aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp1170
1 files changed, 0 insertions, 1170 deletions
diff --git a/src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp b/src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp
deleted file mode 100644
index b4a3bb5e77..0000000000
--- a/src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp
+++ /dev/null
@@ -1,1170 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/NEON/NEFixedPoint.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-#include "src/core/utils/helpers/float_ops.h"
-
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-namespace
-{
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void vector_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha)
-{
- const auto width_matrix_b = static_cast<int>(output->info()->dimension(0));
- const auto in_b_stride = static_cast<int>(input1->info()->strides_in_bytes()[1] / input1->info()->element_size());
- const auto num_elems_vec_a = static_cast<int>(input0->info()->dimension(0));
-
- // The implementation computes 32 elements per iteration
- const int window_start_x = 32 * info.thread_id;
- const int window_step_x = 32 * info.num_threads;
- const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
- ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x, " (window_end_x - window_start_x) must be multiple of window_step_x");
-
- Window win_out(window);
- win_out.set(Window::DimX, Window::Dimension(0, 1, 1));
- win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(input1->info()->num_dimensions() >= 3)
- {
- win_b = window;
- }
- win_b.set(Window::DimX, Window::Dimension(0, 1, 1));
- win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Iterator ina(input0, win_a);
- Iterator inb(input1, win_b);
- Iterator out(output, win_out);
-
- const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
-
- const float16x8_t alpha_f16 = vdupq_n_f16(alpha);
-
- execute_window_loop(win_out, [&](const Coordinates &)
- {
- int x = window_start_x;
- // Here we don't check for x lower equal than (window_end_x - window_step_x) because of
- // window_end_x is computed above which may cause out-of-bound writes to the output.
- for(; x < (window_end_x - window_step_x); x += window_step_x)
- {
- if(x > width_matrix_b)
- {
- return;
- }
-
- auto matrix_b = reinterpret_cast<const float16_t *>(inb.ptr()) + x;
-
- float16x8_t acc0 = vdupq_n_f16(0.f);
- float16x8_t acc1 = vdupq_n_f16(0.f);
- float16x8_t acc2 = vdupq_n_f16(0.f);
- float16x8_t acc3 = vdupq_n_f16(0.f);
-
- auto vec_a = reinterpret_cast<const float16_t *>(ina.ptr());
- const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a;
- for(; vec_a <= (vec_a_end_addr - 4);)
- {
- const float16x4_t a0l = vld1_f16(vec_a);
-
- float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
- float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
- float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
- float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
- float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
- float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
- float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
- float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);
-
- acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0));
- acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0));
- acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0));
- acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0));
- acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1));
- acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1));
- acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1));
- acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1));
-
- matrix_b += 2 * in_b_stride;
-
- b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
- b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
- b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
- b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
- b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
- b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
- b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
- b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);
-
- acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2));
- acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2));
- acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2));
- acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2));
- acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3));
- acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3));
- acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3));
- acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3));
-
- vec_a += 4;
- matrix_b += 2 * in_b_stride;
- }
-
- for(; vec_a < vec_a_end_addr; ++vec_a)
- {
- const float16_t a0 = *vec_a;
- const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
- const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
- const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
- const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
-
- acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0));
- acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0));
- acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0));
- acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0));
-
- matrix_b += in_b_stride;
- }
-
- // Multiply by the weight of matrix product (alpha)
- if(multiply_alpha)
- {
- acc0 = vmulq_f16(acc0, alpha_f16);
- acc1 = vmulq_f16(acc1, alpha_f16);
- acc2 = vmulq_f16(acc2, alpha_f16);
- acc3 = vmulq_f16(acc3, alpha_f16);
- }
-
- auto vec_out = reinterpret_cast<float16_t *>(out.ptr()) + x;
-
- vst1q_f16(vec_out + 0, acc0);
- vst1q_f16(vec_out + 8, acc1);
- vst1q_f16(vec_out + 16, acc2);
- vst1q_f16(vec_out + 24, acc3);
- }
-
- for(; x < window_end_x; ++x)
- {
- if(x > width_matrix_b)
- {
- return;
- }
-
- auto matrix_b = reinterpret_cast<const float16_t *>(inb.ptr()) + x;
-
- float16x4_t vacc = vdup_n_f16(0.f);
-
- auto vec_a = reinterpret_cast<const float16_t *>(ina.ptr());
- const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a;
- for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4)
- {
- const float16x4_t a0l = vld1_f16(vec_a);
-
- const float16x4_t b_col =
- {
- *(matrix_b + 0 * in_b_stride),
- *(matrix_b + 1 * in_b_stride),
- *(matrix_b + 2 * in_b_stride),
- *(matrix_b + 3 * in_b_stride),
- };
-
- vacc = vadd_f16(vacc, vmul_f16(a0l, b_col));
-
- matrix_b += 4 * in_b_stride;
- }
-
- float16_t acc = vget_lane_f16(vacc, 0) + vget_lane_f16(vacc, 1) + vget_lane_f16(vacc, 2) + vget_lane_f16(vacc, 3);
-
- for(; vec_a < vec_a_end_addr; ++vec_a)
- {
- const float16_t a0 = *vec_a;
- const float16_t b00 = *matrix_b;
-
- acc += b00 * a0;
-
- matrix_b += in_b_stride;
- }
-
- // Multiply by the weight of matrix product (alpha)
- if(multiply_alpha)
- {
- acc *= static_cast<float16_t>(alpha);
- }
-
- auto vec_out = reinterpret_cast<float16_t *>(out.ptr()) + x;
-
- *(vec_out) = acc;
- }
- },
- ina, inb, out);
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-void vector_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha)
-{
- const auto width_matrix_b = static_cast<int>(output->info()->dimension(0));
- const auto in_b_stride = static_cast<int>(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type()));
- const auto num_elems_vec_a = static_cast<int>(input0->info()->dimension(0));
-
- // The implementation computes 16 elements per iteration
- const int window_start_x = 16 * info.thread_id;
- const int window_step_x = 16 * info.num_threads;
- // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
- const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
-
- Window win_out(window);
- win_out.set(Window::DimX, Window::Dimension(0, 1, 1));
- win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(input1->info()->num_dimensions() >= 3)
- {
- win_b = window;
- }
- win_b.set(Window::DimX, Window::Dimension(0, 1, 1));
- win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Iterator ina(input0, win_a);
- Iterator inb(input1, win_b);
- Iterator out(output, win_out);
-
- const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
-
- const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
-
- execute_window_loop(win_out, [&](const Coordinates &)
- {
- int x = window_start_x;
- // Here we don't check for x lower equal than (window_end_x - window_step_x) because of
- // window_end_x is computed above which may cause out-of-bound writes to the output.
- for(; x < (window_end_x - window_step_x); x += window_step_x)
- {
- if(x > width_matrix_b)
- {
- return;
- }
-
- float32x4_t acc0 = vdupq_n_f32(0.f);
- float32x4_t acc1 = vdupq_n_f32(0.f);
