(
+ int srcw, int srch, int pad_l, int pad_r, int pad_t, int pad_b, int x, int y, const T *ptr, T fval)
+{
+ ARM_COMPUTE_UNUSED(pad_b, pad_r);
+ T vec[16];
+ //handle reading a row out of the tensor
+ const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
+ for (int i = 0; i < 16; i++)
+ {
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ {
+ vec[i] = *(ptr + i);
+ }
+ else
+ {
+ vec[i] = fval;
+ }
+ }
+ return wrapper::vloadq(vec);
+}
+
+template <typename T, typename V, bool deinterleave>
+inline void write16_boundary_aware(int x, int dst_w, const V &lower, const V &upper, T *ptr)
+{
+ if (deinterleave)
+ {
+ for (int i = 0; i < 8 && (i * 2 + x) < dst_w; ++i)
+ {
+ *(ptr + i * 2) = lower[i];
+ }
+ for (int i = 0; i < 8 && (i * 2 + x + 1) < dst_w; ++i)
+ {
+ *(ptr + 1 + i * 2) = upper[i];
+ }
+ }
+ else
+ {
+ for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
+ {
+ *(ptr + i) = lower[i];
+ }
+ for (int i = 0; i < 8 && (i + x + 8) < dst_w; ++i)
+ {
+ *(ptr + i + 8) = upper[i];
+ }
+ }
+}
+
+template <typename T, typename V>
+inline void write8_boundary_aware(int x, int dst_w, const V &v, T *ptr)
+{
+ for (int i = 0; i < 8 && (i + x) < dst_w; ++i)
+ {
+ *(ptr + i) = v[i];
+ }
+}
+
+template <typename T>
+void pooling2_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x4_t = typename wrapper::traits::neon_vector<q16_t, 4>::type;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+ constexpr int pool_size = 2;
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const T *const src_top_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+ const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+ const int scale_step_x = (pool_stride_x == 1) ? 2 : 1;
+ const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo dst_qinfo = dst0->info()->quantization_info().uniform();
+ const bool have_different_qinfo = src_qinfo != dst_qinfo;
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int dst_w = dst0->info()->dimension(0);
+
+ const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? std::numeric_limits<T>::min() : T(0);
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+
+ auto top_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+ q8x8_t lower_res = {};
+ q8x8_t upper_res = {};
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ const q16x8x2_t top_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+ const q16x8x2_t bottom_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+ // Add rows
+ const q16x8x2_t vrsum = {{
+ wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]),
+ wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]),
+ }};
+
+ // Pair-wise add row data
+ const q16x4_t vpsum_1 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[0]), wrapper::vgethigh(vrsum.val[0]));
+ const q16x4_t vpsum_2 = wrapper::vpadd(wrapper::vgetlow(vrsum.val[1]), wrapper::vgethigh(vrsum.val[1]));
+
+ q16x8_t res_lower = wrapper::vcombine(vpsum_1, vpsum_2);
+
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_lower, id, 0, scale_step_x, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ lower_res = wrapper::vmovn(res_lower);
+
+ // Compute upper result for stride_x == 1
+ if (pool_stride_x == 1)
+ {
+ // Shifted row sum
+ const q16x8x2_t vrsum_shifted = {
+ {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
+
+ // Pair-wise add shifted row
+ q16x8_t res_upper = wrapper::vcombine(
+ wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[0]), wrapper::vgethigh(vrsum_shifted.val[0])),
+ wrapper::vpadd(wrapper::vgetlow(vrsum_shifted.val[1]),
+ wrapper::vgethigh(vrsum_shifted.val[1])));
+
+ // Scale upper result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res_upper, id, 1, 2, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ upper_res = wrapper::vmovn(res_upper);
+ }
+ }
+ else
+ {
+ const q8x16_t max_data = wrapper::vmax(top_data, bottom_data);
+ lower_res = wrapper::vpmax(wrapper::vgetlow(max_data), wrapper::vgethigh(max_data));
+ if (pool_stride_x == 1)
