aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/gemm.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/common/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/common/gemm.cl1087
1 files changed, 149 insertions, 938 deletions
diff --git a/src/core/CL/cl_kernels/common/gemm.cl b/src/core/CL/cl_kernels/common/gemm.cl
index a76ad458a6..cc7392d728 100644
--- a/src/core/CL/cl_kernels/common/gemm.cl
+++ b/src/core/CL/cl_kernels/common/gemm.cl
@@ -24,856 +24,7 @@
#include "gemm_helpers.h"
#include "repeat.h"
-#if defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
-#define INC2 (VEC_DATA_TYPE(uint, 2))(0, 1)
-#define INC3 (VEC_DATA_TYPE(uint, 3))(0, 1, 2)
-#define INC4 (VEC_DATA_TYPE(uint, 4))(0, 1, 2, 3)
-#define INC8 (VEC_DATA_TYPE(uint, 8))(0, 1, 2, 3, 4, 5, 6, 7)
-#define INC16 (VEC_DATA_TYPE(uint, 16))(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
-#define CONCAT_INC(K0) INC##K0
-#define INC(K0) CONCAT_INC(K0)
-
-#if(SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({ \
- a = select(0, a, CONVERT(((x * (VEC_DATA_TYPE(uint, K0))K0 + INC(K0)) < (VEC_DATA_TYPE(uint, K0))SRC_WIDTH), VEC_DATA_TYPE(DATA_TYPE, K0))); \
- })
-#else // (SRC_WIDTH % K0)
-#define BOUNDARY_CONDITION_X(x, a) \
- ({})
-#endif // (SRC_WIDTH % K0)
-
-#define LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin) \
- ({ \
- if(y * M0 + M0 >= SRC_HEIGHT && PARTIAL_LOAD_M0 != 0) \
- { \
- if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
- { \
- LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- else \
- { \
- LOAD_TENSOR_M0XN0(PARTIAL_LOAD_M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- } \
- else \
- { \
- if(x * K0 + K0 >= SRC_WIDTH && (PARTIAL_LOAD_K0 != 0)) \
- { \
- LOAD_TENSOR_M0XN0(M0, PARTIAL_LOAD_K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- else \
- { \
- LOAD_TENSOR_M0XN0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin); \
- } \
- } \
- })
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
- * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- // Load values from the LHS matrix
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
-
- LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
-
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(M0, K0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if M0 == 2
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 3 // M0 == 3
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 4 // M0 == 4
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#elif M0 == 5 // M0 == 5
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- DATA_TYPE res1 = a4.s##i; \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- *((__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4) = res1; \
- })
-#elif M0 == 6 // M0 == 6
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 2) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 2))(a4.s##i, a5.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(2) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 7 // M0 == 7
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, 4) \
- res0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s##i, a1.s##i, a2.s##i, a3.s##i); \
- VEC_DATA_TYPE(DATA_TYPE, 3) \
- res1 = (VEC_DATA_TYPE(DATA_TYPE, 3))(a4.s##i, a5.s##i, a6.s##i); \
- VSTORE(4) \
- (res0, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- VSTORE(3) \
- (res1, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE)) + 4); \
- })
-#elif M0 == 8 // M0 == 8
-#define TRANSPOSE_COLUMN_AND_STORE(output_ptr, output_step_x, i) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, M0) \
- res = (VEC_DATA_TYPE(DATA_TYPE, M0))(a0.s##i, a1.s##i, a2.s##i, a3.s##i, a4.s##i, a5.s##i, a6.s##i, a7.s##i); \
- VSTORE(M0) \
- (res, 0, (__global DATA_TYPE *)(output_ptr + 0x##i * output_step_x * sizeof(DATA_TYPE))); \
- })
-#else // M0 not supported
-#error "M0 value not supported"
-#endif // N0 conditions
-
-/** This OpenCL kernel reshapes the lhs input matrix. The kernel splits the input matrix in blocks of size M0xK0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The width of the input tensor must be passed at compile time using -DSRC_WIDTH (e.g. -DSRC_WIDTH=16)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (M0 and K0) must be passed at compile time using -DM0 and -DK0 (e.g. -DM0=2, -DK0=2).
