aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/im2col.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/im2col.cl')
-rw-r--r--src/core/CL/cl_kernels/im2col.cl1360
1 files changed, 0 insertions, 1360 deletions
diff --git a/src/core/CL/cl_kernels/im2col.cl b/src/core/CL/cl_kernels/im2col.cl
deleted file mode 100644
index a1467a0b36..0000000000
--- a/src/core/CL/cl_kernels/im2col.cl
+++ /dev/null
@@ -1,1360 +0,0 @@
-/*
- * Copyright (c) 2018-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-
-#if defined(DATA_TYPE) && defined(ELEMENT_SIZE)
-
-#if ELEMENT_SIZE == 1
-#define COND_DATA_TYPE char
-#elif ELEMENT_SIZE == 2
-#define COND_DATA_TYPE short
-#elif ELEMENT_SIZE == 4
-#define COND_DATA_TYPE int
-#else // ELEMENT_SIZE
-#error "Element size not support"
-#endif // ELEMENT_SIZE
-
-#if defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(SRC_DEPTH)
-/** This opencl kernel performs im2col when the kernel size is 1x1, the stride_x = 1 and the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col1x1_stridex1_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const uint xc = get_global_id(0) * 4; // x coordinate in the convolved tensor
- const uint yc = get_global_id(1); // y coordinate in the convolved tensor
- const uint ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const uint batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Clamp xc
- // The strategy clamps at "xc" as it will be a valid value for sure
- uint4 xc_clamped = xc + (uint4)(0, 1, 2, 3);
-
- // Check which values are valid
- const VEC_DATA_TYPE(COND_DATA_TYPE, 4) cond0 = CONVERT((xc_clamped < SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
-
- xc_clamped = select((uint4)xc, xc_clamped, convert_int4(cond0));
-
- // Calculate input indices
- const uint xi = xc;
- const uint yi = yc * STRIDE_Y;
-
- // Calculate output indices
-
-#if defined(NUM_GROUPS)
- const uint xo = ch % (SRC_DEPTH / NUM_GROUPS);
- const uint zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const uint xo = ch;
-#endif // defined(NUM_GROUPS)
- const uint4 yo = xc_clamped + yc * CONVOLVED_WIDTH; // Index of the convolution
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + zo * dst_stride_z + batch * dst_stride_w;
-#else // defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + batch * dst_stride_w;
-#endif // defined(NUM_GROUPS)
-
- VEC_DATA_TYPE(DATA_TYPE, 4)
- data = vload4(0, (__global DATA_TYPE *)input_ptr);
-
- // If out-of-bound, overwrite with the first element
- data = select((VEC_DATA_TYPE(DATA_TYPE, 4))data.s0, data, cond0);
-
- *(__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) = data.s0;
- *(__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) = data.s1;
- *(__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) = data.s2;
- *(__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) = data.s3;
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if(xo == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *((__global DATA_TYPE *)(output_ptr + yo.s0 * dst_stride_y) + 1) = 1.0f;
- *((__global DATA_TYPE *)(output_ptr + yo.s1 * dst_stride_y) + 1) = 1.0f;
- *((__global DATA_TYPE *)(output_ptr + yo.s2 * dst_stride_y) + 1) = 1.0f;
- *((__global DATA_TYPE *)(output_ptr + yo.s3 * dst_stride_y) + 1) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_Y) && defined(SRC_DEPTH)
-
-#if defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
-#if defined(DILATION_X) && defined(DILATION_Y)
-/** This opencl kernel performs a generic im2col implementation when the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The kernel width, height and depth must be passed at compile time using -DKERNEL_WIDTH, -DKERNEL_HEIGHT and -DSRC_DEPTH: e.g. -DKERNEL_WIDTH=3, -DKERNEL_HEIGHT=3 and -DSRC_DEPTH=64
- * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
- * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col_generic_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const int xc = get_global_id(0); // x coordinate in the convolved tensor
- const int yc = get_global_id(1); // y coordinate in the convolved tensor
- const int ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const int batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Calculate input indices
- const int xi = xc * STRIDE_X - PAD_LEFT;
- const int yi = yc * STRIDE_Y - PAD_TOP;
-
- // Calculate output indices
-#if defined(NUM_GROUPS)
- const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * KERNEL_WIDTH * KERNEL_HEIGHT;
- const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
-#endif // defined(NUM_GROUPS)
- const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
-
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w)) + xo;
-#else // defined(NUM_GROUPS)
- __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
-#endif // defined(NUM_GROUPS)
-
- // Linearize convolution elements
- for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
- {
- int y = yi + yk * DILATION_Y;
- for(int xk = 0; xk < KERNEL_WIDTH; ++xk, ++output_ptr)
- {
- int x = xi + xk * DILATION_X;
-#if PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
- *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
-#else // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
- if(x < 0 || x >= SRC_WIDTH || y < 0 || y >= SRC_HEIGHT)
- {
- *output_ptr = PAD_VALUE;
- }
- else
- {
- *output_ptr = *((__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
- }
-#endif // PAD_LEFT == 0 && PAD_TOP == 0 && PAD_RIGHT == 0 && PAD_BOTTOM == 0
- }
- }
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if((xo / (KERNEL_WIDTH * KERNEL_HEIGHT)) == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *output_ptr = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif // defined(DILATION_X) && defined(DILATION_Y)
-
-/** This opencl kernel performs im2col when the kernel size is 3x3 and the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
- * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col3x3_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const int xc = get_global_id(0); // x coordinate in the convolved tensor
- const int yc = get_global_id(1); // y coordinate in the convolved tensor