+ {
+ const q8x16_t max_data_shifted = wrapper::vext_1(max_data, max_data);
+ upper_res = wrapper::vpmax(wrapper::vgetlow(max_data_shifted), wrapper::vgethigh(max_data_shifted));
+ }
+ }
+
+ if (have_different_qinfo)
+ {
+ const auto requantized_dst = vrequantize_pooling<q8x8_t, q8x16_t>(lower_res, upper_res, requant_qinfo);
+ lower_res = wrapper::vgetlow(requantized_dst);
+ upper_res = wrapper::vgethigh(requantized_dst);
+ }
+ auto out_ptr = reinterpret_cast<T *>(out.ptr());
+ // Store result
+ if (pool_stride_x == 1)
+ {
+ write16_boundary_aware<T, q8x8_t, true>(id.x(), dst_w, lower_res, upper_res, out_ptr);
+ }
+ else
+ {
+ write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, lower_res, out_ptr);
+ }
+ },
+ in, out);
+}
+
+template <typename T>
+void pooling3_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q8x8_t = typename wrapper::traits::neon_vector<T, 8>::type;
+ using q8x16_t = typename wrapper::traits::neon_vector<T, 16>::type;
+ using q8x8x2_t = typename std::conditional<std::is_same<T, uint8_t>::value, uint8x8x2_t, int8x8x2_t>::type;
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q16x8_t = typename wrapper::traits::neon_vector<q16_t, 8>::type;
+ using q16x8x2_t = typename wrapper::traits::neon_vector<q16_t, 16>::type;
+
+ constexpr int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
+
+ const float requant_scale = dst_qinfo.scale / src_qinfo.scale;
+ const int32_t requant_offset =
+ dst_qinfo.offset - static_cast<int32_t>(static_cast<float>(src_qinfo.offset) / requant_scale);
+ const UniformQuantizationInfo requant_qinfo = UniformQuantizationInfo(requant_scale, requant_offset);
+
+ const T *const src_top_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top))));
+ const T *const src_middle_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1)));
+ const T *const src_bottom_ptr = reinterpret_cast<const T *>(
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2)));
+
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
+ const int dst_w = dst0->info()->dimension(0);
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+
+ auto top_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto middle_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_1, reinterpret_cast<const T *>(src_middle_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ load16_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_right, pool_pad_top, pool_pad_bottom, x_val,
+ y_val_2, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+
+ q8x8_t fres = {};
+ q8x16_t fqres = {};
+
+ if (pool_info.pool_type == PoolingType::AVG)
+ {
+ // Convert data to u16
+ const q16x8x2_t top_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(top_data)), wrapper::vmovl(wrapper::vgethigh(top_data))}};
+ const q16x8x2_t middle_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(middle_data)), wrapper::vmovl(wrapper::vgethigh(middle_data))}};
+ const q16x8x2_t bottom_data_q16 = {
+ {wrapper::vmovl(wrapper::vgetlow(bottom_data)), wrapper::vmovl(wrapper::vgethigh(bottom_data))}};
+
+ // Calculate row sums
+ const q16x8x2_t vrsum = {{
+ wrapper::vadd(wrapper::vadd(top_data_q16.val[0], bottom_data_q16.val[0]), middle_data_q16.val[0]),
+ wrapper::vadd(wrapper::vadd(top_data_q16.val[1], bottom_data_q16.val[1]), middle_data_q16.val[1]),
+ }};
+ const q16x8x2_t vrsum_shifted_1 = {
+ {wrapper::vext_1(vrsum.val[0], vrsum.val[1]), wrapper::vext_1(vrsum.val[1], vrsum.val[1])}};
+ const q16x8x2_t vrsum_shifted_2 = {
+ {wrapper::vext_2(vrsum.val[0], vrsum.val[1]), wrapper::vext_2(vrsum.val[1], vrsum.val[1])}};
+ // Calculate final sum
+ q16x8x2_t final_sum = {{
+ wrapper::vadd(wrapper::vadd(vrsum.val[0], vrsum_shifted_1.val[0]), vrsum_shifted_2.val[0]),
+ wrapper::vadd(wrapper::vadd(vrsum.val[1], vrsum_shifted_1.val[1]), vrsum_shifted_2.val[1]),
+ }};
+ if (pool_stride_x == 2)
+ {
+ q16x8_t res = {
+ wrapper::vgetlane(final_sum.val[0], 0), wrapper::vgetlane(final_sum.val[0], 2),