- float32x4_t acc2 = vdupq_n_f32(0.f);
- float32x4_t acc3 = vdupq_n_f32(0.f);
-
- auto vec_a = reinterpret_cast<const float *>(ina.ptr());
- auto matrix_b = reinterpret_cast<const float *>(inb.ptr()) + x;
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + in_b_stride)));
-#endif /* __arm__ */
-
- auto vec_a_end_addr = vec_a + num_elems_vec_a;
- for(; vec_a <= (vec_a_end_addr - 4);)
- {
- float32x2_t a0l = vld1_f32(vec_a);
-
- float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
- float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
- float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
- float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
-
- float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
- float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
- float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
- float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 1 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 2 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 3 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 4 * in_b_stride)));
-#endif /* __arm__ */
-
- acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
- acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
- acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
- acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);
-
- acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
- acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
- acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
- acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);
-
- vec_a += 2;
- matrix_b += 2 * in_b_stride;
-
- a0l = vld1_f32(vec_a);
-
- b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
- b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
- b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
- b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
-
- b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
- b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
- b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
- b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);
-
- acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
- acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
- acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
- acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);
-
- acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
- acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
- acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
- acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);
-
- vec_a += 2;
- matrix_b += 2 * in_b_stride;
- }
-
- for(; vec_a < vec_a_end_addr; ++vec_a)
- {
- const float a0 = *vec_a;
-
- const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
- const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
- const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
- const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);
-
- acc0 = vmlaq_n_f32(acc0, b00, a0);
- acc1 = vmlaq_n_f32(acc1, b01, a0);
- acc2 = vmlaq_n_f32(acc2, b02, a0);
- acc3 = vmlaq_n_f32(acc3, b03, a0);
-
- matrix_b += in_b_stride;
- }
-
- // Multiply by the weight of matrix product (alpha)
- if(multiply_alpha)
- {
- acc0 = vmulq_f32(acc0, alpha_f32);
- acc1 = vmulq_f32(acc1, alpha_f32);
- acc2 = vmulq_f32(acc2, alpha_f32);
- acc3 = vmulq_f32(acc3, alpha_f32);
- }
-
- const auto vec_out = reinterpret_cast<float *>(out.ptr()) + x;
-
- vst1q_f32(vec_out + 0, acc0);
- vst1q_f32(vec_out + 4, acc1);
- vst1q_f32(vec_out + 8, acc2);
- vst1q_f32(vec_out + 12, acc3);
- }
-
- // Left-over loop
- for(; x < window_end_x; ++x)
- {
- if(x > width_matrix_b)
- {
- return;
- }
-
- float32x4_t vacc = vdupq_n_f32(0.f);
-
- auto vec_a = reinterpret_cast<const float *>(ina.ptr());
- auto matrix_b = reinterpret_cast<const float *>(inb.ptr()) + x;
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + in_b_stride)));
-#endif /* __arm__ */
-
- auto vec_a_end_addr = vec_a + num_elems_vec_a;
- for(; vec_a <= (vec_a_end_addr - 4); vec_a += 4)
- {
- const float32x4_t a0l = vld1q_f32(vec_a);
-
- const float32x4_t b_col =
- {
- *(matrix_b + 0 * in_b_stride),
- *(matrix_b + 1 * in_b_stride),
- *(matrix_b + 2 * in_b_stride),
- *(matrix_b + 3 * in_b_stride),
- };