- * @note The number of M0xK0 vertical blocks to store on the same output row must be passed at compile time using -DV0 (e.g. -DV0=2)
- * @note The size of the partial load block in y must be passed at compile time using -DPARTIAL_LOAD_M0 (e.g. -DPARTIAL_LOAD_M0=1)
- * @note The size of the partial load block in x must be passed at compile time using -DPARTIAL_LOAD_K0 (e.g. -DPARTIAL_LOAD_K0=1)
- * @note Only the following values for M0, K0 and V0 are supported:
- * M0: 2,3,4,5,6,7,8
- * K0: 2,3,4,8,16
- * V0: greater than 0
- * @note In case the input has to be reinterpreted as a 3D tensor (e.g. input of convolution layer 1x1), the following information must be passed at compile time:
- * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
- * -# HEIGHT_GEMM3D: The height of the input in case it has to be reinterpreted as a 3D tensor.
- * -# DEPTH_GEMM3D: The depth of the input in case it has to be reinterpreted as a 3D tensor
- * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns matrix A NOT reshaped
- * @note If the M0xK0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- *
- * @param[in] src_ptr Pointer to the source LHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source LHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source LHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source LHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source LHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
- */
-__kernel void gemm_reshape_lhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst)
-#if defined(REINTERPRET_INPUT_AS_3D)
- ,
- uint cross_plane_pad
-#endif // REINTERPRET_INPUT_AS_3D
- )
-{
- // Block size
-#define BLOCK_SIZE ((M0) * (K0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (M0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (M0) * (V0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (M0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)K0 * sizeof(DATA_TYPE) + y * (uint)M0 * src_stride_y;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)BLOCK_SIZE * (uint)V0 * sizeof(DATA_TYPE)) + ((y / (uint)V0) * (uint)dst_stride_y) + ((y % V0) *
- (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE));
-
- // Create variables: uint zin0=0, zin1=0, zin2=0...zin(M0-1)=0;
- REPEAT_VAR_INIT_TO_CONST(M0, uint, zin, 0);
-
-#if defined(REINTERPRET_INPUT_AS_3D)
- // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
- // multiply src_stride_z by DEPTH_GEMM3D
-
- input_ptr += z * (uint)src_stride_z * DEPTH_GEMM3D;
-
- // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
- CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, cross_plane_pad, src_stride_y);
-
-#else // defined(REINTERPRET_INPUT_AS_3D)
-
- input_ptr += z * (uint)src_stride_z;
-
-#endif // defined(REINTERPRET_INPUT_AS_3D)
-
- // Add offset for batched GEMM
- output_ptr += z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, K0), a, 0);
-
- LOAD_TENSOR_BOUNDARY_AWARE_M0XK0(M0, K0, DATA_TYPE, a, input_ptr, src_stride_y, zin);
-
- // ---------------------------Transpose and store block -----------------------
-
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 0);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 1);
-#if K0 > 2
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 2);
-#endif // K0 > 2
-#if K0 > 3
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 3);
-#endif // K0 > 3
-#if K0 > 4
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 4);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 5);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 6);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 7);
-#endif // K0 > 4
-#if K0 > 8
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 8);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, 9);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, A);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, B);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, C);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, D);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, E);
- TRANSPOSE_COLUMN_AND_STORE(output_ptr, OUTPUT_STEP_X, F);
-#endif // K0 > 8
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(M0) && defined(K0) && defined(V0) && defined(DATA_TYPE) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(PARTIAL_LOAD_M0) && defined(PARTIAL_LOAD_K0)
-
-#if defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (not transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 1,2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_nt(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (N0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (N0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (N0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % (uint)H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((
- x / (uint)H0)
- * (uint)dst_stride_y)
- + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
-
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); ////uint a0=0, a1=0, a2=0...a(M0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
-#if K0 > 1
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#endif // K0 > 1
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Store output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(K0, N0, DATA_TYPE, a, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-
-#if defined(TRANSPOSE)
-/** This OpenCL kernel reshapes the rhs input matrix. The kernel splits the input matrix in blocks of size K0xN0 and stores each one (transposed) in
- * the output matrix unrolling the values.
- *
- * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
- * @note The height of the input tensor must be passed at compile time using -DSRC_HEIGHT (e.g. -DSRC_HEIGHT=16)
- * @note The block's dimensions (K0 and N0) must be passed at compile time using -DK0 and -DN0 (e.g. -DK0=2, -DN0=2).