- const int ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const int batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Calculate input indices
- const int xi = xc * STRIDE_X - PAD_LEFT;
- const int yi = yc * STRIDE_Y - PAD_TOP;
-
- // Calculate output indices
-#if defined(NUM_GROUPS)
- const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 9; // 3x3
- const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const int xo = ch * 9; // 3x3
-#endif // defined(NUM_GROUPS)
- const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
-#else // defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
-#endif // defined(NUM_GROUPS)
-
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row0 = vload3(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row1 = vload3(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row2 = vload3(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- // Put 0 if the value is out-of-bound
- int3 x = (int3)xi + (int3)(0, 1, 2);
- int3 y = (int3)yi + (int3)(0, 1, 2);
-
- VEC_DATA_TYPE(COND_DATA_TYPE, 3)
- cond0 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s0 >= 0 && y.s0 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
- VEC_DATA_TYPE(COND_DATA_TYPE, 3)
- cond1 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s1 >= 0 && y.s1 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
- VEC_DATA_TYPE(COND_DATA_TYPE, 3)
- cond2 = CONVERT((x >= (int3)0 && x < (int3)SRC_WIDTH && (int3)(y.s2 >= 0 && y.s2 < SRC_HEIGHT)), VEC_DATA_TYPE(COND_DATA_TYPE, 3));
-
- row0 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row0, cond0);
- row1 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row1, cond1);
- row2 = select((VEC_DATA_TYPE(DATA_TYPE, 3))PAD_VALUE, row2, cond2);
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row0.s012, row1.s012, row2.s01), 0, (__global DATA_TYPE *)output_ptr);
- *((__global DATA_TYPE *)output_ptr + 8) = row2.s2;
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if((xo / 9) == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *((__global DATA_TYPE *)output_ptr + 9) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-
-/** This opencl kernel performs im2col when the kernel size is 5x5 and the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
- * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col5x5_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const int xc = get_global_id(0); // x coordinate in the convolved tensor
- const int yc = get_global_id(1); // y coordinate in the convolved tensor
- const int ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const int batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Calculate input indices
- const int xi = xc * STRIDE_X - PAD_LEFT;
- const int yi = yc * STRIDE_Y - PAD_TOP;
-
- // Calculate output indices
-#if defined(NUM_GROUPS)
- const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 25; // 5x5
- const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const int xo = ch * 25; // 5x5
-#endif // defined(NUM_GROUPS)
- const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- // Put 0 if the value is out-of-bound
- int4 x0 = (int4)xi + (int4)(0, 1, 2, 3);
- int4 y0 = (int4)yi + (int4)(0, 1, 2, 3);
- int x1 = xi + 4;
- int y1 = yi + 4;
-
- // Check if we could have out-of-bounds elements in the x direction
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- x0_condition = CONVERT((x0 >= (int4)0 && x0 < (int4)SRC_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- y0_condition = CONVERT((y0 >= (int4)0 && y0 < (int4)SRC_HEIGHT), VEC_DATA_TYPE(COND_DATA_TYPE, 4));
- COND_DATA_TYPE x1_condition = (COND_DATA_TYPE)(x1 >= 0 && x1 < SRC_WIDTH);
- COND_DATA_TYPE y1_condition = (COND_DATA_TYPE)(y1 >= 0 && y1 < SRC_HEIGHT);
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * (int)src_stride_x + yi * (int)src_stride_y + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
-#else // defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
-#endif // defined(NUM_GROUPS)
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 4)
- row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
- DATA_TYPE
- row01 = *((__global DATA_TYPE *)input_ptr + 4);
-
- input_ptr += src_stride_y;
-
- VEC_DATA_TYPE(DATA_TYPE, 4)
- row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
- DATA_TYPE
- row11 = *((__global DATA_TYPE *)input_ptr + 4);
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s0;
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- cond10 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s1;
- COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s0);
- COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s1);
-
- // Replace with 0 if the value is not valid
- row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
- row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
- row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
- row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
- row10.s012),
- 0, (__global DATA_TYPE *)output_ptr);
- vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 10 * dst_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 4)
- row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
- DATA_TYPE
- row01 = *((__global DATA_TYPE *)input_ptr + 4);
-
- input_ptr += src_stride_y;
-
- VEC_DATA_TYPE(DATA_TYPE, 4)
- row10 = vload4(0, (__global DATA_TYPE *)input_ptr);
- DATA_TYPE
- row11 = *((__global DATA_TYPE *)input_ptr + 4);
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s2;
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- cond10 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y0_condition.s3;
- COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y0_condition.s2);
- COND_DATA_TYPE cond11 = (COND_DATA_TYPE)(x1_condition && y0_condition.s3);
-
- // Replace with 0 if the value is not valid
- row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
- row10 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row10, cond10);
- row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
- row11 = select((DATA_TYPE)PAD_VALUE, row11, cond11);
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s0123, row01,