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 1 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 2 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 3 * in_b_stride)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 4 * in_b_stride)));
-#endif /* __arm__ */
-
- vacc = vmlaq_f32(vacc, b_col, a0l);
-
- matrix_b += 4 * in_b_stride;
- }
-
- float acc = vgetq_lane_f32(vacc, 0) + vgetq_lane_f32(vacc, 1) + vgetq_lane_f32(vacc, 2) + vgetq_lane_f32(vacc, 3);
-
- for(; vec_a < vec_a_end_addr; ++vec_a)
- {
- const float a0 = *vec_a;
-
- const float b00 = *matrix_b;
-
- acc += b00 * a0;
-
- matrix_b += in_b_stride;
- }
-
- // Multiply by the weight of matrix product (alpha)
- if(multiply_alpha)
- {
- acc *= alpha;
- }
-
- const auto vec_out = reinterpret_cast<float *>(out.ptr()) + x;
-
- *vec_out = acc;
- }
- },
- ina, inb, out);
-}
-
-void matrix_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha)
-{
- const int out_width = static_cast<int>(output->info()->dimension(0));
- const int out_height = static_cast<int>(output->info()->dimension(1));
- const size_t in_b_stride = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type());
- const size_t out_stride1 = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type());
- const size_t out_stride2 = out_stride1 * 2;
- const size_t out_stride3 = out_stride1 * 3;
- const int num_elems_matrix_b_x = input1->info()->dimension(0);
-
- // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));
-
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(input1->info()->num_dimensions() >= 3)
- {
- win_b = window;
- }
- // Set step_x and step_y for matrix B. Scale by a factor of 4 the X range as the input transposed matrix A has 4 times less the cols of the output matrix
- // The step along the x direction is 2 times the in_b_stride because for each iteration we compute 2 blocks of size 4x4
- win_b.set(Window::DimX, Window::Dimension(window.x().start() / 4, window.x().end() / 4, 2 * in_b_stride));
- win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Iterator ina(input0, win_a);
- Iterator inb(input1, win_b);
- Iterator out(output, window);
-
- const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
-
- const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
-
- // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW
- // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
- // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
- execute_window_loop(window, [&](const Coordinates & id)
- {
- auto mtx_a0 = reinterpret_cast<const float *>(ina.ptr());
- auto mtx_b0 = reinterpret_cast<const float *>(inb.ptr());
- auto mtx_b1 = mtx_b0 + in_b_stride;
-
- float32x4_t acc00 = vdupq_n_f32(0.f);
- float32x4_t acc10 = vdupq_n_f32(0.f);
- float32x4_t acc20 = vdupq_n_f32(0.f);
- float32x4_t acc30 = vdupq_n_f32(0.f);
-
- float32x4_t acc01 = vdupq_n_f32(0.f);
- float32x4_t acc11 = vdupq_n_f32(0.f);
- float32x4_t acc21 = vdupq_n_f32(0.f);
- float32x4_t acc31 = vdupq_n_f32(0.f);
-
-#if __arm__
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
- asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
-#endif /* __arm__ */
-
- auto mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;
- for(; mtx_b0 <= (mtx_b0_end_addr - 32);)
- {
- float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0);
- float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1);
- float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2);
- float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3);
-
- float32x4_t b00 = vld1q_f32(mtx_b0);
- float32x4_t b10 = vld1q_f32(mtx_b1);
- float32x4_t b01 = vld1q_f32(mtx_b0 + 4);
- float32x4_t b11 = vld1q_f32(mtx_b1 + 4);
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
-#endif /* __arm__ */
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b00, a0);
- acc10 = vmlaq_f32(acc10, b00, a1);
- acc20 = vmlaq_f32(acc20, b00, a2);
- acc30 = vmlaq_f32(acc30, b00, a3);
-
- float32x4_t a4 = vld1q_dup_f32(mtx_a0 + 4);
- float32x4_t a5 = vld1q_dup_f32(mtx_a0 + 5);
- float32x4_t a6 = vld1q_dup_f32(mtx_a0 + 6);
- float32x4_t a7 = vld1q_dup_f32(mtx_a0 + 7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b10, a0);
- acc11 = vmlaq_f32(acc11, b10, a1);
- acc21 = vmlaq_f32(acc21, b10, a2);
- acc31 = vmlaq_f32(acc31, b10, a3);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b01, a4);
- acc10 = vmlaq_f32(acc10, b01, a5);