- * @note The number of K0xN0 vertical blocks to store on the same output row must be passed at compile time using -DH0 (e.g. -DH0=2)
- * @note If the K0xN0 blocks have to be interleaved, the option -DINTERLEAVE must passed at compile time.
- * @note The option -DTRANSPOSE must passed at compile time.
- * @note Only the following values for K0, N0 and H0 are supported:
- * N0: 2,3,4,8,16
- * K0: 2,3,4,8,16
- * H0: greater than 0
- *
- * @param[in] src_ptr Pointer to the source RHS tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source RHS tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source RHS tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source RHS tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source RHS tensor
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- */
-__kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
- TENSOR3D_DECLARATION(dst))
-{
- // Block size
-#define BLOCK_SIZE ((K0) * (N0))
-
- // Output offset X
-#if defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (K0)
-#else // defined(INTERLEAVE)
-#define OUTPUT_OFFSET_X (BLOCK_SIZE)
-#endif // defined(INTERLEAVE)
-
- // Output step X
-#if defined(INTERLEAVE)
-#define OUTPUT_STEP_X (K0) * (H0)
-#else // Do not interleave
-#define OUTPUT_STEP_X (K0)
-#endif // defined(INTERLEAVE)
-
- // Compute source and destination addresses
- uint x = get_global_id(0);
- uint y = get_global_id(1);
- uint z = get_global_id(2);
-
- // ------------------ Compute input/output addresses ---------------------------
-
- // Compute the input address
- __global uchar *input_ptr = src_ptr + src_offset_first_element_in_bytes + x * (uint)N0 * sizeof(DATA_TYPE) + y * (uint)K0 * src_stride_y + z * (uint)src_stride_z;
-
- // Compute the output address
- __global uchar *output_ptr = dst_ptr + dst_offset_first_element_in_bytes + (y * (uint)BLOCK_SIZE * (uint)H0 * sizeof(DATA_TYPE)) + ((x % H0) * (uint)OUTPUT_OFFSET_X * sizeof(DATA_TYPE)) + ((x /
- (uint)H0) * (uint)dst_stride_y) + z * (uint)dst_stride_z;
-
- // ---------------------------Load input values --------------------------------
- REPEAT_VAR_INIT_TO_CONST(K0, VEC_DATA_TYPE(DATA_TYPE, N0), a, 0); //VEC_DATA_TYPE(DATA_TYPE, N0) a0=0, a1=0, ... a(K0-1)=0;
-
- // Load values from the RHS matrix
- a0 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
- if(y * (uint)K0 + 1 < SRC_HEIGHT)
- {
- a1 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
- }
-#if K0 > 2
- if(y * (uint)K0 + 2 < SRC_HEIGHT)
- {
- a2 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
- }
-#endif // K0 > 2
-#if K0 > 3
- if(y * (uint)K0 + 3 < SRC_HEIGHT)
- {
- a3 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
- }
-#endif // K0 > 3
-#if K0 > 4
- if(y * (uint)K0 + 4 < SRC_HEIGHT)
- {
- a4 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 4 * src_stride_y));
- }
- if(y * (uint)K0 + 5 < SRC_HEIGHT)
- {
- a5 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 5 * src_stride_y));
- }
- if(y * (uint)K0 + 6 < SRC_HEIGHT)
- {
- a6 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 6 * src_stride_y));
- }
- if(y * (uint)K0 + 7 < SRC_HEIGHT)
- {
- a7 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 7 * src_stride_y));
- }
-#endif // K0 > 4
-#if K0 > 8
- if(y * (uint)K0 + 8 < SRC_HEIGHT)
- {
- a8 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 8 * src_stride_y));
- }
- if(y * (uint)K0 + 9 < SRC_HEIGHT)
- {
- a9 = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 9 * src_stride_y));
- }
- if(y * (uint)K0 + 10 < SRC_HEIGHT)
- {
- aA = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 10 * src_stride_y));
- }
- if(y * (uint)K0 + 11 < SRC_HEIGHT)
- {
- aB = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 11 * src_stride_y));
- }
- if(y * (uint)K0 + 12 < SRC_HEIGHT)
- {
- aC = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 12 * src_stride_y));
- }
- if(y * (uint)K0 + 13 < SRC_HEIGHT)
- {
- aD = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 13 * src_stride_y));
- }
- if(y * (uint)K0 + 14 < SRC_HEIGHT)
- {
- aE = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 14 * src_stride_y));
- }
- if(y * (uint)K0 + 15 < SRC_HEIGHT)
- {