- row10.s012),
- 0, (__global DATA_TYPE *)output_ptr);
- vstore2((VEC_DATA_TYPE(DATA_TYPE, 2))(row10.s3, row11), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 10 * dst_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 4)
- row00 = vload4(0, (__global DATA_TYPE *)input_ptr);
- DATA_TYPE
- row01 = *((__global DATA_TYPE *)input_ptr + 4);
-
- input_ptr += src_stride_y;
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- VEC_DATA_TYPE(COND_DATA_TYPE, 4)
- cond00 = x0_condition && (VEC_DATA_TYPE(COND_DATA_TYPE, 4))y1_condition;
- COND_DATA_TYPE cond01 = (COND_DATA_TYPE)(x1_condition && y1_condition);
-
- // Replace with 0 if the value is not valid
- row00 = select((VEC_DATA_TYPE(DATA_TYPE, 4))PAD_VALUE, row00, cond00);
- row01 = select((DATA_TYPE)PAD_VALUE, row01, cond01);
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- vstore4(row00, 0, (__global DATA_TYPE *)output_ptr);
- *((__global DATA_TYPE *)output_ptr + 4) = row01;
-
- output_ptr += 5 * dst_stride_x;
- }
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if((xo / 25) == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *((__global DATA_TYPE *)output_ptr) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif // defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE)
-
-#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH)
-/** This opencl kernel performs im2col when the kernel size is 11x11, we do not have paddings and the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The number of input channels must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col11x11_padx0_pady0_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const int xc = get_global_id(0); // x coordinate in the convolved tensor
- const int yc = get_global_id(1); // y coordinate in the convolved tensor
- const int ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const int batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Calculate input indices
- const int xi = xc * STRIDE_X;
- const int yi = yc * STRIDE_Y;
-
- // Calculate output indices
-#if defined(NUM_GROUPS)
- const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * 121; // 11x11
- const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const int xo = ch * 121; // 11x11
-#endif // defined(NUM_GROUPS)
- const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + xi * src_stride_x + yi * src_stride_y + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w;
-#else // defined(NUM_GROUPS)
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + xo * dst_stride_x + yo * dst_stride_y + batch * dst_stride_w;
-#endif // defined(NUM_GROUPS)
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- input_ptr += src_stride_y;
- output_ptr += 11 * src_stride_x;
- }
-
- {
- VEC_DATA_TYPE(DATA_TYPE, 8)
- row00 = vload8(0, (__global DATA_TYPE *)(input_ptr));
- VEC_DATA_TYPE(DATA_TYPE, 3)
- row01 = vload3(0, (__global DATA_TYPE *)(input_ptr) + 8);
-
- vstore8((VEC_DATA_TYPE(DATA_TYPE, 8))(row00.s01234567), 0, (__global DATA_TYPE *)output_ptr);
- vstore3((VEC_DATA_TYPE(DATA_TYPE, 3))(row01.s012), 0, (__global DATA_TYPE *)output_ptr + 8);
-
- output_ptr += 11 * src_stride_x;
- }
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if((xo / 121) == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *((__global DATA_TYPE *)output_ptr) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif // defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(SRC_DEPTH)
-
-#if defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
-/** This opencl kernel performs im2col when the kernel size is greater than 1x1, we do not have paddings and the data layout is NCHW
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float.
- * @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=4.
- * @note The width modulo vector size must be passed at compile time using -DWIDTH_MOD_VECTOR_SIZE e.g. -DWIDTH_MOD_VECTOR_SIZE=3.
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- * @note In case grouping is performed, the number of groups must be passed at compile time using -DNUM_GROUPS: e.g. -DNUM_GROUPS=4
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col_generic_padx0_pady0_nchw(
- TENSOR3D_DECLARATION(src),
-#if defined(NUM_GROUPS)
- TENSOR3D_DECLARATION(dst),
-#else // defined(NUM_GROUPS)
- IMAGE_DECLARATION(dst),
-#endif // defined(NUM_GROUPS)
- uint src_stride_w,
- uint dst_stride_w)
-{
- const int xc = get_global_id(0); // x coordinate in the convolved tensor
- const int yc = get_global_id(1); // y coordinate in the convolved tensor
- const int ch = get_global_id(2) % SRC_DEPTH; // input feature map
- const int batch = get_global_id(2) / SRC_DEPTH; // batch size
-
- // Calculate input indices
- const int xi = xc * STRIDE_X;
- const int yi = yc * STRIDE_Y;
-
- // Calculate output indices
-#if defined(NUM_GROUPS)
- const int xo = (ch % (SRC_DEPTH / NUM_GROUPS)) * KERNEL_WIDTH * KERNEL_HEIGHT;
- const int zo = ch / (SRC_DEPTH / NUM_GROUPS);
-#else // defined(NUM_GROUPS)
- const int xo = ch * KERNEL_WIDTH * KERNEL_HEIGHT;
-#endif // defined(NUM_GROUPS)
- const int yo = xc + yc * CONVOLVED_WIDTH; // Index of the convolution
-
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * src_stride_z + batch * src_stride_w;
-#if defined(NUM_GROUPS)
- __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + zo * dst_stride_z + batch * dst_stride_w)) + xo;
-#else // defined(NUM_GROUPS)
- __global DATA_TYPE *output_ptr = ((__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + yo * dst_stride_y + batch * dst_stride_w)) + xo;
-#endif // defined(NUM_GROUPS)
-
- // Linearize convolution elements
- for(int y = yi, y_e = yi + KERNEL_HEIGHT; y < y_e; ++y)
- {
- int last_x = 0;
- for(int x = xi, x_e = xi + KERNEL_WIDTH; x + VECTOR_SIZE <= x_e; x += VECTOR_SIZE, output_ptr += VECTOR_SIZE)
- {
- VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
- row = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + x * src_stride_x + y * src_stride_y));
- VSTORE(VECTOR_SIZE)
- (row, 0, output_ptr);
- last_x = x;
- }
- // Copy the remainder of the row by doing VLOAD(WIDTH_MOD_VECTOR_SIZE) and VSTORE(WIDTH_MOD_VECTOR_SIZE).