- acc20 = vmlaq_f32(acc20, b01, a6);
- acc30 = vmlaq_f32(acc30, b01, a7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b11, a4);
- acc11 = vmlaq_f32(acc11, b11, a5);
- acc21 = vmlaq_f32(acc21, b11, a6);
- acc31 = vmlaq_f32(acc31, b11, a7);
-
- mtx_a0 += 8;
- mtx_b0 += 8;
- mtx_b1 += 8;
-
- a0 = vld1q_dup_f32(mtx_a0 + 0);
- a1 = vld1q_dup_f32(mtx_a0 + 1);
- a2 = vld1q_dup_f32(mtx_a0 + 2);
- a3 = vld1q_dup_f32(mtx_a0 + 3);
-
- b00 = vld1q_f32(mtx_b0);
- b10 = vld1q_f32(mtx_b1);
- b01 = vld1q_f32(mtx_b0 + 4);
- b11 = vld1q_f32(mtx_b1 + 4);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b00, a0);
- acc10 = vmlaq_f32(acc10, b00, a1);
- acc20 = vmlaq_f32(acc20, b00, a2);
- acc30 = vmlaq_f32(acc30, b00, a3);
-
- a4 = vld1q_dup_f32(mtx_a0 + 4);
- a5 = vld1q_dup_f32(mtx_a0 + 5);
- a6 = vld1q_dup_f32(mtx_a0 + 6);
- a7 = vld1q_dup_f32(mtx_a0 + 7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b10, a0);
- acc11 = vmlaq_f32(acc11, b10, a1);
- acc21 = vmlaq_f32(acc21, b10, a2);
- acc31 = vmlaq_f32(acc31, b10, a3);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b01, a4);
- acc10 = vmlaq_f32(acc10, b01, a5);
- acc20 = vmlaq_f32(acc20, b01, a6);
- acc30 = vmlaq_f32(acc30, b01, a7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b11, a4);
- acc11 = vmlaq_f32(acc11, b11, a5);
- acc21 = vmlaq_f32(acc21, b11, a6);
- acc31 = vmlaq_f32(acc31, b11, a7);
-
- mtx_a0 += 8;
- mtx_b0 += 8;
- mtx_b1 += 8;
-
- a0 = vld1q_dup_f32(mtx_a0 + 0);
- a1 = vld1q_dup_f32(mtx_a0 + 1);
- a2 = vld1q_dup_f32(mtx_a0 + 2);
- a3 = vld1q_dup_f32(mtx_a0 + 3);
- b00 = vld1q_f32(mtx_b0);
- b10 = vld1q_f32(mtx_b1);
- b01 = vld1q_f32(mtx_b0 + 4);
- b11 = vld1q_f32(mtx_b1 + 4);
-
-#if __arm__
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
- asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
-#endif /* __arm__ */
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b00, a0);
- acc10 = vmlaq_f32(acc10, b00, a1);
- acc20 = vmlaq_f32(acc20, b00, a2);
- acc30 = vmlaq_f32(acc30, b00, a3);
-
- a4 = vld1q_dup_f32(mtx_a0 + 4);
- a5 = vld1q_dup_f32(mtx_a0 + 5);
- a6 = vld1q_dup_f32(mtx_a0 + 6);
- a7 = vld1q_dup_f32(mtx_a0 + 7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b10, a0);
- acc11 = vmlaq_f32(acc11, b10, a1);
- acc21 = vmlaq_f32(acc21, b10, a2);
- acc31 = vmlaq_f32(acc31, b10, a3);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b01, a4);
- acc10 = vmlaq_f32(acc10, b01, a5);
- acc20 = vmlaq_f32(acc20, b01, a6);
- acc30 = vmlaq_f32(acc30, b01, a7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b11, a4);
- acc11 = vmlaq_f32(acc11, b11, a5);
- acc21 = vmlaq_f32(acc21, b11, a6);
- acc31 = vmlaq_f32(acc31, b11, a7);
-
- mtx_a0 += 8;
- mtx_b0 += 8;
- mtx_b1 += 8;
-
- a0 = vld1q_dup_f32(mtx_a0 + 0);
- a1 = vld1q_dup_f32(mtx_a0 + 1);
- a2 = vld1q_dup_f32(mtx_a0 + 2);
- a3 = vld1q_dup_f32(mtx_a0 + 3);
- b00 = vld1q_f32(mtx_b0);
- b10 = vld1q_f32(mtx_b1);
- b01 = vld1q_f32(mtx_b0 + 4);
- b11 = vld1q_f32(mtx_b1 + 4);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b00, a0);
- acc10 = vmlaq_f32(acc10, b00, a1);
- acc20 = vmlaq_f32(acc20, b00, a2);
- acc30 = vmlaq_f32(acc30, b00, a3);
-
- a4 = vld1q_dup_f32(mtx_a0 + 4);
- a5 = vld1q_dup_f32(mtx_a0 + 5);
- a6 = vld1q_dup_f32(mtx_a0 + 6);
- a7 = vld1q_dup_f32(mtx_a0 + 7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b10, a0);
- acc11 = vmlaq_f32(acc11, b10, a1);
- acc21 = vmlaq_f32(acc21, b10, a2);
- acc31 = vmlaq_f32(acc31, b10, a3);
-
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b01, a4);
- acc10 = vmlaq_f32(acc10, b01, a5);
- acc20 = vmlaq_f32(acc20, b01, a6);
- acc30 = vmlaq_f32(acc30, b01, a7);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b11, a4);
- acc11 = vmlaq_f32(acc11, b11, a5);
- acc21 = vmlaq_f32(acc21, b11, a6);
- acc31 = vmlaq_f32(acc31, b11, a7);
-
- mtx_a0 += 8;
- mtx_b0 += 8;
- mtx_b1 += 8;
- }
-
- for(; mtx_b0 < mtx_b0_end_addr;)
- {
- float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0);
- float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1);
- float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2);
- float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3);
- float32x4_t b00 = vld1q_f32(mtx_b0);
- float32x4_t b10 = vld1q_f32(mtx_b1);
-
-#if __arm__
- asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
- asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
- asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
-#endif /* __arm__ */
- // 4x4 block 0
- acc00 = vmlaq_f32(acc00, b00, a0);
- acc10 = vmlaq_f32(acc10, b00, a1);
- acc20 = vmlaq_f32(acc20, b00, a2);
- acc30 = vmlaq_f32(acc30, b00, a3);
-
- // 4x4 block 1
- acc01 = vmlaq_f32(acc01, b10, a0);
- acc11 = vmlaq_f32(acc11, b10, a1);
- acc21 = vmlaq_f32(acc21, b10, a2);
- acc31 = vmlaq_f32(acc31, b10, a3);
-
- mtx_a0 += 4;
- mtx_b0 += 4;
- mtx_b1 += 4;
- }
-
- // Multiply by the weight of matrix product (alpha)
- if(multiply_alpha)
- {
- acc00 = vmulq_f32(acc00, alpha_f32);
- acc10 = vmulq_f32(acc10, alpha_f32);
- acc20 = vmulq_f32(acc20, alpha_f32);
- acc30 = vmulq_f32(acc30, alpha_f32);
- acc01 = vmulq_f32(acc01, alpha_f32);
- acc11 = vmulq_f32(acc11, alpha_f32);
- acc21 = vmulq_f32(acc21, alpha_f32);
- acc31 = vmulq_f32(acc31, alpha_f32);
- }
-
- const auto mtx_out0 = reinterpret_cast<float *>(out.ptr());
- const auto mtx_out1 = mtx_out0 + 4;
-
- if(id.x() < (out_width - 8))
- {
- vst1q_f32(mtx_out0, acc00);
- vst1q_f32(mtx_out1, acc01);
- if(id.y() + 1 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride1, acc10);
- vst1q_f32(mtx_out1 + out_stride1, acc11);
- if(id.y() + 2 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride2, acc20);
- vst1q_f32(mtx_out1 + out_stride2, acc21);
- if(id.y() + 3 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride3, acc30);
- vst1q_f32(mtx_out1 + out_stride3, acc31);
- }
- }
- }
- }
- else if(id.x() < (out_width - 4))
- {
- vst1q_f32(mtx_out0, acc00);
- if(id.y() + 1 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride1, acc10);
- if(id.y() + 2 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride2, acc20);
- if(id.y() + 3 < out_height)
- {
- vst1q_f32(mtx_out0 + out_stride3, acc30);
- }
- }
- }
- // Left-over columns
- const int columns_left = out_width - id.x() - 4;
- for(auto x = 0; x < columns_left; ++x)
- {
- *(mtx_out1 + x) = acc01[x];
- if(id.y() + 1 < out_height)
- {
- *(mtx_out1 + x + out_stride1) = acc11[x];
- if(id.y() + 2 < out_height)
- {
- *(mtx_out1 + x + out_stride2) = acc21[x];
- if(id.y() + 3 < out_height)
- {
- *(mtx_out1 + x + out_stride3) = acc31[x];
- }
- }
- }
- }
- }
- else
- {
- // Left-over columns
- const int columns_left = out_width - id.x();
- for(int x = 0; x < columns_left; ++x)
- {
- *(mtx_out0 + x) = acc00[x];
- if(id.y() + 1 < out_height)
- {
- *(mtx_out0 + x + out_stride1) = acc10[x];
- if(id.y() + 2 < out_height)
- {
- *(mtx_out0 + x + out_stride2) = acc20[x];
- if(id.y() + 3 < out_height)
- {
- *(mtx_out0 + x + out_stride3) = acc30[x];
- }
- }
- }
- }
- }
- },
- ina, inb, out);
-}
-
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void matrix_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha)
-{
- const int out_width = static_cast<int>(output->info()->dimension(0));
- const int out_height = static_cast<int>(output->info()->dimension(1));
- const size_t in_b_stride = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type());
- const size_t out_stride = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type());
- const int num_elems_matrix_b_x = input1->info()->dimension(0);
-
- // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));
-
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(input1->info()->num_dimensions() >= 3)
- {
- win_b = window;
- }
- // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the output matrix
- win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride));
- win_b.set(Window::DimY, Window::Dimension(0, 1, 0));
-
- Iterator ina(input0, win_a);
- Iterator inb(input1, win_b);
- Iterator out(output, window);
-
- const bool multiply_alpha = !(helpers::float_ops::is_one(alpha));
-
- const float16x8_t alpha_f16 = vdupq_n_f16(alpha);
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto *mtx_a0 = reinterpret_cast<const float16_t *>(ina.ptr());
- const auto *mtx_b0 = reinterpret_cast<const float16_t *>(inb.ptr());
- auto *mtx_out = reinterpret_cast<float16_t *>(out.ptr());
- float16x8x4_t c =
- {
- {
- vdupq_n_f16(0.f),
- vdupq_n_f16(0.f),
- vdupq_n_f16(0.f),
- vdupq_n_f16(0.f)
- }
- };
-
- /*
- This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values)
- |a00 a01 a02 a03 | a04 a05 a06 a07|
- |a10 a11 a12 a13 | a14 a15 a16 a17|
- |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ...