- aF = VLOAD(N0)(0, (__global DATA_TYPE *)(input_ptr + 15 * src_stride_y));
- }
-#endif // K0 > 8
-
- // ---------------------------Transpose the block ------------------------------
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), res, 0); //VEC_DATA_TYPE(DATA_TYPE, K0) res0=0, res1=0, res2=0,... res(N0-1)=0;
-
-#if K0 == 2
- // This part computes the following transpositions:
- // 2x2 -> 2x2
- // 2x4 -> 4x2
- // 2x8 -> 8x2
- // 2x16 -> 16x2
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF);
-#endif // N0 > 8
-
-#elif K0 == 3 // K0 == 2
- // This part computes the following transpositions:
- // 3x2 -> 2x3
- // 3x4 -> 4x3
- // 3x8 -> 8x3
- // 3x16 -> 16x3
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF);
-#endif // N0 > 8
-
-#elif K0 == 4 // K0 == 4
- // This part computes the following transpositions:
- // 4x2 -> 2x4
- // 4x4 -> 4x4
- // 4x8 -> 8x4
- // 4x16 -> 16x4
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF);
-#endif // N0 > 8
-
-#elif K0 == 8 // K0 == 8
- // This part computes the following transpositions:
- // 8x2 -> 2x8
- // 8x4 -> 4x8
- // 8x8 -> 8x8
- // 8x16 -> 16x8
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
-#endif // N0 > 8
-
-#elif K0 == 16 // K0 == 16
-
- // This part computes the following transpositions:
- // 16x2 -> 2x16
- // 16x4 -> 4x16
- // 16x8 -> 8x16
- // 16x16 -> 16x16
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0,
- a8.s0, a9.s0, aA.s0, aB.s0, aC.s0, aD.s0, aE.s0, aF.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1,
- a8.s1, a9.s1, aA.s1, aB.s1, aC.s1, aD.s1, aE.s1, aF.s1);
-#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2,
- a8.s2, a9.s2, aA.s2, aB.s2, aC.s2, aD.s2, aE.s2, aF.s2);
-#endif // N0 > 2
-#if N0 > 3
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3,
- a8.s3, a9.s3, aA.s3, aB.s3, aC.s3, aD.s3, aE.s3, aF.s3);
-#endif // N0 > 3
-#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4,
- a8.s4, a9.s4, aA.s4, aB.s4, aC.s4, aD.s4, aE.s4, aF.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5,
- a8.s5, a9.s5, aA.s5, aB.s5, aC.s5, aD.s5, aE.s5, aF.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6,
- a8.s6, a9.s6, aA.s6, aB.s6, aC.s6, aD.s6, aE.s6, aF.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7,
- a8.s7, a9.s7, aA.s7, aB.s7, aC.s7, aD.s7, aE.s7, aF.s7);
-#endif // N0 > 4
-#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8,
- a8.s8, a9.s8, aA.s8, aB.s8, aC.s8, aD.s8, aE.s8, aF.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9,
- a8.s9, a9.s9, aA.s9, aB.s9, aC.s9, aD.s9, aE.s9, aF.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA,
- a8.sA, a9.sA, aA.sA, aB.sA, aC.sA, aD.sA, aE.sA, aF.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB,
- a8.sB, a9.sB, aA.sB, aB.sB, aC.sB, aD.sB, aE.sB, aF.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC,
- a8.sC, a9.sC, aA.sC, aB.sC, aC.sC, aD.sC, aE.sC, aF.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD,
- a8.sD, a9.sD, aA.sD, aB.sD, aC.sD, aD.sD, aE.sD, aF.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE,
- a8.sE, a9.sE, aA.sE, aB.sE, aC.sE, aD.sE, aE.sE, aF.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF,
- a8.sF, a9.sF, aA.sF, aB.sF, aC.sF, aD.sF, aE.sF, aF.sF);
-#endif // N0 > 8
-
-#else // N0 == 16
-#error "Not supported N0 value"
-#endif // N0 > 2
-
- // ---------------------------Store the output values ------------------------------
- REPEAT_VAR_INIT_TO_CONST(16, uint, zout, 0);
- STORE_BLOCK(N0, K0, DATA_TYPE, res, output_ptr, OUTPUT_STEP_X * sizeof(DATA_TYPE), zout);
-
-#undef BLOCK_SIZE
-#undef OUTPUT_OFFSET_X
-#undef OUTPUT_STEP_X
-}
-#endif // defined(TRANSPOSE)
-#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
-
-#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
+#if defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
#define CONCAT(a, b) a##b
@@ -997,14 +148,14 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_T)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
@@ -1056,6 +207,9 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -1077,7 +231,10 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -1288,9 +445,11 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_T)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
