aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Android.bp1
-rw-r--r--arm_compute/core/Types.h6
-rw-r--r--arm_compute/core/utils/misc/ShapeCalculator.h24
-rw-r--r--arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h49
-rw-r--r--src/core/CL/CLKernelLibrary.cpp12
-rw-r--r--src/core/CL/CLKernels.h2
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution.cl420
-rw-r--r--src/core/CL/cl_kernels/depthwise_convolution_quantized.cl847
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp53
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h31
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp298
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h103
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.cpp131
-rw-r--r--src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h85
-rw-r--r--src/core/CL/kernels/CLL2NormalizeLayerKernel.cpp2
-rw-r--r--src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h105
-rw-r--r--src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp126
17 files changed, 379 insertions, 1916 deletions
diff --git a/Android.bp b/Android.bp
index 92b96848a..8e4d9fe22 100644
--- a/Android.bp
+++ b/Android.bp
@@ -97,7 +97,6 @@ cc_library_static {
"src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp",
"src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp",
"src/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.cpp",
- "src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.cpp",
"src/core/CL/kernels/CLFFTDigitReverseKernel.cpp",
"src/core/CL/kernels/CLFFTRadixStageKernel.cpp",
"src/core/CL/kernels/CLFFTScaleKernel.cpp",
diff --git a/arm_compute/core/Types.h b/arm_compute/core/Types.h
index b1f340d18..b5fd21d29 100644
--- a/arm_compute/core/Types.h
+++ b/arm_compute/core/Types.h
@@ -1874,12 +1874,6 @@ struct ConvolutionInfo
Size2D dilation{ Size2D(1, 1) }; /**< Dilation, in elements, across x and y. Defaults to (1, 1). */
};
-struct DepthwiseConvolutionReshapeInfo
-{
- unsigned int c0{ 1 }; /**< Number of channels processed by the depth-wise convolution */
- bool transpose{ false }; /**< True if the block MxC0 (where M is the area of the filter i.e. KwxKh) has to be transposed */
-};
-
/** GEMMLowp output stage type */
enum class GEMMLowpOutputStageType
{
diff --git a/arm_compute/core/utils/misc/ShapeCalculator.h b/arm_compute/core/utils/misc/ShapeCalculator.h
index ba37f9a61..8e49c068a 100644
--- a/arm_compute/core/utils/misc/ShapeCalculator.h
+++ b/arm_compute/core/utils/misc/ShapeCalculator.h
@@ -287,30 +287,6 @@ inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_inte
return shape_interleaved_a;
}
-/** Calculate the reshaped shape of the weights to use in depthwise convolution
- *
- * @param[in] input Input tensor info
- * @param[in] info Depthwise convolution information to be used for reshaping.
- *
- * @return the calculated shape
- */
-inline TensorShape compute_reshaped_depthwise_weights_shape(const ITensorInfo &input, const DepthwiseConvolutionReshapeInfo &info)
-{
- const auto data_layout = input.data_layout();
- TensorShape weights_shape{};
-
- const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
- const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
- const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
- const size_t num_channels = input.dimension(channel_idx);
- const size_t num_rows = input.dimension(height_idx);
- const size_t num_cols = input.dimension(width_idx);
-
- weights_shape.set(0, num_rows * num_cols * info.c0);
- weights_shape.set(1, DIV_CEIL(num_channels, info.c0));
- return weights_shape;
-}
-
/** Calculate the transposed 1xW shape
*
* @param[in] b Input tensor info
diff --git a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
index e2c5d683c..1af9e1dc6 100644
--- a/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
+++ b/arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h
@@ -35,8 +35,8 @@ namespace arm_compute
class CLCompileContext;
class CLFillBorderKernel;
class CLDepthwiseConvolutionLayerNativeKernel;
-class CLDepthwiseConvolutionLayerReshapeWeightsKernel;
-class ICLDepthwiseConvolutionLayer3x3Kernel;
+class CLDepthwiseConvolutionLayer3x3NCHWKernel;
+class CLDepthwiseConvolutionLayer3x3NHWCKernel;
class ICLTensor;
/** Function to execute a depthwise convolution
@@ -123,19 +123,17 @@ private:
* @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
* @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU for 3x3 QASYMM8 supported.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] gpu_target (Optional) GPU target to validate the kernel for. Defaults to midgard.
*
* @return a Depthwise Convolution Function
*/
static DepthwiseConvolutionFunction get_depthwiseconvolution_function(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1,
- ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U), GPUTarget gpu_target = GPUTarget::MIDGARD);
+ ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
/** Basic function to execute a depthwise convolution for kernel size 3x3xC (when data layout NCHW) or Cx3x3 (when data layout NHWC). This function calls the following OpenCL kernels:
*
* -# @ref CLDepthwiseConvolutionLayer3x3NCHWKernel (if data_layout == NCHW)
* -# @ref CLDepthwiseConvolutionLayer3x3NHWCKernel (if data_layout == NHWC)
- * -# @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel (if data_layout == NHWC)
* -# @ref CLFillBorderKernel (if pad_x or pad_y > 0)
*
*/
@@ -200,7 +198,7 @@ private:
* @return a status
*/
static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier = 1,
- ActivationLayerInfo act_info = ActivationLayerInfo(), GPUTarget gpu_target = GPUTarget::MIDGARD, const Size2D &dilation = Size2D(1U, 1U));
+ ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
// Inherited methods overriden:
void run() override;
@@ -212,26 +210,25 @@ private:
};
private:
- MemoryGroup _memory_group;
- std::unique_ptr<ICLDepthwiseConvolutionLayer3x3Kernel> _kernel;
- std::unique_ptr<CLFillBorderKernel> _border_handler;
- CLPermute _permute_input_to_nchw;
- CLPermute _permute_weights_to_nchw;
- CLPermute _permute_output_to_nhwc;
- std::unique_ptr<CLDepthwiseConvolutionLayerReshapeWeightsKernel> _reshape_weights;
- CLTensor _permuted_input;
- CLTensor _permuted_weights;
- CLTensor _permuted_output;
- CLTensor _output_multipliers;
- CLTensor _output_shifts;
- const ITensor *_original_weights;
- const ITensor *_input;
- const ITensor *_output;
- bool _needs_permute;
- bool _needs_weights_reshape;
- bool _is_prepared;
- bool _is_quantized;
- bool _is_nhwc;
+ MemoryGroup _memory_group;
+ std::unique_ptr<CLDepthwiseConvolutionLayer3x3NCHWKernel> _kernel_nchw;
+ std::unique_ptr<CLDepthwiseConvolutionLayer3x3NHWCKernel> _kernel_nhwc;
+ std::unique_ptr<CLFillBorderKernel> _border_handler;
+ CLPermute _permute_input_to_nchw;
+ CLPermute _permute_weights_to_nchw;
+ CLPermute _permute_output_to_nhwc;
+ CLTensor _permuted_input;
+ CLTensor _permuted_weights;
+ CLTensor _permuted_output;
+ CLTensor _output_multipliers;
+ CLTensor _output_shifts;
+ const ITensor *_original_weights;
+ const ITensor *_input;
+ const ITensor *_output;
+ bool _needs_permute;
+ bool _is_prepared;
+ bool _is_quantized;
+ bool _is_nhwc;
};
/** Basic function to execute a generic depthwise convolution. This function calls the following OpenCL kernels:
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 002a14400..33b5ad0c6 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -231,16 +231,12 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "dwc_MxN_native_quantized8_nhwc", "depthwise_convolution_quantized.cl" },
{ "dwc_3x3_native_quantized8_nchw", "depthwise_convolution_quantized.cl" },
{ "dwc_3x3_native_quantized8_dot8_nchw", "depthwise_convolution_quantized.cl" },
- { "dwc_3x3_reshaped_quantized8_nhwc", "depthwise_convolution_quantized.cl" },
- { "dwc_3x3_reshaped_quantized8_stride1_nhwc", "depthwise_convolution_quantized.cl" },
- { "dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc", "depthwise_convolution_quantized.cl" },
{ "depth_to_space_nchw", "depth_to_space.cl" },
{ "depth_to_space_nhwc", "depth_to_space.cl" },
- { "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16", "depthwise_convolution.cl" },
- { "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16", "depthwise_convolution.cl" },
- { "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32", "depthwise_convolution.cl" },
- { "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32", "depthwise_convolution.cl" },
- { "depthwise_convolution_reshape_weights", "depthwise_convolution.cl" },
+ { "depthwise_convolution_3x3_stridex1_stridey1_f16", "depthwise_convolution.cl" },
+ { "depthwise_convolution_3x3_stridex2_stridey2_f16", "depthwise_convolution.cl" },
+ { "depthwise_convolution_3x3_stridex1_stridey1_f32", "depthwise_convolution.cl" },
+ { "depthwise_convolution_3x3_stridex2_stridey2_f32", "depthwise_convolution.cl" },
{ "dequantization_layer", "dequantization_layer.cl" },
{ "dequantization_layer_per_channel_nhwc", "dequantization_layer.cl" },
{ "dequantization_layer_per_channel_nchw", "dequantization_layer.cl" },
diff --git a/src/core/CL/CLKernels.h b/src/core/CL/CLKernels.h
index f29c768fa..63978cea3 100644
--- a/src/core/CL/CLKernels.h
+++ b/src/core/CL/CLKernels.h
@@ -40,7 +40,6 @@
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.h"
-#include "src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h"
#include "src/core/CL/kernels/CLFFTDigitReverseKernel.h"
#include "src/core/CL/kernels/CLFFTRadixStageKernel.h"
#include "src/core/CL/kernels/CLFFTScaleKernel.h"
@@ -91,6 +90,5 @@
#include "src/core/CL/kernels/CLWinogradFilterTransformKernel.h"
#include "src/core/CL/kernels/CLWinogradInputTransformKernel.h"
#include "src/core/CL/kernels/CLWinogradOutputTransformKernel.h"
-#include "src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h"
#endif /* ARM_COMPUTE_CLKERNELS_H */
diff --git a/src/core/CL/cl_kernels/depthwise_convolution.cl b/src/core/CL/cl_kernels/depthwise_convolution.cl
index 8ce561785..22a38e709 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution.cl
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -42,110 +42,110 @@ inline __global uchar *ptr_offset(__global uchar *ptr, const int x, const int y,