- |a30 a31 a32 a33 | a34 a35 a36 a37| | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ...
- |a40 a41 a42 a43 | a44 a45 a46 a47|
- |a50 a51 a52 a53 | a54 a55 a56 a57|
- |a60 a61 a62 a63 | a64 a65 a66 a67|
- |a70 a71 a72 a73 | a74 a75 a76 a77|
-
- After this operation, the output matrix will have the following shape: [ height * 4, width / 4 ]
-
- B Matrix has been transposed as shown below
-
- |b00 b01 b02 b03 b04 b05 b06 b07|
- |b10 b11 b12 b13 b14 b15 b16 b17|
- |b20 b21 b22 b23 b24 b25 b26 b27|
- |b30 b31 b32 b33 b34 b35 b36 b37|
- ------------------->
-
- |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37|
-
- c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30
- c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31
-
- The size of the output tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size.
- */
- const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;
-
- for(; mtx_b0 <= (mtx_b0_end_addr - 32);)
-
- {
- const float16x8_t p00 = vld1q_f16(mtx_a0);
- const float16x8_t p02 = vld1q_f16(mtx_a0 + 8);
-
- const float16x8_t q00 = vld1q_f16(mtx_b0);
- const float16x8_t q02 = vld1q_f16(mtx_b0 + 8);
- const float16x8_t q04 = vld1q_f16(mtx_b0 + 16);
- const float16x8_t q06 = vld1q_f16(mtx_b0 + 24);
-
- c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0)));
- c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1)));
- c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2)));
- c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3)));
-
- c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4)));
- c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5)));
- c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6)));
- c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7)));
-
- c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0)));
- c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1)));
- c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2)));
- c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3)));
-
- c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4)));
- c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5)));
- c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6)));
- c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7)));
-
- mtx_a0 += 16;
- mtx_b0 += 32;
- }
-
- for(; mtx_b0 < mtx_b0_end_addr;)
-
- {
- const float16x4_t p00 = vld1_f16(mtx_a0);
- const float16x8_t q00 = vld1q_f16(mtx_b0);
-
- c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0)));
- c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1)));
- c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2)));
- c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3)));
-
- mtx_a0 += 4;
- mtx_b0 += 8;
- }
-
- if(multiply_alpha)
- {
- c.val[0] = vmulq_f16(c.val[0], alpha_f16);
- c.val[1] = vmulq_f16(c.val[1], alpha_f16);
- c.val[2] = vmulq_f16(c.val[2], alpha_f16);
- c.val[3] = vmulq_f16(c.val[3], alpha_f16);
- }
-
- if(id.x() < (out_width - 8))
- {
- vst1q_f16(mtx_out, c.val[0]);
- if(id.y() + 1 < out_height)
- {
- vst1q_f16(mtx_out + 1 * out_stride, c.val[1]);
- if(id.y() + 2 < out_height)
- {
- vst1q_f16(mtx_out + 2 * out_stride, c.val[2]);
- if(id.y() + 3 < out_height)
- {
- vst1q_f16(mtx_out + 3 * out_stride, c.val[3]);
- }
- }
- }
- }
- else
- {
- // Left-over columns
- const int columns_left = out_width - id.x();
- for(int x = 0; x < columns_left; ++x)
- {
- *(mtx_out + x) = c.val[0][x];
- if(id.y() + 1 < out_height)
- {
- *(mtx_out + x + 1 * out_stride) = c.val[1][x];
- if(id.y() + 2 < out_height)
- {
- *(mtx_out + x + 2 * out_stride) = c.val[2][x];
- if(id.y() + 3 < out_height)
- {
- *(mtx_out + x + 3 * out_stride) = c.val[3][x];
- }
- }
- }
- }
- }
- },
- ina, inb, out);
-}
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info)
-{
- ARM_COMPUTE_UNUSED(alpha);
-
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input0);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1, output);