- // Note that x and output_ptr have already been incremented by VECTOR_SIZE by the loop just before exit.
-#if WIDTH_MOD_VECTOR_SIZE == 1
- *output_ptr = *((__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
-#elif WIDTH_MOD_VECTOR_SIZE > 1
- VEC_DATA_TYPE(DATA_TYPE, WIDTH_MOD_VECTOR_SIZE)
- row = VLOAD(WIDTH_MOD_VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + (last_x + VECTOR_SIZE) * src_stride_x + y * src_stride_y));
- VSTORE(WIDTH_MOD_VECTOR_SIZE)
- (row, 0, output_ptr);
-#endif /* WIDTH_MOD_VECTOR_SIZE */
- output_ptr += WIDTH_MOD_VECTOR_SIZE;
- } /* End of loop over KERNEL_HEIGHT */
-
-#ifdef HAS_BIAS
-#if defined(NUM_GROUPS)
- if((xo / (KERNEL_WIDTH * KERNEL_HEIGHT)) == (SRC_DEPTH / NUM_GROUPS - 1))
-#else // defined(NUM_GROUPS)
- if(ch == (SRC_DEPTH - 1))
-#endif // defined(NUM_GROUPS)
- {
- *output_ptr = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif //defined(CONVOLVED_WIDTH) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(PAD_RIGHT) && defined(PAD_BOTTOM) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(VECTOR_SIZE) && defined(WIDTH_MOD_VECTOR_SIZE)
-
-#if defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE) && defined(VECTOR_SIZE) && defined(BOUNDARY_VECTOR_SIZE)
-
-#define VECTOR_N VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
-#define COND_N VEC_DATA_TYPE(COND_DATA_TYPE, VECTOR_SIZE)
-
-/** Store a 1x9 row or a 3x3 block in a boundary-aware manner to avoid paddings in the channel dimension
- * @name IM2COL1X9_NHWC_STORE
- *
- * @note To use this macro for a 3x3 block, @p ROW has to be 0
- *
- * @param[in] VECTOR_SIZE The non-boundary vector width of @p DATA. Supported: 1(scalar), 2, 3, 4, 8, 16
- * @param[in] BOUNDARY_VECTOR_SIZE The boundary vector width of @p DATA. Supported: 1-16, but has to be <= @p size
- * @param[in] DATA_TYPE Data type of @p DATA
- * @param[in] SRC_DEPTH Input channel size / depth
- * @param[in] DATA Value variable base name
- * @param[in] ROW The row number to store. Supported: 0-8
- * @param[in] OUTPUT_PTR Output pointer
- * @{
- */
-#if defined(VECTOR_SIZE) && defined(BOUNDARY_VECTOR_SIZE) && BOUNDARY_VECTOR_SIZE < VECTOR_SIZE
-#define IM2COL1X9_NHWC_STORE(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- const bool at_channel_boundary = get_global_id(0) == 0; \
- if(at_channel_boundary) \
- { \
- IM2COL1X9_NHWC_STORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- } \
- else \
- { \
- IM2COL1X9_NHWC_STORE_NONPARTIAL(VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- }
-#else // defined(VECTOR_SIZE) && defined(BOUNDARY_VECTOR_SIZE) && BOUNDARY_VECTOR_SIZE < VECTOR_SIZE
-#define IM2COL1X9_NHWC_STORE(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- IM2COL1X9_NHWC_STORE_NONPARTIAL(VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR)
-#endif // defined(VECTOR_SIZE) && defined(BOUNDARY_VECTOR_SIZE) && BOUNDARY_VECTOR_SIZE < VECTOR_SIZE
-
-#define IM2COL1X9_NHWC_STORE_NONPARTIAL(VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- VSTORE(VECTOR_SIZE) \
- (DATA##0, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (0 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##1, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (1 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##2, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (2 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##3, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (3 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##4, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (4 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##5, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (5 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##6, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (6 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##7, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (7 + ROW * 9) * SRC_DEPTH); \
- VSTORE(VECTOR_SIZE) \
- (DATA##8, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (8 + ROW * 9) * SRC_DEPTH);
-
-#define IM2COL1X9_NHWC_STORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, DATA, ROW, OUTPUT_PTR) \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##0, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (0 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##1, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (1 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##2, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (2 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##3, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (3 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##4, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (4 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##5, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (5 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##6, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (6 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##7, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (7 + ROW * 9) * SRC_DEPTH); \
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE) \
- (DATA##8, 0, (__global DATA_TYPE *)(OUTPUT_PTR) + (8 + ROW * 9) * SRC_DEPTH);
-/** @}*/
-
-/** This kernel performs im2col when the kernel size is 3x3 and the data layout is NHWC
- *
- * @note This kernel computes VECTOR_SIZE elements
- * @note This kernel stores VECTOR_SIZE or BOUNDARY_VECTOR_SIZE (if at boundary) elements
- * @note The vector size must be passed at compile time using -DVECTOR_SIZE: e.g. -DVECTOR_SIZE=2
- * @note The boundary vector size must be passed at compile time using -DBOUNDARY_VECTOR_SIZE: e.g. -DBOUNDARY_VECTOR_SIZE=1