#if(DILATION_X == 1 && DILATION_Y == 1)
-#define CONVOLUTION1x3_BIFROST2X1_STRIDE1(acc, src0, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
+#define CONVOLUTION1x3_2X1_STRIDE1(acc, src0, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
})
-#define CONVOLUTION1x3_BIFROST4X1_STRIDE1(acc, src0, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0.s2, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0.s3, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0.s4, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0.s3, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0.s4, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0.s5, weights_row0.s2, acc.s3); \
+#define CONVOLUTION1x3_4X1_STRIDE1(acc, src0, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0.s1, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0.s2, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0.s3, weights_row0.s2, acc.s1); \
+ acc.s2 = fma(src0.s2, weights_row0.s0, acc.s2); \
+ acc.s2 = fma(src0.s3, weights_row0.s1, acc.s2); \
+ acc.s2 = fma(src0.s4, weights_row0.s2, acc.s2); \
+ acc.s3 = fma(src0.s3, weights_row0.s0, acc.s3); \
+ acc.s3 = fma(src0.s4, weights_row0.s1, acc.s3); \
+ acc.s3 = fma(src0.s5, weights_row0.s2, acc.s3); \
})
-#define CONVOLUTION1x3_BIFROST2X1_STRIDE2(acc, src0, src1, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src1.s0, weights_row0.s2, acc.s1); \
+#define CONVOLUTION1x3_2X1_STRIDE2(acc, src0, src1, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src1.s0, weights_row0.s2, acc.s1); \
})
-#define CONVOLUTION1x3_BIFROST4X1_STRIDE2(acc, src0, src1, weights_row0) \
- ({ \
- acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0.s4, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0.s4, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0.s5, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0.s6, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0.s6, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0.s7, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src1.s0, weights_row0.s2, acc.s3); \
+#define CONVOLUTION1x3_4X1_STRIDE2(acc, src0, src1, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0.s1, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0.s2, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0.s2, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0.s3, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0.s4, weights_row0.s2, acc.s1); \
+ acc.s2 = fma(src0.s4, weights_row0.s0, acc.s2); \
+ acc.s2 = fma(src0.s5, weights_row0.s1, acc.s2); \
+ acc.s2 = fma(src0.s6, weights_row0.s2, acc.s2); \
+ acc.s3 = fma(src0.s6, weights_row0.s0, acc.s3); \
+ acc.s3 = fma(src0.s7, weights_row0.s1, acc.s3); \
+ acc.s3 = fma(src1.s0, weights_row0.s2, acc.s3); \
})
#else /* DILATION_X==1 && DILATION_Y==1 */
-#define CONVOLUTION1x3_BIFROST2X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
+#define CONVOLUTION1x3_2X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
})
-#define CONVOLUTION1x3_BIFROST2X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
+#define CONVOLUTION1x3_2X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
})
-#define CONVOLUTION1x3_BIFROST4X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0_left.s2, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0_mid.s2, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0_right.s2, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0_left.s3, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0_mid.s3, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0_right.s3, weights_row0.s2, acc.s3); \
+#define CONVOLUTION1x3_4X1_STRIDE1(acc, src0_left, src0_mid, src0_right, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0_left.s1, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0_mid.s1, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0_right.s1, weights_row0.s2, acc.s1); \
+ acc.s2 = fma(src0_left.s2, weights_row0.s0, acc.s2); \
+ acc.s2 = fma(src0_mid.s2, weights_row0.s1, acc.s2); \
+ acc.s2 = fma(src0_right.s2, weights_row0.s2, acc.s2); \
+ acc.s3 = fma(src0_left.s3, weights_row0.s0, acc.s3); \
+ acc.s3 = fma(src0_mid.s3, weights_row0.s1, acc.s3); \
+ acc.s3 = fma(src0_right.s3, weights_row0.s2, acc.s3); \
})
-#define CONVOLUTION1x3_BIFROST4X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
- ({ \
- acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
- acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
- acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
- acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
- acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
- acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
- acc.s2 = fma(src0_left.s4, weights_row0.s0, acc.s2); \
- acc.s2 = fma(src0_mid.s4, weights_row0.s1, acc.s2); \
- acc.s2 = fma(src0_right.s4, weights_row0.s2, acc.s2); \
- acc.s3 = fma(src0_left.s6, weights_row0.s0, acc.s3); \
- acc.s3 = fma(src0_mid.s6, weights_row0.s1, acc.s3); \
- acc.s3 = fma(src0_right.s6, weights_row0.s2, acc.s3); \
+#define CONVOLUTION1x3_4X1_STRIDE2(acc, src0_left, src0_mid, src0_right, weights_row0) \
+ ({ \
+ acc.s0 = fma(src0_left.s0, weights_row0.s0, acc.s0); \
+ acc.s0 = fma(src0_mid.s0, weights_row0.s1, acc.s0); \
+ acc.s0 = fma(src0_right.s0, weights_row0.s2, acc.s0); \
+ acc.s1 = fma(src0_left.s2, weights_row0.s0, acc.s1); \
+ acc.s1 = fma(src0_mid.s2, weights_row0.s1, acc.s1); \
+ acc.s1 = fma(src0_right.s2, weights_row0.s2, acc.s1); \
+ acc.s2 = fma(src0_left.s4, weights_row0.s0, acc.s2); \
+ acc.s2 = fma(src0_mid.s4, weights_row0.s1, acc.s2); \
+ acc.s2 = fma(src0_right.s4, weights_row0.s2, acc.s2); \
+ acc.s3 = fma(src0_left.s6, weights_row0.s0, acc.s3); \
+ acc.s3 = fma(src0_mid.s6, weights_row0.s1, acc.s3); \
+ acc.s3 = fma(src0_right.s6, weights_row0.s2, acc.s3); \
})
#endif /* DILATION_X==1 && DILATION_Y==1 */
@@ -385,8 +385,8 @@ __kernel void depthwise_convolution_3x3(
* @param[in] weights_addr Pointer from where to get weights
* @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
*/
-inline float2 convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
+inline float2 convolution_3x3_dilation_stridex1_stridey1_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
+ const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
{
// Load the weights
float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
@@ -407,9 +407,9 @@ inline float2 convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(__global uc
float2 src20_mid = vload2(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
float2 src20_right = vload2(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
return pixels0;
}
@@ -423,8 +423,8 @@ inline float2 convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(__global uc
* @param[in] weights_addr Pointer from where to get weights
* @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
*/
-inline float2 convolution_3x3_dilation_stridex2_stridey2_bifrost_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
+inline float2 convolution_3x3_dilation_stridex2_stridey2_f32(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
+ const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
{
// Load the weights
float3 weights_row0 = vload3(0, (__global float *)(weights_addr + 0 * weights_stride_y));
@@ -445,9 +445,9 @@ inline float2 convolution_3x3_dilation_stridex2_stridey2_bifrost_f32(__global uc
float3 src20_mid = vload3(0, (__global float *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
float3 src20_right = vload3(0, (__global float *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
return pixels0;
}
@@ -491,7 +491,7 @@ inline float2 convolution_3x3_dilation_stridex2_stridey2_bifrost_f32(__global uc
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
-__kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32(
+__kernel void depthwise_convolution_3x3_stridex1_stridey1_f32(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
@@ -531,29 +531,29 @@ __kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32(
float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
float4 src50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y)); // Row5
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src00, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src10, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels0, src20, weights_row2);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src10, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src20, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels1, src30, weights_row2);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src20, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src30, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels2, src40, weights_row2);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src30, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src40, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE1(pixels3, src50, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src00, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src10, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels0, src20, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels1, src10, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels1, src20, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels1, src30, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels2, src20, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels2, src30, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels2, src40, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels3, src30, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels3, src40, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE1(pixels3, src50, weights_row2);
#else /* DILATION_X==1 && DILATION_Y==1 */
//3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
+ pixels0 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 1st row
- pixels1 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
+ pixels1 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 2nd row
- pixels2 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
+ pixels2 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 3rd row
