aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/add/generic/sve2/qasymm8.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/add/generic/sve2/qasymm8.cpp')
-rw-r--r--src/cpu/kernels/add/generic/sve2/qasymm8.cpp262
1 files changed, 262 insertions, 0 deletions
diff --git a/src/cpu/kernels/add/generic/sve2/qasymm8.cpp b/src/cpu/kernels/add/generic/sve2/qasymm8.cpp
new file mode 100644
index 0000000000..40add9d51b
--- /dev/null
+++ b/src/cpu/kernels/add/generic/sve2/qasymm8.cpp
@@ -0,0 +1,262 @@
+/*
+ * Copyright (c) 2020-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/Traits.h"
+
+#include "src/core/NEON/SVEMath.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
+#include <arm_sve.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+void add_qasymm8_sve2(
+ const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
+{
+ ARM_COMPUTE_UNUSED(policy);
+
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();
+ const auto all_true_pg = svptrue_b8();
+
+ const UniformQuantizationInfo iq1_info = src0->info()->quantization_info().uniform();
+ const UniformQuantizationInfo iq2_info = src1->info()->quantization_info().uniform();
+ const UniformQuantizationInfo oq_info = dst->info()->quantization_info().uniform();
+
+ const auto invvscaleo = svdup_n_f32(1.f / oq_info.scale);
+ const auto voffseto = svdup_n_f32(oq_info.offset);
+
+ if (is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src1 : src0;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0;
+
+ const svfloat32_t vscale1 = is_broadcast_input_2 ? svdup_n_f32(iq1_info.scale) : svdup_n_f32(iq2_info.scale);
+ const svfloat32_t vscale2 = is_broadcast_input_2 ? svdup_n_f32(iq2_info.scale) : svdup_n_f32(iq1_info.scale);
+ const svint32_t voffset1 = is_broadcast_input_2 ? svdup_n_s32(iq1_info.offset) : svdup_n_s32(iq2_info.offset);
+ const svint32_t voffset2 = is_broadcast_input_2 ? svdup_n_s32(iq2_info.offset) : svdup_n_s32(iq1_info.offset);
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator output(dst, win);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
+
+ const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
+ const svuint8_t broadcast_value_vec = svdup_n_u8(broadcast_value);
+
+ int x = window_start_x;
+ svbool_t pg = svwhilelt_b8(x, window_end_x);
+
+ const auto bf_0 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(
+ pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(broadcast_value_vec))),
+ voffset2)),
+ vscale2);
+ const auto bf_1 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(
+ pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(broadcast_value_vec))),
+ voffset2)),
+ vscale2);
+ const auto bf_2 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(
+ pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(broadcast_value_vec))),
+ voffset2)),
+ vscale2);
+ const auto bf_3 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(
+ pg, svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(broadcast_value_vec))),
+ voffset2)),
+ vscale2);
+
+ do
+ {
+ const svuint8_t a = svld1_u8(pg, non_broadcast_input_ptr + x);
+
+ const auto af_0 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(a))), voffset1)),
+ vscale1);
+ const auto af_1 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(a))), voffset1)),
+ vscale1);
+ const auto af_2 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(a))), voffset1)),
+ vscale1);
+ const auto af_3 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(a))), voffset1)),
+ vscale1);
+
+ const auto rf_0 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_0, bf_0), invvscaleo));
+ const auto rf_1 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_1, bf_1), invvscaleo));
+ const auto rf_2 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_2, bf_2), invvscaleo));
+ const auto rf_3 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_3, bf_3), invvscaleo));
+
+ const auto pa = svqxtnt_u32(svqxtnb_u32(rf_0), rf_1);
+ const auto pb = svqxtnt_u32(svqxtnb_u32(rf_2), rf_3);
+
+ const auto res = svqxtnt_u16(svqxtnb_u16(pa), pb);
+ svst1_u8(pg, output_ptr + x, res);
+
+ x += svcntb();
+ pg = svwhilelt_b8(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ broadcast_input, non_broadcast_input, output);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src0, input1_win);
+ Iterator input2(src1, input2_win);
+ Iterator output(dst, win);
+
+ const auto vscale1 = svdup_n_f32(iq1_info.scale);
+ const auto vscale2 = svdup_n_f32(iq2_info.scale);
+ const auto voffset1 = svdup_n_s32(iq1_info.offset);
+ const auto voffset2 = svdup_n_s32(iq2_info.offset);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
+
+ int x = window_start_x;
+ svbool_t pg = svwhilelt_b8(x, window_end_x);
+ do
+ {
+ const auto a = svld1_u8(pg, input1_ptr + x);
+ const auto b = svld1_u8(pg, input2_ptr + x);
+ const auto af_0 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(a))), voffset1)),
+ vscale1);
+ const auto af_1 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(a))), voffset1)),
+ vscale1);
+ const auto af_2 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(a))), voffset1)),
+ vscale1);
+ const auto af_3 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(a))), voffset1)),
+ vscale1);
+
+ const auto bf_0 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlb_u16(b))), voffset2)),
+ vscale2);
+ const auto bf_1 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlb_u16(b))), voffset2)),
+ vscale2);
+ const auto bf_2 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlb_u32(svmovlt_u16(b))), voffset2)),
+ vscale2);
+ const auto bf_3 = svmul_f32_z(
+ pg,
+ svcvt_f32_s32_z(pg,
+ svsub_s32_z(pg, svreinterpret_s32_u32(svmovlt_u32(svmovlt_u16(b))), voffset2)),
+ vscale2);
+
+ const auto rf_0 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_0, bf_0), invvscaleo));
+ const auto rf_1 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_1, bf_1), invvscaleo));
+ const auto rf_2 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_2, bf_2), invvscaleo));
+ const auto rf_3 =
+ svcvt_u32_f32_z(pg, svmla_f32_z(pg, voffseto, svadd_f32_z(pg, af_3, bf_3), invvscaleo));
+
+ const auto pa = svqxtnt_u32(svqxtnb_u32(rf_0), rf_1);
+ const auto pb = svqxtnt_u32(svqxtnb_u32(rf_2), rf_3);
+ const auto res = svqxtnt_u16(svqxtnb_u16(pa), pb);
+
+ svst1_u8(pg, output_ptr + x, res);
+
+ x += svcntb();
+ pg = svwhilelt_b8(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ input1, input2, output);
+ }
+}
+} // namespace cpu
+} // namespace arm_compute