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The kernel depth must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col3x3_nhwc(
- TENSOR3D_DECLARATION(src),
- IMAGE_DECLARATION(dst),
- uint src_stride_w,
- uint dst_stride_w)
-{
- // input feature map, boundary-corrected (shift all non-boundary vectors by shift_amount) to avoid padding
- const int shift_amount = (int)VECTOR_SIZE - (int)BOUNDARY_VECTOR_SIZE;
- const int ch = max((int)(get_global_id(0) * VECTOR_SIZE) - shift_amount, 0);
- const int yo = get_global_id(1);
- const int batch = get_global_id(2); // batch size
-
- // Calculate input indices
- const int xi = (get_global_id(1) % CONVOLVED_WIDTH) * STRIDE_X;
- const int yi = (get_global_id(1) / (int)CONVOLVED_WIDTH) * STRIDE_Y;
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + batch * (int)src_stride_w;
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + yo * (int)dst_stride_y + batch * (int)dst_stride_w;
-
- int yi_coord = 0;
- int3 offset = 0;
-
- // Clamp xi
- int3 xi_offset = ((int3)xi + (int3)(0, 1, 2) * DILATION_X - (int3)PAD_LEFT);
-#if PAD_LEFT != 0 || PAD_RIGHT != 0
-#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
- xi_offset = CLAMP(xi_offset, (int3)0, (int3)(SRC_WIDTH - 1));
-#endif // PAD_LEFT != 0 || PAD_RIGHT != 0
- // Multiply by src_stride_y as the width (X) dimension here is the second (y) dimension in src NHWC tensor
- xi_offset *= (int3)src_stride_y;
-
- // Out-of-bound condition for X
- int3 x_cond = (((int3)xi + (int3)(0, 1, 2) * DILATION_X - (int3)PAD_LEFT) < (int3)0) || (((int3)xi + (int3)(0, 1, 2) * DILATION_X - (int3)PAD_LEFT) >= (int3)SRC_WIDTH);
-
- // yi == 0
- // Clamp yi
- // yi_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- // This is a trick so that the values loaded in the padding areas are always from the last row (SRC_HEIGHT - 1),
- // because of the negative yi_coord wrap-around, but it gets overwritten by PAD_VALUE immediately as the wrap-around
- // also causes y_cond (y padding condition) to be satisfied
- yi_coord = yi - (int)PAD_TOP;
-
- // Clamp only if PAD_TOP or PAD_BOTTOM is not equal to 0
-#if PAD_TOP != 0 || PAD_BOTTOM != 0
- yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1));
-#endif // PAD_TOP != 0 || PAD_BOTTOM != 0
-
- // Compute offset
- offset = xi_offset + (yi_coord * (int)src_stride_z);
-
- // Load input values
- VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
- VECTOR_N values1 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
- VECTOR_N values2 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
-
-#if PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
- // Replace invalid values with PAD_VALUE
- int y_cond = (int)((uint)(yi - (int)PAD_TOP) >= (uint)(SRC_HEIGHT));
- values0 = select(values0, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s0)));
- values1 = select(values1, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s1)));
- values2 = select(values2, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s2)));
-#endif // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-
- // yi == 1
- // Clamp yi_coord (it can be negative if PAD_TOP > 1)
- yi_coord = yi - (int)PAD_TOP + 1 * DILATION_Y;
-
- // Clamp only if PAD_TOP or PAD_BOTTOM is not equal to 0
-#if PAD_TOP != 0 || PAD_BOTTOM != 0
- yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1));
-#endif // PAD_TOP != 0 || PAD_BOTTOM != 0
-
- // Compute offset
- offset = xi_offset + (yi_coord * (int)src_stride_z);
-
- // Load input values
- VECTOR_N values3 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
- VECTOR_N values4 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
- VECTOR_N values5 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
-
-#if PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
- // Replace invalid values with zeros
- y_cond = (int)((uint)(yi - (int)PAD_TOP + 1 * DILATION_Y) >= (uint)(SRC_HEIGHT));
- values3 = select(values3, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s0)));
- values4 = select(values4, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s1)));
- values5 = select(values5, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s2)));
-#endif // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-
- // yi == 2
- // Clamp yi_coord
- yi_coord = yi - (int)PAD_TOP + 2 * DILATION_Y;
-
- // Clamp only if PAD_TOP or PAD_BOTTOM is not equal to 0
-#if PAD_TOP != 0 || PAD_BOTTOM != 0
- yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1));
-#endif // PAD_TOP != 0 || PAD_BOTTOM != 0
-
- // Compute offset
- offset = xi_offset + (yi_coord * (int)src_stride_z);
-
- // Load input values
- VECTOR_N values6 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s0));
- VECTOR_N values7 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s1));
- VECTOR_N values8 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset.s2));
-
-#if PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
- // Replace invalid values with PAD_VALUE
- y_cond = (int)((uint)(yi - (int)PAD_TOP + 2 * DILATION_Y) >= (uint)(SRC_HEIGHT));
- values6 = select(values6, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s0)));
- values7 = select(values7, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s1)));
- values8 = select(values8, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond.s2)));
-#endif // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-
- // Store in a boundary-aware way to avoid padding
- IM2COL1X9_NHWC_STORE(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, values, 0, output_ptr)
-
-#ifdef HAS_BIAS
- // We can use VECTOR_SIZE instead of BOUNDARY_VECTOR_SIZE even if it's at the boundary. This is because the bias is
- // added at the end of the channel, while the boundary vec is at the beginning of the channel.