- pixels3 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f32(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
+ pixels3 = convolution_3x3_dilation_stridex1_stridey1_f32(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
#endif /* DILATION_X==1 && DILATION_Y==1 */
@@ -611,7 +611,7 @@ __kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32(
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
-__kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32(
+__kernel void depthwise_convolution_3x3_stridex2_stridey2_f32(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
@@ -654,19 +654,19 @@ __kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32(
float4 src40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
float2 src41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y)); // Row4
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src00, src01, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src10, src11, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels0, src20, src21, weights_row2);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src20, src21, weights_row0);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src30, src31, weights_row1);
- CONVOLUTION1x3_BIFROST2X1_STRIDE2(pixels1, src40, src41, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src00, src01, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src10, src11, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels0, src20, src21, weights_row2);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels1, src20, src21, weights_row0);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels1, src30, src31, weights_row1);
+ CONVOLUTION1x3_2X1_STRIDE2(pixels1, src40, src41, weights_row2);
#else /* DILATION_X==1 && DILATION_Y==1 */
//3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex2_stridey2_bifrost_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
+ pixels0 = convolution_3x3_dilation_stridex2_stridey2_f32(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 2nd row
- pixels1 = convolution_3x3_dilation_stridex2_stridey2_bifrost_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
+ pixels1 = convolution_3x3_dilation_stridex2_stridey2_f32(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
#endif /* DILATION_X==1 && DILATION_Y==1 */
#ifdef HAS_BIAS
@@ -684,104 +684,6 @@ __kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32(
#endif // defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F32)
-#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DST_WIDTH)
-/** Reshape the weights for quantized depthwise convolution
- *
- * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type, e.g. -DDATA_TYPE=uint8
- * @note Output width should be given as a preprocessor argument using -DDST_WIDTH=width, e.g. -DDST_WIDTH=128
- * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=vec_size, e.g., -DVEC_SIZE=4
- * @attention Input's height and width should be 3
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: All
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-__kernel void depthwise_convolution_reshape_weights(
- TENSOR3D_DECLARATION(src),
- IMAGE_DECLARATION(dst))
-{
- Vector src = CONVERT_TO_VECTOR_STRUCT(src);
- const int x = get_global_id(0);
-
- // Load 3x3xVEC_SIZE weights
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w0 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 0 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w1 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 0 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w2 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 0 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w3 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 1 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w4 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 1 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w5 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 1 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w6 = VLOAD(VEC_SIZE)(0, src.ptr + 0 * src_stride_y + 2 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w7 = VLOAD(VEC_SIZE)(0, src.ptr + 1 * src_stride_y + 2 * src_stride_z);
- VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
- w8 = VLOAD(VEC_SIZE)(0, src.ptr + 2 * src_stride_y + 2 * src_stride_z);
-
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * DST_WIDTH * sizeof(DATA_TYPE);
-
-#if defined(TRANSPOSE)
-#if VEC_SIZE != 4
-#error "VEC_SIZE not supported"
-#else // VEC_SIZE != 4
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w0.s0, w1.s0, w2.s0, w3.s0), 0, dst_addr + 0);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w4.s0, w5.s0, w6.s0, w7.s0), 0, dst_addr + 1 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w8.s0, w0.s1, w1.s1, w2.s1), 0, dst_addr + 2 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w3.s1, w4.s1, w5.s1, w6.s1), 0, dst_addr + 3 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w7.s1, w8.s1, w0.s2, w1.s2), 0, dst_addr + 4 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w2.s2, w3.s2, w4.s2, w5.s2), 0, dst_addr + 5 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w6.s2, w7.s2, w8.s2, w0.s3), 0, dst_addr + 6 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w1.s3, w2.s3, w3.s3, w4.s3), 0, dst_addr + 7 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))(w5.s3, w6.s3, w7.s3, w8.s3), 0, dst_addr + 8 * sizeof(DATA_TYPE) * VEC_SIZE);
-#endif // VEC_SIZE != 4
-#else // !defined(TRANSPOSE)
- VSTORE(VEC_SIZE)
- (w0, 0, dst_addr + 0);
- VSTORE(VEC_SIZE)
- (w1, 0, dst_addr + 1 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w2, 0, dst_addr + 2 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w3, 0, dst_addr + 3 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w4, 0, dst_addr + 4 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w5, 0, dst_addr + 5 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w6, 0, dst_addr + 6 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w7, 0, dst_addr + 7 * sizeof(DATA_TYPE) * VEC_SIZE);
- VSTORE(VEC_SIZE)
- (w8, 0, dst_addr + 8 * sizeof(DATA_TYPE) * VEC_SIZE);
-#endif // defined(TRANSPOSE)
-}
-#endif // defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DST_WIDTH)
-
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(DEPTH_MULTIPLIER) && defined(DST_CHANNELS) && defined(IS_F16)
#if defined(CONV_STRIDE_X)
#if CONV_STRIDE_X == 1
@@ -805,8 +707,8 @@ __kernel void depthwise_convolution_reshape_weights(
* @param[in] weights_addr Pointer from where to get weights
* @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
*/
-inline half4 convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
+inline half4 convolution_3x3_dilation_stridex1_stridey1_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
+ const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
{
// Load the weights
half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
@@ -827,9 +729,9 @@ inline half4 convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(__global uch
half4 src20_mid = vload4(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
half4 src20_right = vload4(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src00_left, src00_mid, src00_right, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src10_left, src10_mid, src10_right, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src20_left, src20_mid, src20_right, weights_row2);
return pixels0;
}
@@ -843,8 +745,8 @@ inline half4 convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(__global uch
* @param[in] weights_addr Pointer from where to get weights
* @param[in] weights_stride_y Stride of weights tesnsor in Y dimension
*/
-inline half4 convolution_3x3_dilation_stridex2_stridey2_bifrost_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
- const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
+inline half4 convolution_3x3_dilation_stridex2_stridey2_f16(__global uchar *src_addr, const int stride_x_bytes, const int stride_y_bytes,
+ const int y_offset, __global uchar *weights_addr, const int weights_stride_y)
{
// Load the weights
half3 weights_row0 = vload3(0, (__global half *)(weights_addr + 0 * weights_stride_y));
@@ -865,9 +767,9 @@ inline half4 convolution_3x3_dilation_stridex2_stridey2_bifrost_f16(__global uch
half8 src20_mid = vload8(0, (__global half *)ptr_offset(src_addr, DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
half8 src20_right = vload8(0, (__global half *)ptr_offset(src_addr, 2 * DILATION_X, y_offset + DILATION_Y * 2, stride_x_bytes, stride_y_bytes));
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src00_left, src00_mid, src00_right, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src10_left, src10_mid, src10_right, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src20_left, src20_mid, src20_right, weights_row2);
return pixels0;
}
@@ -1127,7 +1029,7 @@ __kernel void depthwise_convolution_3x3_f16(
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
-__kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16(
+__kernel void depthwise_convolution_3x3_stridex1_stridey1_f16(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
@@ -1174,29 +1076,29 @@ __kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16(
half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
half8 src50 = vload8(0, (__global half *)(src_addr + 5 * src_stride_y)); // Row5
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src00, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src10, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels0, src20, weights_row2);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src10, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src20, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels1, src30, weights_row2);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src20, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src30, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels2, src40, weights_row2);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src30, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src40, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE1(pixels3, src50, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src00, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src10, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels0, src20, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels1, src10, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels1, src20, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels1, src30, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels2, src20, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels2, src30, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels2, src40, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels3, src30, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels3, src40, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE1(pixels3, src50, weights_row2);