@@ -1298,7 +457,7 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -1348,6 +507,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -1369,12 +531,15 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
-#define LEFTOVER_K (K % K0)
+ const uint LEFTOVER_K = K % K0;
// Block size
#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
@@ -1477,99 +642,100 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
}
-#if LEFTOVER_K != 0
- // Note: We cannot read out-of-bound elements from the RHS matrix because
- // the RHS width is always multiple of K0. This is not be true for the LHS matrix
-
- union UNION_VEC_TYPE
+ if(LEFTOVER_K != 0)
{
- DATA_TYPE s[K0];
- VEC_DATA_TYPE(DATA_TYPE, K0)
- v;
- };
-
- union UNION_VEC_TYPE a0 = {.v = 0 };
+ // Note: We cannot read out-of-bound elements from the RHS matrix because
+ // the RHS width is always multiple of K0. This is not be true for the LHS matrix
+ // Left-over accumulations for LHS matrix
+
+ union UNION_VEC_TYPE
+ {
+ DATA_TYPE s[K0];
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ v;
+ };
+
+ union UNION_VEC_TYPE a0 = {.v = 0 };
#if M0 > 1
- union UNION_VEC_TYPE a1 = {.v = 0 };
+ union UNION_VEC_TYPE a1 = {.v = 0 };
#endif // M0 > 1
#if M0 > 2
- union UNION_VEC_TYPE a2 = {.v = 0 };
+ union UNION_VEC_TYPE a2 = {.v = 0 };
#endif // M0 > 2
#if M0 > 3
- union UNION_VEC_TYPE a3 = {.v = 0 };
+ union UNION_VEC_TYPE a3 = {.v = 0 };
#endif // M0 > 3
#if M0 > 4
- union UNION_VEC_TYPE a4 = {.v = 0 };
+ union UNION_VEC_TYPE a4 = {.v = 0 };
#endif // M0 > 4
#if M0 > 5
- union UNION_VEC_TYPE a5 = {.v = 0 };
+ union UNION_VEC_TYPE a5 = {.v = 0 };
#endif // M0 > 5
#if M0 > 6
- union UNION_VEC_TYPE a6 = {.v = 0 };
+ union UNION_VEC_TYPE a6 = {.v = 0 };
#endif // M0 > 6
#if M0 > 7
- union UNION_VEC_TYPE a7 = {.v = 0 };
+ union UNION_VEC_TYPE a7 = {.v = 0 };
#endif // M0 > 7
- REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
- // Load from RHS matrix
- LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+ // Load from RHS matrix
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
- // Load from LHS matrix
- for(int k = 0; k < LEFTOVER_K; ++k)
- {
- a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
+ // Load from LHS matrix
+ for(int k = 0; k < LEFTOVER_K; ++k)
+ {
+ a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
#if M0 > 1
- a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
+ a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
#endif // M0 > 1
#if M0 > 2
- a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
+ a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
#endif // M0 > 2
#if M0 > 3
- a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
+ a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
#endif // M0 > 3
#if M0 > 4
- a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
+ a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
#endif // M0 > 4
#if M0 > 5
- a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
+ a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
#endif // M0 > 5
#if M0 > 6
- a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
+ a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
#endif // M0 > 6
#if M0 > 7
- a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
+ a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
#endif // M0 > 7
- lhs_offset += sizeof(DATA_TYPE);
- }
+ lhs_offset += sizeof(DATA_TYPE);
+ }
- // Accumulate
- ARM_DOT_K0XN0(K0, a0.v, b, c0);
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0.v, b, c0);
#if M0 > 1
- ARM_DOT_K0XN0(K0, a1.v, b, c1);
+ ARM_DOT_K0XN0(K0, a1.v, b, c1);
#endif // M0 > 1
#if M0 > 2
- ARM_DOT_K0XN0(K0, a2.v, b, c2);
+ ARM_DOT_K0XN0(K0, a2.v, b, c2);
#endif // M0 > 2
#if M0 > 3
- ARM_DOT_K0XN0(K0, a3.v, b, c3);
+ ARM_DOT_K0XN0(K0, a3.v, b, c3);
#endif // M0 > 3
#if M0 > 4
- ARM_DOT_K0XN0(K0, a4.v, b, c4);
+ ARM_DOT_K0XN0(K0, a4.v, b, c4);
#endif // M0 > 4
#if M0 > 5
- ARM_DOT_K0XN0(K0, a5.v, b, c5);
+ ARM_DOT_K0XN0(K0, a5.v, b, c5);
#endif // M0 > 5
#if M0 > 6
- ARM_DOT_K0XN0(K0, a6.v, b, c6);
+ ARM_DOT_K0XN0(K0, a6.v, b, c6);
#endif // M0 > 6
#if M0 > 7