- // The only case where the boundary vec is at the end of the channel is when there's only a single boundary vec in
- // the whole channel dimension, but in that case VECTOR_SIZE is also equal to BOUNDARY_VECTOR_SIZE
- // See the value of num_elems_processed_per_iteration in configure_opencl_kernel method in CLIm2ColKernel.cpp
- if((ch + VECTOR_SIZE) >= SRC_DEPTH)
- {
- *((__global DATA_TYPE *)(output_ptr) - ch + SRC_DEPTH * 9) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-
-#if PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-#define IM2COL1x9(i) \
- ({ \
- yi_coord = yi - (int)PAD_TOP + i * DILATION_Y; \
- yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1)); \
- \
- offset0 = xi_offset0 + (yi_coord * (int)src_stride_z); \
- offset1 = xi_offset1 + (yi_coord * (int)src_stride_z); \
- \
- VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s0)); \
- VECTOR_N values1 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s1)); \
- VECTOR_N values2 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s2)); \
- VECTOR_N values3 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s3)); \
- VECTOR_N values4 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s4)); \
- VECTOR_N values5 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s5)); \
- VECTOR_N values6 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s6)); \
- VECTOR_N values7 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s7)); \
- VECTOR_N values8 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset1)); \
- \
- int y_cond = (int)((uint)(yi - (int)PAD_TOP + i * DILATION_Y) >= (uint)(SRC_HEIGHT)); \
- values0 = select(values0, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s0))); \
- values1 = select(values1, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s1))); \
- values2 = select(values2, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s2))); \
- values3 = select(values3, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s3))); \
- values4 = select(values4, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s4))); \
- values5 = select(values5, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s5))); \
- values6 = select(values6, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s6))); \
- values7 = select(values7, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond0.s7))); \
- values8 = select(values8, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)y_cond || (COND_N)(x_cond1))); \
- \
- IM2COL1X9_NHWC_STORE(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, values, i, output_ptr) \
- })
-#else // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-#define IM2COL1x9(i) \
- ({ \
- yi_coord = yi - (int)PAD_TOP + i * DILATION_Y; \
- yi_coord = min((uint)yi_coord, (uint)(SRC_HEIGHT - 1)); \
- \
- offset0 = xi_offset0 + (yi_coord * (int)src_stride_z); \
- offset1 = xi_offset1 + (yi_coord * (int)src_stride_z); \
- \
- VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s0)); \
- VECTOR_N values1 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s1)); \
- VECTOR_N values2 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s2)); \
- VECTOR_N values3 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s3)); \
- VECTOR_N values4 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s4)); \
- VECTOR_N values5 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s5)); \
- VECTOR_N values6 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s6)); \
- VECTOR_N values7 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset0.s7)); \
- VECTOR_N values8 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset1)); \
- \
- IM2COL1X9_NHWC_STORE(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE, DATA_TYPE, SRC_DEPTH, values, i, output_ptr) \
- })
-#endif // PAD_TOP != 0 || PAD_LEFT != 0 || PAD_BOTTOM != 0 || PAD_RIGHT != 0
-
-/** This kernel performs im2col when the kernel size is 9x9 and the data layout is NHWC
- *
- * @note This kernel computes VECTOR_SIZE elements
- * @note This kernel stores VECTOR_SIZE or BOUNDARY_VECTOR_SIZE (if at boundary) elements
- * @note The vector size must be passed at compile time using -DVECTOR_SIZE: e.g. -DVECTOR_SIZE=2
- * @note The boundary vector size must be passed at compile time using -DBOUNDARY_VECTOR_SIZE: e.g. -DBOUNDARY_VECTOR_SIZE=1
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The kernel depth must be passed at compile time using -DSRC_DEPTH: e.g. -DSRC_DEPTH=3