#else /* DILATION_X==1 && DILATION_Y==1 */
//3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
+ pixels0 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 1st row
- pixels1 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
+ pixels1 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 1, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 2nd row
- pixels2 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
+ pixels2 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 3rd row
- pixels3 = convolution_3x3_dilation_stridex1_stridey1_bifrost_f16(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
+ pixels3 = convolution_3x3_dilation_stridex1_stridey1_f16(src_addr, src_stride_x, src_stride_y, 3, weights_addr, weights_stride_y);
#endif /* DILATION_X==1 && DILATION_Y==1 */
@@ -1250,7 +1152,7 @@ __kernel void depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16(
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
*/
-__kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16(
+__kernel void depthwise_convolution_3x3_stridex2_stridey2_f16(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights)
@@ -1300,18 +1202,18 @@ __kernel void depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16(
half8 src40 = vload8(0, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
half2 src41 = vload2(4, (__global half *)(src_addr + 4 * src_stride_y)); // Row4
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src00, src01, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src10, src11, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels0, src20, src21, weights_row2);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src20, src21, weights_row0);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src30, src31, weights_row1);
- CONVOLUTION1x3_BIFROST4X1_STRIDE2(pixels1, src40, src41, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src00, src01, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src10, src11, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels0, src20, src21, weights_row2);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels1, src20, src21, weights_row0);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels1, src30, src31, weights_row1);
+ CONVOLUTION1x3_4X1_STRIDE2(pixels1, src40, src41, weights_row2);
#else /* DILATION_X==1 && DILATION_Y==1 */
//3x3 Convolution of elements starting in 0th row
- pixels0 = convolution_3x3_dilation_stridex2_stridey2_bifrost_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
+ pixels0 = convolution_3x3_dilation_stridex2_stridey2_f16(src_addr, src_stride_x, src_stride_y, 0, weights_addr, weights_stride_y);
//3x3 Convolution of elements starting in 2nd row
- pixels1 = convolution_3x3_dilation_stridex2_stridey2_bifrost_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
+ pixels1 = convolution_3x3_dilation_stridex2_stridey2_f16(src_addr, src_stride_x, src_stride_y, 2, weights_addr, weights_stride_y);
#endif /* DILATION_X==1 && DILATION_Y==1 */
#ifdef HAS_BIAS
diff --git a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
index c7fe401f8..000dce159 100644
--- a/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
+++ b/src/core/CL/cl_kernels/depthwise_convolution_quantized.cl
@@ -334,9 +334,9 @@ __kernel void dwc_3x3_native_quantized8_nchw(
#else // defined(REAL_MULTIPLIER)
#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
- int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
- values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
+ int8 res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ int8 res0_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values0, output_multiplier, output_shift, 8);
+ values0 = select(res0_shift_lt0, res0_shift_gt0, (int8)(output_shift) >= 0);
#else // defined(PER_CHANNEL_QUANTIZATION)
#if OUTPUT_SHIFT < 0
values0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
@@ -360,9 +360,9 @@ __kernel void dwc_3x3_native_quantized8_nchw(
#else // defined(REAL_MULTIPLIER)
#if defined(PER_CHANNEL_QUANTIZATION)
- int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
- int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
- values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
+ int8 res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ int8 res1_shift_gt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(values1, output_multiplier, output_shift, 8);
+ values1 = select(res1_shift_lt0, res1_shift_gt0, (int8)(output_shift) >= 0);
#else // defined(PER_CHANNEL_QUANTIZATION)
#if OUTPUT_SHIFT < 0
values1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(values1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, 8);
@@ -446,8 +446,8 @@ __kernel void dwc_3x3_native_quantized8_nchw(
VEC_TYPE(16) \
temp0 = vload16(0, (__global DATA_TYPE *)(first_value)); \
VEC_TYPE(8) \
- temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE)))); \
- left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
+ temp1 = vload8(0, (__global DATA_TYPE *)(first_value + 16 * sizeof(DATA_TYPE))); \
+ left = (VEC_TYPE(8))(temp0.s0369, temp0.scf, temp1.s25); \
\
temp0 = vload16(0, (__global DATA_TYPE *)(first_value + DILATION_X * sizeof(DATA_TYPE))); \
temp1 = vload8(0, (__global DATA_TYPE *)(first_value + (16 + DILATION_X) * sizeof(DATA_TYPE))); \
@@ -776,835 +776,6 @@ __kernel void dwc_3x3_native_quantized8_dot8_nchw(
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-#if defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width or height is not 1.
- *
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1)
- * @note The convolution stride along the width must be passed at compile time using -DCONV_STRIDE_X (e.g. -DCONV_STRIDE_Y=X)
- * @note The convolution stride along the height must be passed at compile time using -DCONV_STRIDE_Y (e.g. -DCONV_STRIDE_Y=1)
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor reshaped. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset Max offset for the input tensor
- */
-__kernel void dwc_3x3_reshaped_quantized8_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif /* defined(HAS_BIAS) */
- int max_offset)
-{
- const int x = get_global_id(0); // channels
- const int y = get_global_id(1); // spatial coordinate x
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * CONV_STRIDE_X) + (int4)(0, DILATION_X * 1, DILATION_X * 2, DILATION_X * 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute VEC_SIZEx1x1 [C,W,H] elements
- VEC_INT acc = 0, sum = 0;
-
- // Load weights
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w0 = w0_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w1 = w0_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w2 = w0_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w3 = w0_tmp.sCDEF;
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w4 = w1_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w5 = w1_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w6 = w1_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w7 = w1_tmp.sCDEF;
-
-#if INPUT_OFFSET != 0
- VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
- + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT)
- + CONVERT(w6, VEC_INT) + CONVERT(w7, VEC_INT) + CONVERT(w8, VEC_INT);
-#endif /* INPUT_OFFSET != 0 */
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- // z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- // z == 2
- // Offset can be out-of-bound so we need to check if it is greater than max_offset
- z_coord = z * (int)CONV_STRIDE_Y - (int)CONV_PAD_TOP + DILATION_Y * 2;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
-
- MULTIPLY_ADD_ACCUMULATE(values0, w0, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values1, w1, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values2, w2, acc, sum);
-
- MULTIPLY_ADD_ACCUMULATE(values3, w3, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values4, w4, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values5, w5, acc, sum);
-
- MULTIPLY_ADD_ACCUMULATE(values6, w6, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values7, w7, acc, sum);
- MULTIPLY_ADD_ACCUMULATE(values8, w8, acc, sum);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
- acc += bias_values;
-#endif // defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- acc += WEIGHTS_OFFSET * sum;
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- acc += INPUT_OFFSET * sum_we;
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- acc += (VEC_INT)K_OFFSET;
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- acc = CONVERT(round(CONVERT(acc, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT(output_shifts);
- VEC_INT output_multiplier = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
- VEC_INT output_shift = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
-
- VEC_INT res_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc, output_multiplier, output_shift);
- acc = select(res_shift_lt0, res_shift_gt0, output_shift >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- acc = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc = asymm_mult_by_quant_multiplier_less_than_one(acc, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- acc += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res = CONVERT_SAT(acc, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res), 0, (__global DATA_TYPE *)(dst_addr));
-}
-#endif // defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y)
-
-#if defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1.