- ARM_DOT_K0XN0(K0, a7.v, b, c7);
+ ARM_DOT_K0XN0(K0, a7.v, b, c7);
#endif // M0 > 7
-
-#endif // LEFTOVER_K != 0
+ }
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (COMPUTE_M0_START_ROW(y, M0, PARTIAL_STORE_M0) * dst_stride_y);
@@ -1635,10 +801,10 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
-#undef LEFTOVER_K
+#undef RHS_STEP_LOOP
#undef PIXEL_UNIT
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_T_TEXTURE)
#define VFMA(a, b, c) \
({ \
@@ -1717,13 +883,14 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_RESHAPED_ONLY_RHS_NT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_reshaped_only_rhs.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
@@ -1775,6 +942,9 @@ __kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -1796,7 +966,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define RHS_BLOCK_SIZE ((K0) * (N0))
@@ -2032,9 +1205,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_ONLY_RHS_NT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
@@ -2042,7 +1217,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -2092,6 +1267,9 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -2113,7 +1291,10 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -2125,9 +1306,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#if defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (PIXEL_UNIT)
#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#define RHS_STEP_LOOP 1
#else // defined(RHS_INTERLEAVE)
#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
#define RHS_STEP_X (PIXEL_UNIT)
+#define RHS_STEP_LOOP (H0)
#endif // defined(RHS_INTERLEAVE)
uint x = get_global_id(0);
@@ -2342,11 +1525,12 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#undef RHS_BLOCK_SIZE
#undef RHS_OFFSET_X
#undef RHS_STEP_X
+#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_ONLY_RHS_NT_TEXTURE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE)
-#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
#if defined(MIXED_PRECISION)
#if K0 == 2
@@ -2525,6 +1709,7 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#error "N0 value not supported"
#endif // N0 conditions
+#if defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
@@ -2581,12 +1766,14 @@ __kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -2594,7 +1781,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -2605,7 +1791,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -2661,7 +1850,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0); //uint zlhs0=0,zlhs1=0,zlhs2=0,... zlhs7=0;
REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
// Supported cases (M0, K0):
// 1,2 - 1,3 - 1,4 - 1,8 - 1,16
@@ -2798,8 +1987,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
+#endif // defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
@@ -2855,12 +2045,14 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -2868,7 +2060,6 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -2879,7 +2070,10 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
@@ -3070,7 +2264,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_NT_RHS_T_TEXTURE)
#if defined(LHS_TRANSPOSE)
@@ -3182,6 +2376,7 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
CONCAT(ARM_MM_T_NT_M0xN0x, K0) \
(M0, N0, TYPE, A, B, C)
+#if defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
@@ -3236,12 +2431,14 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t_texture(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(rhs),
@@ -3249,7 +2446,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -3260,7 +2456,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Block size
#define LHS_BLOCK_SIZE ((K0) * (M0))
@@ -3322,7 +2521,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
__global DATA_TYPE *lhs = (__global DATA_TYPE *)(lhs_addr);
__global DATA_TYPE *rhs = (__global DATA_TYPE *)(rhs_addr);
- for(int i = 0; i < k; i += K0)
+ for(int i = 0; i < K; i += K0)
{
VEC_DATA_TYPE(DATA_TYPE, M0)
a0;
@@ -3562,8 +2761,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
+#endif // defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT)
-#if defined(OPENCL_IMAGE_SUPPORT)
+#if defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image object.