- * @note The stride along the Y direction must be passed at compile time using -DSTRIDE_Y: e.g. -DSTRIDE_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col9x9_nhwc(
- TENSOR3D_DECLARATION(src),
- IMAGE_DECLARATION(dst),
- uint src_stride_w,
- uint dst_stride_w)
-{
- // input feature map, boundary-corrected (shift all non-boundary vectors by shift_amount) to avoid padding
- const int shift_amount = (int)VECTOR_SIZE - (int)BOUNDARY_VECTOR_SIZE;
- const int ch = max((int)(get_global_id(0) * VECTOR_SIZE) - shift_amount, 0);
- const int yo = get_global_id(1);
- const int batch = get_global_id(2); // batch size
-
- // Calculate input indices
- const int xi = (get_global_id(1) % CONVOLVED_WIDTH) * STRIDE_X;
- const int yi = (get_global_id(1) / (int)CONVOLVED_WIDTH) * STRIDE_Y;
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + batch * (int)src_stride_w;
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + yo * (int)dst_stride_y + batch * (int)dst_stride_w;
-
- int yi_coord = 0;
- int8 offset0 = 0;
- int offset1 = 0;
-
- // Clamp xi
- int8 xi_offset0 = ((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT);
- int xi_offset1 = ((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT);
-
-#if PAD_LEFT != 0 || PAD_RIGHT != 0
-#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
- xi_offset0 = CLAMP(xi_offset0, (int8)0, (int8)(SRC_WIDTH - 1));
- xi_offset1 = CLAMP(xi_offset1, (int)0, (int)(SRC_WIDTH - 1));
-#endif // PAD_LEFT != 0 || PAD_RIGHT != 0
- xi_offset0 *= (int8)src_stride_y;
- xi_offset1 *= (int)src_stride_y;
-
- // Out-of-bound condition for X
- int8 x_cond0 = (((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT) < (int8)0) || (((int8)xi + (int8)(0, 1, 2, 3, 4, 5, 6, 7) * DILATION_X - (int8)PAD_LEFT) >= (int8)SRC_WIDTH);
- int x_cond1 = (((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT) < (int)0) || (((int)xi + (int)(8) * DILATION_X - (int)PAD_LEFT) >= (int)SRC_WIDTH);
-
- IM2COL1x9(0);
- IM2COL1x9(1);
- IM2COL1x9(2);
- IM2COL1x9(3);
- IM2COL1x9(4);
- IM2COL1x9(5);
- IM2COL1x9(6);
- IM2COL1x9(7);
- IM2COL1x9(8);
-
-#ifdef HAS_BIAS
- // We can use VECTOR_SIZE instead of BOUNDARY_VECTOR_SIZE even if it's at the boundary. This is because the bias is
- // added at the end of the channel, while the boundary vec is at the beginning of the channel.
- // The only case where the boundary vec is at the end of the channel is when there's only a single boundary vec in
- // the whole channel dimension, but in that case VECTOR_SIZE is also equal to BOUNDARY_VECTOR_SIZE
- // See the value of num_elems_processed_per_iteration in configure_opencl_kernel method in CLIm2ColKernel.cpp
- if((ch + VECTOR_SIZE) >= SRC_DEPTH)
- {
- *((__global DATA_TYPE *)(output_ptr) - ch + SRC_DEPTH * 81) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-
-/** This opencl kernel performs a generic im2col implementation when the data layout is NHWC
- *
- * @note This kernel computes VECTOR_SIZE elements
- * @note This kernel stores VECTOR_SIZE or BOUNDARY_VECTOR_SIZE (if at boundary) elements
- * @note The vector size must be passed at compile time using -DVECTOR_SIZE: e.g. -DVECTOR_SIZE=2
- * @note The boundary vector size must be passed at compile time using -DBOUNDARY_VECTOR_SIZE: e.g. -DBOUNDARY_VECTOR_SIZE=1
- * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
- * @note The width and height of the input tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT: e.g. -DSRC_WIDTH=128 and -DSRC_HEIGHT=128
- * @note The width of output tensor after matrix multiplication must be passed at compile time using -DCONVOLVED_WIDTH: e.g. -DCONVOLVED_WIDTH=34
- * @note The kernel width, height and depth must be passed at compile time using -DKERNEL_WIDTH, -DKERNEL_HEIGHT and -DSRC_DEPTH: e.g. -DKERNEL_WIDTH=3, -DKERNEL_HEIGHT=3 and -DSRC_DEPTH=64
- * @note The pad_left, pad_right, pad_top and pad_bottom must be passed at compile time using -DPAD_LEFT, -DPAD_RIGHT, -DPAD_TOP and -DPAD_BOTTOM: e.g. -DPAD_LEFT=1, -DPAD_RIGHT=2, -DPAD_TOP=3 and -DPAD_BOTTOM=2
- * @note The zero value to store in case we load values out-of-bounds must be passed at compile time using -DPAD_VALUE: e.g. -DPAD_VALUE=0.0
- * @note The stride along the X and Y directions must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y: e.g. -DSTRIDE_X=1 and -DSTRIDE_Y=1
- * @note The dilation_x and dilation_y must be passed at compile time using -DDILATION_X and -DDILATION_Y: e.g. -DDILATION_X=1, -DDILATION_Y=1
- * @note In case biases will be added to the convolution -DHAS_BIAS has to be passed to append the final matrix with 1 in each row.