- *
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
- * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset Max offset for the input tensor
- */
-
-__kernel void dwc_3x3_reshaped_quantized8_stride1_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif /* defined(HAS_BIAS) */
- int max_offset)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute 4x2x2 [C,W,H] elements
- VEC_INT acc0 = 0, sum0 = 0;
- VEC_INT acc1 = 0, sum1 = 0;
- VEC_INT acc2 = 0, sum2 = 0;
- VEC_INT acc3 = 0, sum3 = 0;
-
- // Load weights
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w0_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 16)
- w1_tmp = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w8 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 2 * 16));
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w0 = w0_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w1 = w0_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w2 = w0_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w3 = w0_tmp.sCDEF;
-
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w4 = w1_tmp.s0123;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w5 = w1_tmp.s4567;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w6 = w1_tmp.s89AB;
- VEC_DATA_TYPE(WEIGHTS_TYPE, 4)
- w7 = w1_tmp.sCDEF;
-
-#if INPUT_OFFSET != 0
- VEC_INT sum_we = CONVERT(w0, VEC_INT) + CONVERT(w1, VEC_INT) + CONVERT(w2, VEC_INT)
- + CONVERT(w3, VEC_INT) + CONVERT(w4, VEC_INT) + CONVERT(w5, VEC_INT)
- + CONVERT(w6, VEC_INT) + CONVERT(w7, VEC_INT) + CONVERT(w8, VEC_INT);
-#endif /* INPUT_OFFSET != 0 */
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 1
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 1;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 2
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 2;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 3
- z_coord = z * (int)NUM_PLANES_PROCESSED - (int)CONV_PAD_TOP + 3;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = select(y_offset + (int4)(z_coord * src_stride_z), (int4)max_offset, (int4)z_coord < 0 || (int4)z_coord >= SRC_DIM_2);
- VEC_TYPE(VEC_SIZE)
- values12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- MULTIPLY_ADD_ACCUMULATE(values0, w0, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values1, w1, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values2, w2, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values1, w0, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values2, w1, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values3, w2, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values4, w3, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values5, w4, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values6, w5, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values5, w3, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values6, w4, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values7, w5, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values8, w6, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values9, w7, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values10, w8, acc0, sum0);
- MULTIPLY_ADD_ACCUMULATE(values9, w6, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values10, w7, acc1, sum1);
- MULTIPLY_ADD_ACCUMULATE(values11, w8, acc1, sum1);
-
- MULTIPLY_ADD_ACCUMULATE(values4, w0, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values5, w1, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values6, w2, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values5, w0, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values6, w1, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values7, w2, acc3, sum3);
-
- MULTIPLY_ADD_ACCUMULATE(values8, w3, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values9, w4, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values10, w5, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values9, w3, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values10, w4, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values11, w5, acc3, sum3);
-
- MULTIPLY_ADD_ACCUMULATE(values12, w6, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values13, w7, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values14, w8, acc2, sum2);
- MULTIPLY_ADD_ACCUMULATE(values13, w6, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values14, w7, acc3, sum3);
- MULTIPLY_ADD_ACCUMULATE(values15, w8, acc3, sum3);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
-
- acc0 += bias_values;
- acc1 += bias_values;
- acc2 += bias_values;
- acc3 += bias_values;
-#endif /* defined(HAS_BIAS) */
-
-#if WEIGHTS_OFFSET != 0
- acc0 += WEIGHTS_OFFSET * sum0;
- acc1 += WEIGHTS_OFFSET * sum1;
- acc2 += WEIGHTS_OFFSET * sum2;
- acc3 += WEIGHTS_OFFSET * sum3;
-#endif /* WEIGHTS_OFFSET != 0 */
-
-#if INPUT_OFFSET != 0
- VEC_INT offs = INPUT_OFFSET * sum_we;
-
- acc0 += offs;
- acc1 += offs;
- acc2 += offs;
- acc3 += offs;
-#endif /* INPUT_OFFSET != 0 */
-
-#if K_OFFSET != 0
- acc0 += (VEC_INT)K_OFFSET;
- acc1 += (VEC_INT)K_OFFSET;
- acc2 += (VEC_INT)K_OFFSET;
- acc3 += (VEC_INT)K_OFFSET;
-#endif /* K_OFFSET != 0 */
-
-#if defined(REAL_MULTIPLIER)
-
- acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc2 = CONVERT(round(CONVERT(acc2, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc3 = CONVERT(round(CONVERT(acc3, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if defined(PER_CHANNEL_QUANTIZATION)
- Vector output_multipliers = CONVERT_TO_VECTOR_STRUCT(output_multipliers);
- Vector output_shifts = CONVERT_TO_VECTOR_STRUCT(output_shifts);
- VEC_INT output_multiplier = VLOAD(VEC_SIZE)(0, (__global int *)output_multipliers.ptr);
- VEC_INT output_shift = VLOAD(VEC_SIZE)(0, (__global int *)output_shifts.ptr);
-
- VEC_INT res0_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res1_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res2_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc2, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res3_shift_lt0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc3, output_multiplier, output_shift, VEC_SIZE);
- VEC_INT res0_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, output_multiplier, output_shift);
- VEC_INT res1_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc1, output_multiplier, output_shift);
- VEC_INT res2_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc2, output_multiplier, output_shift);
- VEC_INT res3_shift_gt0 = asymm_mult_by_quant_multiplier_less_than_one(acc3, output_multiplier, output_shift);
- acc0 = select(res0_shift_lt0, res0_shift_gt0, output_shift >= 0);
- acc1 = select(res1_shift_lt0, res1_shift_gt0, output_shift >= 0);
- acc2 = select(res2_shift_lt0, res2_shift_gt0, output_shift >= 0);
- acc3 = select(res3_shift_lt0, res3_shift_gt0, output_shift >= 0);
-#else // defined(PER_CHANNEL_QUANTIZATION)
-#if OUTPUT_SHIFT < 0
- acc0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc2 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc3 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc2 = asymm_mult_by_quant_multiplier_less_than_one(acc2, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc3 = asymm_mult_by_quant_multiplier_less_than_one(acc3, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-#endif // defined(PER_CHANNEL_QUANTIZATION)
-
-#endif // defined(REAL_MULTIPLIER)
-
- acc0 += (VEC_INT)OUTPUT_OFFSET;
- acc1 += (VEC_INT)OUTPUT_OFFSET;
- acc2 += (VEC_INT)OUTPUT_OFFSET;
- acc3 += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res2 = CONVERT_SAT(acc2, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res3 = CONVERT_SAT(acc3, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + (z * NUM_PLANES_PROCESSED) * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res0), 0, dst_addr + 0 * dst_stride_y);
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res1), 0, dst_addr + 1 * dst_stride_y);
-
-#if((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- if((z * NUM_PLANES_PROCESSED + 1) < DST_DIM_2)
-#endif // ((DST_DIM_2 % NUM_PLANES_PROCESSED) != 0)
- {
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res2), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + 1 * dst_stride_z));
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res3), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + 1 * dst_stride_z));
- }
-}
-
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE == 4
-/** This function computes the depthwise convolution quantized for NHWC data layout when the stride along the width and height is 1 using dot product.
- *
- * @note Per-channel quantization is not supported by this kernel.
- * @note This kernel assumes VEC_SIZE is 4.
- * @note The weights tensor is expected to be reshaped using @ref CLDepthwiseConvolutionLayerReshapeWeightsKernel.
- * @note The number of elements read per thread must be passed at compile time using -DVEC_SIZE (e.g. -DVEC_SIZE=2)
- * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
- * @note The number of rows processed per thread must be passed at compile time using -DNUM_ROWS_PROCESSED (i.e. -DNUM_ROWS_PROCESSED=2)
- * @note The number of planes processed per thread must be passed at compile time using -DNUM_PLANES_PROCESSED (i.e. -DNUM_PLANES_PROCESSED=2)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_TOP (e.g. -DCONV_PAD_TOP=1)
- * @note The convolution pad top must be passed at compile time using -DCONV_PAD_LEFT (e.g. -DCONV_PAD_LEFT=1).
- * @note If REAL_MULTIPLIER is passed at compile time (i.e. -DREAL_MULTIPLIER=1.355f), the final quantization is performed using a floating point multiplication.
- * If not, the quantization will be performed using a fixed point multiplication
- *
- * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
- * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
- * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] src_step_z src_stride_y * number of elements along Z processed per workitem(in bytes)
- * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
- * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
- * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
- * @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
- * @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
- * @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
- * @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
- * @param[in] weights_step_y weights_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