-
- if(!is_interleaved)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
-
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
- ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
- }
- }
- else
- {
- const int m = reshape_info.m();
- const int n = reshape_info.n();
- const int k = reshape_info.k();
- const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
- const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
-
- /* Interleave */
- TensorShape tensor_shape0{ input0->tensor_shape() };
- tensor_shape0.set(0, k);
- tensor_shape0.set(1, m);
-
- const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
- const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(misc::shape_calculator::compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
-
- if(n != 0) /* Transpose */
- {
- TensorShape tensor_shape1{ input1->tensor_shape() };
- tensor_shape1.set(0, n);
- tensor_shape1.set(1, k);
-
- const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
- const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(misc::shape_calculator::compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
- }
-
- if(output->total_size() != 0)
- {
- if(n != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
- }
- ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
- }
- }
-
- return Status{};
-}
-} // namespace
-
-NEGEMMMatrixMultiplyKernel::NEGEMMMatrixMultiplyKernel()
- : _input0(nullptr), _input1(nullptr), _output(nullptr), _alpha(1.0f)
-{
-}
-
-void NEGEMMMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
-
- // Output tensor auto inizialitation if not yet initialized
- TensorShape tensor_shape{ input0->info()->tensor_shape() };
- tensor_shape.set(0, is_interleaved ? reshape_info.n() : input1->info()->dimension(0));
- tensor_shape.set(1, is_interleaved ? reshape_info.m() : input0->info()->dimension(1));
-
- auto_init_if_empty(*output->info(), input0->info()->clone()->set_tensor_shape(tensor_shape));
-
- // Perform validate step
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), alpha, is_interleaved, reshape_info));
-
- _input0 = input0;
- _input1 = input1;
- _output = output;
- _alpha = alpha;
-
- // Configure kernel window
- Window win{};
-
- // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
- if((output->info()->dimension(1) == 1))
- {
- const unsigned int num_elems_processed_per_iteration_x = (input0->info()->data_type() == DataType::F32) ? 16 : 32;
-
- win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x));
- }
- else
- {
- constexpr unsigned int num_elems_processed_per_iteration_x = 8;
- constexpr unsigned int num_elems_processed_per_iteration_y = 4;
-
- win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
- }
-
- INEKernel::configure(win);
-}
-
-Status NEGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved,
- const GEMMReshapeInfo &reshape_info)
-{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, alpha, is_interleaved, reshape_info));
-
- return Status{};
-}
-
-void NEGEMMMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
- // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
- const bool is_output_vector = (_output->info()->dimension(1) == 1);
- switch(_input0->info()->data_type())
- {
- case DataType::F32:
- {
- is_output_vector ? vector_matrix_multiply_f32(_input0, _input1, _output, window, info, _alpha) :
- matrix_matrix_multiply_f32(_input0, _input1, _output, window, _alpha);
- break;
- }
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- {
- is_output_vector ? vector_matrix_multiply_f16(_input0, _input1, _output, window, info, _alpha) :
- matrix_matrix_multiply_f16(_input0, _input1, _output, window, _alpha);
- break;
- }
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- default:
- {
- ARM_COMPUTE_ERROR("Data type not supported");
- break;
- }
- }
-}
-} // namespace arm_compute