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8_SIGNED/QASYMM8/F16/F32
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes).
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes).
- */
-__kernel void im2col_generic_nhwc(
- TENSOR3D_DECLARATION(src),
- IMAGE_DECLARATION(dst),
- uint src_stride_w,
- uint dst_stride_w)
-{
- // input feature map, boundary-corrected (shift all non-boundary vectors by shift_amount) to avoid padding
- const int shift_amount = (int)VECTOR_SIZE - (int)BOUNDARY_VECTOR_SIZE;
- const int ch = max((int)(get_global_id(0) * VECTOR_SIZE) - shift_amount, 0);
- const int yo = get_global_id(1);
- const int batch = get_global_id(2); // batch size
-
- // Calculate input indices
- const int xi = (get_global_id(1) % CONVOLVED_WIDTH) * STRIDE_X;
- const int yi = (get_global_id(1) / (int)CONVOLVED_WIDTH) * STRIDE_Y;
-
- // Get input and output address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + batch * (int)src_stride_w;
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + ch * sizeof(DATA_TYPE) + yo * (int)dst_stride_y + batch * (int)dst_stride_w;
-
- int i = 0;
- for(int yk = 0; yk < KERNEL_HEIGHT; ++yk)
- {
- // Clamp yi_coord
- int yi_coord = yi + yk * DILATION_Y - (int)PAD_TOP;
- yi_coord = CLAMP(yi_coord, (int)0, (int)(SRC_HEIGHT - 1));
-
- // Out-of-bound condition for Y
- int y_border_condition = ((yi + yk * DILATION_Y - (int)PAD_TOP) < (int)0) || ((yi + yk * DILATION_Y - (int)PAD_TOP) >= (int)SRC_HEIGHT);
-
- for(int xk = 0; xk < KERNEL_WIDTH; ++xk)
- {
- // Clamp xi_coord
- int xi_coord = (xi + xk * DILATION_X - (int)PAD_LEFT);
- xi_coord = CLAMP(xi_coord, (int)0, (int)(SRC_WIDTH - 1));
-
- // Out-of-bound condition for X
- int x_border_condition = ((xi + xk * DILATION_X - (int)PAD_LEFT) < (int)0) || ((xi + xk * DILATION_X - (int)PAD_LEFT) >= (int)SRC_WIDTH);
-
- int offset = xi_coord * (int)src_stride_y + (yi_coord * (int)src_stride_z);
-
- VECTOR_N values0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(input_ptr + offset));
-
-#if PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
- // Replace with PAD_VALUE if the value is out-of-bound
- values0 = select(values0, (VECTOR_N)PAD_VALUE, (COND_N)((COND_N)x_border_condition || (COND_N)(y_border_condition)));
-#endif // PAD_LEFT != 0 || PAD_TOP != 0 || PAD_RIGHT != 0 || PAD_BOTTOM != 0
-
- // Store in a boundary-aware way to avoid padding
-#if BOUNDARY_VECTOR_SIZE != VECTOR_SIZE
- const bool at_channel_boundary = get_global_id(0) == 0;
- if(at_channel_boundary)
- {
- VSTORE_PARTIAL(VECTOR_SIZE, BOUNDARY_VECTOR_SIZE)
- (values0, 0, (__global DATA_TYPE *)(output_ptr) + i * (int)SRC_DEPTH);
- }
- else // at_channel_boundary
-#endif // BOUNDARY_VECTOR_SIZE != VECTOR_SIZE
- {
- VSTORE(VECTOR_SIZE)
- (values0, 0, (__global DATA_TYPE *)(output_ptr) + i * (int)SRC_DEPTH);
- }
- i++;
- }
- }
-
-#ifdef HAS_BIAS
- // We can use VECTOR_SIZE instead of BOUNDARY_VECTOR_SIZE even if it's at the boundary. This is because the bias is
- // added at the end of the channel, while the boundary vec is at the beginning of the channel.
- // The only case where the boundary vec is at the end of the channel is when there's only a single boundary vec in
- // the whole channel dimension, but in that case VECTOR_SIZE is also equal to BOUNDARY_VECTOR_SIZE
- // See the value of num_elems_processed_per_iteration in configure_opencl_kernel method in CLIm2ColKernel.cpp
- if((ch + VECTOR_SIZE) >= SRC_DEPTH)
- {
- *((__global DATA_TYPE *)(output_ptr) - ch + SRC_DEPTH * KERNEL_WIDTH * KERNEL_HEIGHT) = 1.0f;
- }
-#endif // HAS_BIAS
-}
-#endif // defined(CONVOLVED_WIDTH) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(STRIDE_X) && defined(STRIDE_Y) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(SRC_DEPTH) && defined(PAD_LEFT) && defined(PAD_RIGHT) && defined(PAD_TOP) && defined(PAD_BOTTOM) && defined(PAD_VALUE) && defined(VECTOR_SIZE) && defined(BOUNDARY_VECTOR_SIZE)
-#endif // defined(DATA_TYPE) && defined(ELEMENT_SIZE)