- * @param[in] output_multipliers_ptr Pointer to the output multipliers vector. Supported data types: S32
- * @param[in] output_multipliers_stride_x Stride of the output multipliers vector in X dimension (in bytes)
- * @param[in] output_multipliers_step_x output_multipliers_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_multipliers_offset_first_element_in_bytes The offset of the first element in the output multipliers vector
- * @param[in] output_shifts_ptr Pointer to the output shifts vector. Supported data types: S32
- * @param[in] output_shifts_stride_x Stride of the output shifts vector in X dimension (in bytes)
- * @param[in] output_shifts_step_x output_shifts_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_shifts_offset_first_element_in_bytes The offset of the first element in the output shifts vector
- * @param[in] biases_ptr (Optional) Pointer to the biases vector. Supported data types: S32
- * @param[in] biases_stride_x (Optional) Stride of the biases vector in X dimension (in bytes)
- * @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases vector
- * @param[in] max_offset The maximum allowed offset for the input tensor
- */
-__kernel void dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc(
- TENSOR4D_DECLARATION(src),
- TENSOR4D_DECLARATION(dst),
- IMAGE_DECLARATION(weights),
- VECTOR_DECLARATION(output_multipliers),
- VECTOR_DECLARATION(output_shifts),
-#if defined(HAS_BIAS)
- VECTOR_DECLARATION(biases),
-#endif // defined(HAS_BIAS)
- int max_offset)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-#if defined(DST_DEPTH)
- int z = get_global_id(2) % (int)DST_DEPTH; // spatial coordinate y
- int b = get_global_id(2) / (int)DST_DEPTH; // batch
-#else // defined(DST_DEPTH)
- int z = get_global_id(2); // spatial coordinate y
-#endif // defined(DST_DEPTH)
-
- __global uchar *weights_addr = weights_ptr + weights_offset_first_element_in_bytes + x * weights_stride_y;
-
-#if defined(DST_DEPTH)
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE + b * src_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * VEC_SIZE;
-#endif /* defined(DST_DEPTH) */
-
- int z_coord = 0;
- int4 offset = 0;
- int4 y_coord = ((int4)(y * NUM_ROWS_PROCESSED) + (int4)(0, 1, 2, 3)) - (int)CONV_PAD_LEFT;
-
- // Only for y = 0 we can have a negative coordinate. If so, we convert it to SRC_DIM_1
- y_coord.s0 = min((uint)y_coord.s0, (uint)SRC_DIM_1);
- y_coord.s1 = min((uint)y_coord.s1, (uint)SRC_DIM_1);
- y_coord.s2 = min((uint)y_coord.s2, (uint)SRC_DIM_1);
- y_coord.s3 = min((uint)y_coord.s3, (uint)SRC_DIM_1);
-
- int4 y_offset = convert_int4(y_coord * (int)src_stride_y);
-
- // We compute 4x2x1 [C,W,H] elements
- VEC_INT acc0 = 0;
- VEC_INT acc1 = 0;
- VEC_INT sum0 = 0;
- VEC_INT sum1 = 0;
-
- // Load weights
- VEC_TYPE(16)
- w0 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr));
- VEC_TYPE(16)
- w1 = VLOAD(16)(0, (__global WEIGHTS_TYPE *)(weights_addr + 16));
- VEC_TYPE(4)
- w2 = VLOAD(4)(0, (__global WEIGHTS_TYPE *)(weights_addr + 32));
-
-#if INPUT_OFFSET != 0
- // Initilize the final result with the weights reduction multiplied by INPUT_OFFSET
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s0, w0.s01234567, w0.s8);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s2, w1.s23456789, w1.sA);
- DOT_PRODUCT_REDUCTION_WEIGHTS(acc0.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
-
- // Multiply the weights reduction with INPUT_OFFSET
- acc0 = INPUT_OFFSET * acc0;
-
- acc1 = acc0;
-#endif // INPUT_OFFSET != 0
-
- // Load input values
- // z == 0
- // Clamp z_coord as for z = 0, it can be negative
- // z_coord is casted to unsigned int in order to use just a min() operation
- // A "-1" 32 bit signed variable converted to unsigned gives 4294967295
- z_coord = z - (int)CONV_PAD_TOP;
- z_coord = min((uint)z_coord, (uint)SRC_DIM_2);
- offset = y_offset + (int4)(z_coord * src_stride_z);
- offset = min(offset, (int4)max_offset);
-
- VEC_TYPE(VEC_SIZE)
- values0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 1
- // z_coord can be only negative for z = 0 so we do not need to clamp it
- // Moreover z_coord cannot be out-of-bound for z = 1 so we do not need to clamp the offset
- z_coord = z - (int)CONV_PAD_TOP + 1;
- offset = y_offset + (int4)(z_coord * src_stride_z);
- VEC_TYPE(VEC_SIZE)
- values4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- // z == 2
- // After z = 1 we can simply add src_stride_z to offset without updating z_coord
- // However offset can be out-of-bound so we need to check if it is greater than max_offset
- offset += (int4)src_stride_z;
- offset = min(offset, (int4)max_offset);
- VEC_TYPE(VEC_SIZE)
- values8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s0));
- VEC_TYPE(VEC_SIZE)
- values9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s1));
- VEC_TYPE(VEC_SIZE)
- values10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s2));
- VEC_TYPE(VEC_SIZE)
- values11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(src_addr + offset.s3));
-
- DOT_PRODUCT_REDUCTION(sum0.s0, values0.s0, values1.s0, values2.s0, values4.s0, values5.s0, values6.s0, values8.s0, values9.s0, values10.s0);
- DOT_PRODUCT_REDUCTION(sum1.s0, values1.s0, values2.s0, values3.s0, values5.s0, values6.s0, values7.s0, values9.s0, values10.s0, values11.s0);
- DOT_PRODUCT(acc0.s0, values0.s0, values1.s0, values2.s0, values4.s0, values5.s0, values6.s0, values8.s0, values9.s0, values10.s0, w0.s01234567, w0.s8);
- DOT_PRODUCT(acc1.s0, values1.s0, values2.s0, values3.s0, values5.s0, values6.s0, values7.s0, values9.s0, values10.s0, values11.s0, w0.s01234567, w0.s8);
-
- DOT_PRODUCT_REDUCTION(sum0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1);
- DOT_PRODUCT_REDUCTION(sum1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1);
- DOT_PRODUCT(acc0.s1, values0.s1, values1.s1, values2.s1, values4.s1, values5.s1, values6.s1, values8.s1, values9.s1, values10.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
- DOT_PRODUCT(acc1.s1, values1.s1, values2.s1, values3.s1, values5.s1, values6.s1, values7.s1, values9.s1, values10.s1, values11.s1, (VEC_TYPE(8))((w0.s9ABC), (w0.sDEF), w1.s0), w1.s1);
-
- DOT_PRODUCT_REDUCTION(sum0.s2, values0.s2, values1.s2, values2.s2, values4.s2, values5.s2, values6.s2, values8.s2, values9.s2, values10.s2);
- DOT_PRODUCT_REDUCTION(sum1.s2, values1.s2, values2.s2, values3.s2, values5.s2, values6.s2, values7.s2, values9.s2, values10.s2, values11.s2);
- DOT_PRODUCT(acc0.s2, values0.s2, values1.s2, values2.s2, values4.s2, values5.s2, values6.s2, values8.s2, values9.s2, values10.s2, w1.s23456789, w1.sA);
- DOT_PRODUCT(acc1.s2, values1.s2, values2.s2, values3.s2, values5.s2, values6.s2, values7.s2, values9.s2, values10.s2, values11.s2, w1.s23456789, w1.sA);
-
- DOT_PRODUCT_REDUCTION(sum0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3);
- DOT_PRODUCT_REDUCTION(sum1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3);
- DOT_PRODUCT(acc0.s3, values0.s3, values1.s3, values2.s3, values4.s3, values5.s3, values6.s3, values8.s3, values9.s3, values10.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
- DOT_PRODUCT(acc1.s3, values1.s3, values2.s3, values3.s3, values5.s3, values6.s3, values7.s3, values9.s3, values10.s3, values11.s3, (VEC_TYPE(8))((w1.sBCD), (w1.sEF), (w2.s012)), w2.s3);
-
-#if defined(HAS_BIAS)
- Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
-
- VEC_INT bias_values = VLOAD(VEC_SIZE)(0, (__global int *)biases.ptr);
-
- acc0 += bias_values;
- acc1 += bias_values;
-
-#endif // defined(HAS_BIAS)
-
-#if WEIGHTS_OFFSET != 0
- acc0 += WEIGHTS_OFFSET * sum0;
- acc1 += WEIGHTS_OFFSET * sum1;
-#endif // WEIGHTS_OFFSET != 0
-
-#if K_OFFSET != 0
- acc0 += (VEC_INT)K_OFFSET;
- acc1 += (VEC_INT)K_OFFSET;
-
-#endif // K_OFFSET != 0
-
-#if defined(REAL_MULTIPLIER)
-
- acc0 = CONVERT(round(CONVERT(acc0, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
- acc1 = CONVERT(round(CONVERT(acc1, VEC_FLOAT) * (VEC_FLOAT)REAL_MULTIPLIER), VEC_INT);
-
-#else // defined(REAL_MULTIPLIER)
-
-#if OUTPUT_SHIFT < 0
- acc0 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
- acc1 = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT, VEC_SIZE);
-#else // OUTPUT_SHIFT < 0
- acc0 = asymm_mult_by_quant_multiplier_less_than_one(acc0, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
- acc1 = asymm_mult_by_quant_multiplier_less_than_one(acc1, OUTPUT_MULTIPLIER, OUTPUT_SHIFT);
-#endif // OUTPUT_SHIFT < 0
-
-#endif // defined(REAL_MULTIPLIER)
- acc0 += (VEC_INT)OUTPUT_OFFSET;
- acc1 += (VEC_INT)OUTPUT_OFFSET;
-
- VEC_TYPE(VEC_SIZE)
- res0 = CONVERT_SAT(acc0, VEC_TYPE(VEC_SIZE));
- VEC_TYPE(VEC_SIZE)
- res1 = CONVERT_SAT(acc1, VEC_TYPE(VEC_SIZE));
-
-#if defined(DST_DEPTH)
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z + b * dst_stride_w;
-#else /* defined(DST_DEPTH) */
- __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * dst_step_x + y * dst_step_y + z * dst_step_z;
-#endif /* defined(DST_DEPTH) */
-
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res0), 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
- VSTORE(VEC_SIZE)
- (ACTIVATION_FUNC(res1), 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
-}
-#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) && VEC_SIZE==4
-
-#endif // defined(NUM_ROWS_PROCESSED) && defined(NUM_PLANES_PROCESSED)
-
#endif // defined(VEC_SIZE) && defined(SRC_DIM_1) && defined(SRC_DIM_2) && defined(CONV_PAD_TOP) && defined(CONV_PAD_LEFT)
#endif // defined(WEIGHTS_PROMOTED_TYPE)
@@ -1612,7 +783,7 @@ __kernel void dwc_3x3_reshaped_quantized8_dot8_stride1_nhwc(
#endif // defined(WEIGHTS_OFFSET) && defined(INPUT_OFFSET) && defined(K_OFFSET) && ((defined(OUTPUT_OFFSET) && defined(OUTPUT_MULTIPLIER) && defined(OUTPUT_SHIFT)) || defined(REAL_MULTIPLIER))
#if defined(SRC_DIM1) && defined(SRC_DIM2) && defined(KERNEL_WIDTH) && defined(KERNEL_HEIGHT) && defined(N0) && defined(DILATION_X) && defined(DILATION_Y) && defined(CONV_STRIDE_X) && defined(CONV_STRIDE_Y) && defined(CONV_PAD_LEFT) && defined(CONV_PAD_TOP) && defined(INPUT_OFFSET) && defined(WEIGHTS_OFFSET) && defined(OUTPUT_OFFSET) && defined(OUTPUT_SHIFT) && defined(OUTPUT_MULTIPLIER) && defined(VEC_SIZE_LEFTOVER)
-/** This function computes the depthwise convolution for NHWC data layout. This kernel assumes that the weights tensor is NOT reshaped
+/** This function computes the depthwise convolution for NHWC data layout.
