aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/NESymm.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/NESymm.h')
-rw-r--r--src/core/NEON/NESymm.h239
1 files changed, 239 insertions, 0 deletions
diff --git a/src/core/NEON/NESymm.h b/src/core/NEON/NESymm.h
new file mode 100644
index 0000000000..ec246efc8c
--- /dev/null
+++ b/src/core/NEON/NESymm.h
@@ -0,0 +1,239 @@
+/*
+ * Copyright (c) 2019-2020 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_NESYMM_H
+#define ARM_COMPUTE_NESYMM_H
+
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+
+#include "src/core/NEON/NEMath.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+using qsymm8_t = int8_t; /**< 8 bit quantized symmetric scalar value */
+using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */
+
+using qsymm16x8_t = int16x8_t; /**< 16 bit quantized symmetric vector with 8 elements */
+using qsymm16x8x2_t = int16x8x2_t; /**< 16 bit quantized symmetric vector with 16 elements */
+
+/** Performs final quantization step on 8 signed 16-bit elements
+ *
+ * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
+ *
+ * @param[in] in_s32 Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier Result multiplier parameter
+ * @param[in] result_shift Result shift parameter
+ * @param[in] min_s16 Relu lower bound
+ * @param[in] max_s16 Relu upper bound
+ *
+ * @return Quantized values
+ */
+template <bool is_bounded_relu>
+int16x8_t finalize_quantization_int16(
+ int32x4x2_t &in_s32, int result_fixedpoint_multiplier, int32_t result_shift, int16x8_t min_s16, int16x8_t max_s16)
+{
+ if (result_shift < 0)
+ {
+ in_s32.val[0] = vmulq_n_s32(in_s32.val[0], (1 << -result_shift));
+ in_s32.val[1] = vmulq_n_s32(in_s32.val[1], (1 << -result_shift));
+
+ in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+ in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+ }
+ else
+ {
+ // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+ in_s32.val[0] = vqrdmulhq_n_s32(in_s32.val[0], result_fixedpoint_multiplier);
+ in_s32.val[1] = vqrdmulhq_n_s32(in_s32.val[1], result_fixedpoint_multiplier);
+ // Round to the nearest division by a power-of-two using result_shift_s32
+ in_s32.val[0] = rounding_divide_by_pow2(in_s32.val[0], result_shift);
+ in_s32.val[1] = rounding_divide_by_pow2(in_s32.val[1], result_shift);
+ }
+
+ // Convert S32 to S16
+ int16x8_t out_s16 = vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1]));
+
+ if (is_bounded_relu)
+ {
+ out_s16 = vmaxq_s16(out_s16, min_s16);
+ out_s16 = vminq_s16(out_s16, max_s16);
+ }
+
+ return out_s16;
+}
+
+/** Performs final quantization step on single signed 16-bit element
+ *
+ * @tparam is_bounded_relu Specified if a fused bounded relu should be applied
+ *
+ * @param[in] in_value Input to be quantized.