* The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be transposed
* The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be NOT transposed
@@ -3572,7 +2772,7 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
+ * @note The GEMM's dimensions M, N and K must be passed at runtime.
* @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
* could be different from the value returned by get_image_height(rhs_img).
@@ -3617,12 +2817,14 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
- * @param[in] k Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
* @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
*/
__kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
__read_only image2d_t rhs_img,
@@ -3630,7 +2832,6 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
IMAGE_DECLARATION(bias),
#endif // defined(BETA)
IMAGE_DECLARATION(dst),
- uint k,
uint lhs_stride_z,
uint rhs_stride_z,
#if defined(BETA)
@@ -3641,7 +2842,10 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
,
uint dst_cross_plane_pad
#endif // REINTERPRET_OUTPUT_AS_3D
- )
+ ,
+ const int M,
+ const int N,
+ const int K)
{
// Pixel unit
#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
@@ -3933,13 +3137,13 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#undef LHS_STEP_LOOP
#undef RHS_STEP_LOOP
}
-#endif // defined(OPENCL_IMAGE_SUPPORT)
+#endif // defined(OPENCL_IMAGE_SUPPORT) && defined(GEMM_MM_RESHAPED_LHS_T_RHS_NT_TEXTURE)
#endif // defined(LHS_TRANSPOSE)
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR)
-#if defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
+#if defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE)
#define VFMA(a, b, c) \
({ \
@@ -4018,14 +3222,14 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
#error "M0 not supported"
#endif // M0 not supported
+#if defined(GEMM_MM_NATIVE)
/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
* The LHS matrix is NOT reshaped
* The RHS matrix is NOT reshaped
* @note This kernel is duplicated in /experimental/gemm_fused_post_ops/act_eltwise_op_act/gemm_mm_native.cl
*
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
- * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
- * @note The number of columns of LHS matrix must be passed at compile time using -DK (e.g. -DK=64)
+ * @note The GEMM's dimensions (M,N and K) must be passed at runtime as kernel parameters.
* @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of K0 partial accumulations must be passed at compile time using -DK0 (e.g., -DK0=2)
* @note The number of N0 columns to process must be passed at compile time using -DN0 (e.g. -DN0=2)
@@ -4073,6 +3277,9 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt_texture(IMAGE_DECLARATION(lhs),
* @param[in] rhs_stride_z Stride of the RHS matrix in Z dimension (in bytes)
* @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] M Number of rows in LHS matrix not reshaped.
+ * @param[in] N Number of columns in RHS matrix not reshaped.
+ * @param[in] K Number of columns in LHS matrix and rows in RHS matrix not reshaped.
* @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
* @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
*/
@@ -4087,7 +3294,10 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
#if defined(BETA)
uint bias_stride_z,
#endif //defined(BETA)
- uint dst_stride_z
+ uint dst_stride_z,
+ const int M,
+ const int N,
+ const int K
#if defined(REINTERPRET_INPUT_AS_3D)
,
uint lhs_cross_plane_pad
@@ -4303,7 +3513,8 @@ __kernel void gemm_mm_native(IMAGE_DECLARATION(lhs),
// Store output block
STORE_BLOCK_BOUNDARY_AWARE(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout, PARTIAL_STORE_M0, PARTIAL_STORE_N0, cond_y, cond_x);
}
-#endif // defined(M0) && defined(N0) && defined(K0) && defined(K) && defined(DATA_TYPE)
+#endif // defined(GEMM_MM_NATIVE)
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(DATA_TYPE)
#if defined(BETA)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
@@ -4389,4 +3600,4 @@ __kernel void gemm_ma_f16(TENSOR3D_DECLARATION(src),
vstore8(out, 0, (__global half *)dst.ptr);
}
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
-#endif // defined(BETA) \ No newline at end of file
+#endif // defined(BETA)