*
* @note The number of elements processed must be passed at compile time using -DN0 (e.g. -DN0=2)
* @note The depth multiplier must be passed at compile time using -DDEPTH_MULTIPLIER (e.g. -DDEPTH_MULTIPLIER=1)
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
index 287a965f5..dda70d223 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.cpp
@@ -114,20 +114,19 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights,
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier, GPUTarget gpu_target, std::string &kernel_name, const Size2D dilation)
+ unsigned int depth_multiplier, std::string &kernel_name, const Size2D dilation)
{
// Output auto inizialitation if not yet initialized
const ConvolutionInfo info
{
conv_info, depth_multiplier, ActivationLayerInfo(), dilation
};
- const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, info);
+ const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, info);
auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));
const unsigned int conv_stride_x = conv_info.stride().first;
const unsigned int conv_stride_y = conv_info.stride().second;
const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
- const bool is_bifrost = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
// Configure kernel window
unsigned int num_elems_read_per_iteration_x = 0;
@@ -156,31 +155,28 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
break;
}
- if(is_bifrost)
+ if(conv_stride_x == 1 && conv_stride_y == 1)
{
- if(conv_stride_x == 1 && conv_stride_y == 1)
- {
- kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16";
- num_elems_read_per_iteration_x = 8;
- num_elems_written_per_iteration_x = 4;
- num_elems_read_per_iteration_y = 6;
- num_elems_written_per_iteration_y = 4;
- }
- else if(conv_stride_x == 2 && conv_stride_y == 2)
- {
- kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16";
- num_elems_read_per_iteration_x = 10;
- num_elems_written_per_iteration_x = 4;
- num_elems_read_per_iteration_y = 5;
- num_elems_written_per_iteration_y = 2;
- }
+ kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_f16";
+ num_elems_read_per_iteration_x = 8;
+ num_elems_written_per_iteration_x = 4;
+ num_elems_read_per_iteration_y = 6;
+ num_elems_written_per_iteration_y = 4;
+ }
+ else if(conv_stride_x == 2 && conv_stride_y == 2)
+ {
+ kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_f16";
+ num_elems_read_per_iteration_x = 10;
+ num_elems_written_per_iteration_x = 4;
+ num_elems_read_per_iteration_y = 5;
+ num_elems_written_per_iteration_y = 2;
}
}
- else if(input->data_type() == DataType::F32 && is_bifrost)
+ else if(input->data_type() == DataType::F32)
{
if(conv_stride_x == 1 && conv_stride_y == 1)
{
- kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32";
+ kernel_name = "depthwise_convolution_3x3_stridex1_stridey1_f32";
num_elems_read_per_iteration_x = 4;
num_elems_read_per_iteration_y = 6;
num_elems_written_per_iteration_x = 2;
@@ -188,7 +184,7 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
}
else if(conv_stride_x == 2 && conv_stride_y == 2)
{
- kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32";
+ kernel_name = "depthwise_convolution_3x3_stridex2_stridey2_f32";
num_elems_read_per_iteration_x = 6;
num_elems_read_per_iteration_y = 5;
num_elems_written_per_iteration_x = 2;
@@ -239,7 +235,7 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
} // namespace
CLDepthwiseConvolutionLayer3x3NCHWKernel::CLDepthwiseConvolutionLayer3x3NCHWKernel()
- : _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
+ : _border_size(0), _input(), _output(), _weights(), _biases(), _conv_stride_y(1), _output_multipliers(), _output_shifts(), _is_quantized(false), _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
{
}
@@ -278,10 +274,9 @@ void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const CLCompileContext
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
// Configure kernel window
- std::string kernel_name;
- const GPUTarget gpu_target = get_target();
+ std::string kernel_name;
- auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, gpu_target, kernel_name, dilation);
+ auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, kernel_name, dilation);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
@@ -372,13 +367,13 @@ void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const CLCompileContext
}
Status CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target,
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info,
const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
std::string kernel_name;
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(),
- conv_info, depth_multiplier, gpu_target, kernel_name, dilation)
+ conv_info, depth_multiplier, kernel_name, dilation)
.first);
return Status{};
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h
index 45b586967..c4e475f6f 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2018-2020 Arm Limited.
+ * Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -24,7 +24,7 @@
#ifndef ARM_COMPUTE_CLDEPTHWISECONVOLUTIONNCHWKERNEL3x3_H
#define ARM_COMPUTE_CLDEPTHWISECONVOLUTIONNCHWKERNEL3x3_H
-#include "src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h"
+#include "src/core/CL/ICLKernel.h"
namespace arm_compute
{
@@ -32,11 +32,19 @@ class ICLTensor;
/** Interface for the kernel to run a 3x3 depthwise convolution on a tensor when the data layout is NCHW.
*/
-class CLDepthwiseConvolutionLayer3x3NCHWKernel : public ICLDepthwiseConvolutionLayer3x3Kernel
+class CLDepthwiseConvolutionLayer3x3NCHWKernel : public ICLKernel
{
public:
/** Default constructor */
CLDepthwiseConvolutionLayer3x3NCHWKernel();
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLDepthwiseConvolutionLayer3x3NCHWKernel(const CLDepthwiseConvolutionLayer3x3NCHWKernel &) = delete;
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLDepthwiseConvolutionLayer3x3NCHWKernel &operator=(const CLDepthwiseConvolutionLayer3x3NCHWKernel &) = delete;
+ /** Default Move Constructor. */
+ CLDepthwiseConvolutionLayer3x3NCHWKernel(CLDepthwiseConvolutionLayer3x3NCHWKernel &&) = default;
+ /** Default move assignment operator */
+ CLDepthwiseConvolutionLayer3x3NCHWKernel &operator=(CLDepthwiseConvolutionLayer3x3NCHWKernel &&) = default;
/** Initialize the function's source, destination, conv and border_size.
*
* @param[in] input Source tensor. DataType supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
@@ -56,7 +64,7 @@ public:
*/
void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) override;
+ const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr);
/** Initialize the function's source, destination, conv and border_size.
*
* @param[in] compile_context The compile context to be used.
@@ -77,7 +85,7 @@ public:
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) override;
+ const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr);
/** Static function to check if given info will lead to a valid configuration of @ref CLDepthwiseConvolutionLayer3x3NCHWKernel
*
* @param[in] input Source tensor info. DataType supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
@@ -89,7 +97,6 @@ public:
* @param[in] conv_info Padding and stride information to use for the convolution.
* @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
* @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
- * @param[in] gpu_target (Optional) GPU target to validate the kernel for. Defaults to midgard.