+ wrapper::vgetlane(final_sum.val[0], 4), wrapper::vgetlane(final_sum.val[0], 6),
+ wrapper::vgetlane(final_sum.val[1], 0), wrapper::vgetlane(final_sum.val[1], 2),
+ wrapper::vgetlane(final_sum.val[1], 4), wrapper::vgetlane(final_sum.val[1], 6),
+ };
+
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, res, id, 0, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ fres = wrapper::vmovn(res);
+ }
+ else
+ {
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[0], id, 0, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ // Scale lower result
+ scale_vector_q16x8<q16_t, q16x8_t>(pool_info.exclude_padding, final_sum.val[1], id, 8, 1, pool_size,
+ upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top,
+ pool_stride_x, pool_stride_y);
+ fqres = wrapper::vcombine(wrapper::vmovn(final_sum.val[0]), wrapper::vmovn(final_sum.val[1]));
+ }
+ }
+ else
+ {
+ const q8x16_t max_data = wrapper::vmax(wrapper::vmax(top_data, bottom_data), middle_data);
+ const q8x16_t max_data_shift1 = wrapper::vext_1(max_data, max_data);
+ const q8x16_t max_data_shift2 = wrapper::vext_2(max_data, max_data);
+ const q8x16_t final_max = wrapper::vmax(wrapper::vmax(max_data, max_data_shift1), max_data_shift2);
+
+ if (pool_stride_x == 2)
+ {
+ const q8x8x2_t table = {{wrapper::vgetlow(final_max), wrapper::vgethigh(final_max)}};
+ static const q8x8_t lookup_val = {0, 2, 4, 6, 8, 10, 12, 14};
+ fres = wrapper::vtbl(table, lookup_val);
+ }
+ else
+ {
+ fqres = final_max;
+ }
+ }
+
+ // Store result
+ if (pool_stride_x == 1)
+ {
+ if (src_qinfo != dst_qinfo)
+ {
+ fqres = vrequantize_pooling<q8x8_t, q8x16_t>(wrapper::vgetlow(fqres), wrapper::vgethigh(fqres),
+ requant_qinfo);
+ }
+ write16_boundary_aware<T, q8x8_t, false>(id.x(), dst_w, wrapper::vgetlow(fqres),
+ wrapper::vgethigh(fqres), reinterpret_cast<T *>(out.ptr()));
+ }
+ else
+ {
+ if (src_qinfo != dst_qinfo)
+ {
+ fres = vrequantize_pooling<q8x8_t>(fres, requant_qinfo);
+ }
+ write8_boundary_aware<T, q8x8_t>(id.x(), dst_w, fres, reinterpret_cast<T *>(out.ptr()));
+ }
+ },
+ in, out);
+}
+
+template <typename T>
+void poolingMxN_quantized_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ /** SIMD vector types */
+ using q16_t = typename wrapper::traits::promote_t<T>;
+ using q32_t = typename wrapper::traits::promote_t<q16_t>;
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int upper_bound_w = src->info()->dimension(0) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+
+ const UniformQuantizationInfo &src_qinfo = src->info()->quantization_info().uniform();
+ const UniformQuantizationInfo &dst_qinfo = dst0->info()->quantization_info().uniform();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::min();
+ const int stridex_in_bytes = static_cast<int>(src->info()->strides_in_bytes().x());
+ const int stridey_in_bytes = static_cast<int>(src->info()->strides_in_bytes().y());
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ T res = std::numeric_limits<T>::min();
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ q32_t sres = 0;
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto in_ptr = reinterpret_cast<const T *>(
+ in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+ sres += data;
+ }
+ }
+ // Divide by scale
+ res = static_cast<T>(support::cpp11::round(sres * scale));
+ }
+ else
+ {
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto in_ptr = reinterpret_cast<const T *>(
+ in.ptr() + (x - pool_pad_left) * stridex_in_bytes + (y - pool_pad_top) * stridey_in_bytes);
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr;
+ res = std::max(res, data);
+ }
+ }
+ }
+ // Store result
+ res = (src_qinfo != dst_qinfo) ? Qasymm8QuantizationHelper<T>::quantize(
+ Qasymm8QuantizationHelper<T>::dequantize(res, src_qinfo), dst_qinfo)
+ : res;
+ *(reinterpret_cast<T *>(out.ptr())) = res;
+ },
+ in, out);
+}
+#endif /* defined(ENABLE_NCHW_KERNELS) */
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // SRC_CORE_NEON_KERNELS_QUANTIZED_H