+ * @param[in] result_fixedpoint_multiplier Result multiplier parameter
+ * @param[in] result_shift Result shift parameter
+ * @param[in] min_s16 Relu lower bound
+ * @param[in] max_s16 Relu upper bound
+ *
+ * @return Quantized values
+ */
+template <bool is_bounded_relu>
+inline int16_t finalize_quantization_int16(
+ int32_t in_value, int result_fixedpoint_multiplier, int32_t result_shift, int16_t min_s16, int16_t max_s16)
+{
+ if (result_shift < 0)
+ {
+ const int64_t in_64 = static_cast<int64_t>(in_value) * (1 << (-result_shift)) *
+ static_cast<int64_t>(result_fixedpoint_multiplier);
+ in_value = static_cast<int32_t>((in_64 + (1 << 30)) >> 31);
+ }
+ else
+ {
+ // Fixed point multiplication with vector saturating rounding doubling multiply high with scalar
+ const int64_t in_64 = static_cast<int64_t>(in_value) * static_cast<int64_t>(result_fixedpoint_multiplier);
+ // Shift value by result_shift_s32
+ in_value = rounding_divide_by_pow2(static_cast<int32_t>((in_64 + (1 << 30)) >> 31), result_shift);
+ }
+
+ // Bound the result
+ int16_t out_s16 = static_cast<int16_t>(std::max<int32_t>(-32768, std::min<int32_t>(32767, in_value)));
+
+ if (is_bounded_relu)
+ {
+ out_s16 = static_cast<int16_t>(std::max(min_s16, std::min(max_s16, out_s16)));
+ }
+
+ return out_s16;
+}
+
+/** Dequantize a neon vector holding 8 16-bit quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] scale Quantization scale
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x2_t vdequantize_int16(const int16x8_t &qv, float scale)
+{
+ const float32x4_t vscale = vdupq_n_f32(scale);
+ const float32x4x2_t vdequantized_input = {{vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv))), vscale),
+ vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv))), vscale)}};
+ return vdequantized_input;
+}
+
+/** Quantize a neon vector holding 8 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] scale Quantization scale
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline int16x8_t vquantize_int16(const float32x4x2_t &qv, float scale)
+{
+ const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+
+ const int32x4x2_t rf = {{
+#ifdef __aarch64__
+ vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
+#else //__aarch64__
+ vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)), vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale))
+#endif //__aarch64__
+ }};
+ return vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
+}
+
+/** Dequantize a neon vector holding 16 16-bit quantized values.
+ *
+ * @param[in] qv Input values to be dequantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return Dequantized values in a neon vector
+ */
+inline float32x4x4_t vdequantize(const int16x8x2_t &qv, const UniformQuantizationInfo &qi)
+{
+ const float scale = qi.scale;
+ const float32x4_t vscale = vdupq_n_f32(scale);
+ const float32x4x4_t vdequantized_input = {{
+ vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[0]))), vscale),
+ vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[0]))), vscale),
+ vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(qv.val[1]))), vscale),
+ vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(qv.val[1]))), vscale),
+ }};
+ return vdequantized_input;
+}
+
+/** Quantize a neon vector holding 16 floating point values.
+ *
+ * @param[in] qv Input values to be quantized.
+ * @param[in] qi Quantization information to be used in the computation.
+ *
+ * @return A neon vector holding the quantized values
+ */
+inline qsymm16x8x2_t vquantize_qsymm16(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
+{
+ const float scale = qi.scale;
+ ARM_COMPUTE_ERROR_ON(scale == 0.f);
+ const float32x4_t vinvscale = vdupq_n_f32(1.f / scale);
+ const int32x4x4_t rf = {{
+#ifdef __aarch64__
+ vcvtnq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
+ vcvtnq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
+ vcvtnq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
+ vcvtnq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
+#else //__aarch64__
+ vcvtq_s32_f32(vmulq_f32(qv.val[0], vinvscale)),
+ vcvtq_s32_f32(vmulq_f32(qv.val[1], vinvscale)),
+ vcvtq_s32_f32(vmulq_f32(qv.val[2], vinvscale)),
+ vcvtq_s32_f32(vmulq_f32(qv.val[3], vinvscale)),
+#endif //__aarch64__
+ }};
+ const qsymm16x8x2_t res = {
+ vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])),
+ vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])),
+ };
+
+ return res;
+}
+
+/** Multiply a neon vector using quantized multiplier and shift
+ *
+ * @param[in] input Input vector to mutiply values to be quantized.
+ * @param[in] qmul Quantized multipler
+ * @param[in] shift Left bit shift
+ *
+ * @return A neon vector holding the multiplied value
+ */
+inline int32x4x2_t multiply_by_quantized_multiplier_2row(int32x4x2_t input, int32_t qmul, int32_t shift)
+{
+ const auto left_shift = shift > 0 ? shift : 0;
+ const auto right_shift = shift > 0 ? 0 : -shift;
+ const auto one_shifted = 1 << left_shift;
+
+ int32x4x2_t result;
+ result.val[0] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[0], one_shifted), qmul), right_shift);
+ result.val[1] = rounding_divide_by_pow2(vqrdmulhq_n_s32(vmulq_n_s32(input.val[1], one_shifted), qmul), right_shift);
+
+ return result;
+}
+
+} // namespace arm_compute
+#endif // ARM_COMPUTE_NESYMM_H