* @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
* @param[in] output_multipliers (Optional) Output multipliers tensor info for quantized computations. In case of per-channel quantization,
* the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
@@ -99,13 +106,23 @@ public:
* @return a status
*/
static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), GPUTarget gpu_target = GPUTarget::MIDGARD,
+ unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(),
const Size2D &dilation = Size2D(1U, 1U), const ITensorInfo *output_multipliers = nullptr, const ITensorInfo *output_shifts = nullptr);
void run(const Window &window, cl::CommandQueue &queue) override;
BorderSize border_size() const override;
private:
+ BorderSize _border_size;
+ const ICLTensor *_input;
+ ICLTensor *_output;
+ const ICLTensor *_weights;
+ const ICLTensor *_biases;
+ unsigned int _conv_stride_y;
+ const ICLTensor *_output_multipliers;
+ const ICLTensor *_output_shifts;
+ bool _is_quantized;
+
unsigned int _conv_stride_x;
unsigned int _conv_pad_top;
unsigned int _conv_pad_left;
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
index f7603e639..2a1365e6e 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.cpp
@@ -30,7 +30,6 @@
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/CL/ICLKernel.h"
@@ -43,17 +42,11 @@ namespace arm_compute
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation,
- const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
+ ARM_COMPUTE_UNUSED(act_info);
ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG((act_info.enabled()) && (input->data_type() == DataType::QASYMM8 || input->data_type() == DataType::QASYMM8_SIGNED)
- && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
- && (act_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
- && (act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
- && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC),
- "For QASYMM8 only logistic, relu, lower bounded relu and lower-upper bounded relu are supported");
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier > 1); // COMPMID-1071 Add depth multiplier support for NHWC
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1);
@@ -61,54 +54,21 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights,
ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
- const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
const size_t weights_width = 3;
const size_t weights_height = 3;
const ConvolutionInfo info{ conv_info, depth_multiplier, ActivationLayerInfo(), dilation };
- const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(
- *input, TensorInfo(TensorShape(weights_width, weights_height), 1, weights->data_type()).set_data_layout(DataLayout::NCHW), info);
- if(is_qasymm)
- {
- DepthwiseConvolutionReshapeInfo info;
- info.c0 = 4;
- ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(0) / info.c0) != weights_width * weights_height);
-
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
- ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
- ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
-
- if(is_data_type_quantized_per_channel(weights->data_type()))
- {
- ARM_COMPUTE_RETURN_ERROR_ON(output_shape[0] != output_multipliers->dimension(0));
- ARM_COMPUTE_RETURN_ERROR_ON(output_shape[0] != output_shifts->dimension(0));
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
- ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0));
- ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0));
- }
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
- ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(1) != weights_width) || (weights->dimension(2) != weights_height));
- }
+
+ const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(
+ *input, TensorInfo(TensorShape(weights_width, weights_height), 1, weights->data_type()).set_data_layout(DataLayout::NCHW), info);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
+ ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(1) != weights_width) || (weights->dimension(2) != weights_height));
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != output_shape[0]);
- if(is_qasymm)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
- }
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
@@ -122,10 +82,9 @@ Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights,
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
- ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation)
{
- ARM_COMPUTE_UNUSED(weights);
+ ARM_COMPUTE_UNUSED(weights, bias);
ARM_COMPUTE_UNUSED(depth_multiplier);
const bool is_stride_1_dilation_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1) && dilation.x() == 1 && dilation.y() == 1);
@@ -134,115 +93,46 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITen
Window win{};
Status err{};
- if(is_data_type_quantized_asymmetric(input->data_type()))
- {
- const unsigned int num_elems_accessed_per_iteration = 4;
- const unsigned int num_rows_read_per_iteration = num_rows_processed_per_iteration + 2;
- const unsigned int num_rows_written_per_iteration = std::ceil(num_rows_processed_per_iteration / static_cast<float>(conv_info.stride().first));
-
- BorderSize border_size;
- border_size = BorderSize(conv_info.pad_left(), 0, std::max(std::max(conv_info.pad_right(), conv_info.pad_bottom()), conv_info.pad_top()), 0);
-
- // Configure kernel window
- win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_written_per_iteration));
-
- AccessWindowStatic input_access(input, 0, -border_size.top, ceil_to_multiple(input->dimension(0), num_elems_accessed_per_iteration),
- ceil_to_multiple(input->dimension(1) + border_size.bottom, num_rows_read_per_iteration));
- AccessWindowRectangle output_access(output, 0, 0, num_elems_accessed_per_iteration, num_rows_written_per_iteration);
-
- bool window_changed = false;
-
- if((output_multipliers != nullptr) && (output_shifts != nullptr))
- {
- AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_accessed_per_iteration);
- AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_accessed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win, input_access, output_access, output_multipliers_access, output_shifts_access);
- }
- else
- {
- Status err = ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "output_multipliers and output_shifts must be non-nullptr for quantized input");
- return std::make_pair(err, win);
- }
-
- if(bias != nullptr)
- {
- AccessWindowHorizontal bias_access(bias, 0, num_elems_accessed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win, bias_access);
- }
-
- err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- }
- else
- {
- unsigned int num_elems_accessed_per_iteration = adjust_vec_size(4 / input->element_size(), input->dimension(0));
- win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_processed_per_iteration));
- }
+ unsigned int num_elems_accessed_per_iteration = adjust_vec_size(4 / input->element_size(), input->dimension(0));
+ win = calculate_max_window(*output, Steps(num_elems_accessed_per_iteration, num_rows_processed_per_iteration));
return std::make_pair(err, win);
}
} // namespace
CLDepthwiseConvolutionLayer3x3NHWCKernel::CLDepthwiseConvolutionLayer3x3NHWCKernel()
- : _num_planes_processed_per_iteration(1)
-{
-}
-
-BorderSize CLDepthwiseConvolutionLayer3x3NHWCKernel::border_size() const
+ : _input(), _output(), _weights(), _biases(), _num_planes_processed_per_iteration(1)
{
- return _border_size;
}
void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
- const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts);
+ configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
- const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(),
- conv_info, depth_multiplier, act_info, dilation,
- (output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
- (output_shifts != nullptr) ? output_shifts->info() : nullptr));
+ conv_info, depth_multiplier, act_info, dilation));
auto padding_info = get_padding_info({ input, weights, biases, output });
auto win_config = validate_and_configure_window(input->info(), weights->info(), biases != nullptr ? biases->info() : nullptr, output->info(),
- conv_info, depth_multiplier, dilation,
- (output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
- (output_shifts != nullptr) ? output_shifts->info() : nullptr);
+ conv_info, depth_multiplier, dilation);
- const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
- const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
- const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
- const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
+ const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
+ const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
_input = input;
_output = output;
_weights = weights;
_biases = biases;
- _conv_stride_y = conv_info.stride().second;
_num_planes_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
- _output_multipliers = output_multipliers;
- _output_shifts = output_shifts;
- _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
- if(_is_quantized)
- {
- _border_size = BorderSize(input->info()->padding());
-
- // If QASYMM8 and the 8 bit dot product is available, force _num_planes_processed_per_iteration to 1
- if(is_dot8_supported)
- {
- _num_planes_processed_per_iteration = 1;
- }
- }
-
- unsigned int num_elems_accessed_per_iteration = _is_quantized ? 4 : adjust_vec_size(4 / input->info()->element_size(), input->info()->dimension(0));
+ unsigned int num_elems_accessed_per_iteration = adjust_vec_size(4 / input->info()->element_size(), input->info()->dimension(0));
unsigned int num_rows_processed_per_iteration = is_stride_1_dilation_1 ? 2 : 1;
CLBuildOptions build_opts;
@@ -257,54 +147,8 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1,
"-DDST_DEPTH=" + support::cpp11::to_string(static_cast<int>(std::ceil(_output->info()->dimension(2) / static_cast<float>(_num_planes_processed_per_iteration)))));
-
- if(_is_quantized)
- {
- const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
- const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
- const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
-
- build_opts.add_option("-DSRC_DIM_1=" + support::cpp11::to_string(_input->info()->dimension(1)));
- build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
- build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
- build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
- build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * iq_info.offset * wq_info.offset));
- build_opts.add_option_if(is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
- build_opts.add_option_if(is_dot8_supported, "-DIS_DOT8");
-
- // Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler
- float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
- int output_multiplier = 0;
- int output_shift = 0;
- quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
- build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
- build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
-
- if(act_info.enabled())
- {
- int a_val{};
- int b_val{};
- std::tie(b_val, a_val) = get_quantized_activation_min_max(act_info, input->info()->data_type(), oq_info);
-
- const int o1 = oq_info.offset;
-
- build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
- build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
- build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
-
- const float s1 = iq_info.scale;
- build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
- build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
- }
-
- build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
- build_opts.add_option("-DWEIGHTS_PROMOTED_TYPE=" + get_cl_promoted_type_from_data_type(weights->info()->data_type()));
- }
- else
- {
- build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
- build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
- }
+ build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
+ build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
if(is_stride_1_dilation_1)
{
@@ -317,30 +161,20 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
else
{
build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(conv_info.stride().first));
- build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
+ build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(conv_info.stride().second));
build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
}
- std::string kernel_name;
// Create kernel
- if(_is_quantized)
- {
- kernel_name = std::string("dwc_3x3_reshaped_quantized8");
- kernel_name += (is_dot8_supported && is_stride_1_dilation_1 ? "_dot8" : "");
- kernel_name += (is_stride_1_dilation_1 ? "_stride1" : "");
- kernel_name += "_nhwc";
- }
- else
- {
- kernel_name = std::string("depthwise_convolution_3x3_nhwc");
- kernel_name += (is_stride_1_dilation_1 ? "_stride1" : "");
- }
+ std::string kernel_name;
+ kernel_name = std::string("depthwise_convolution_3x3_nhwc");
+ kernel_name += (is_stride_1_dilation_1 ? "_stride1" : "");
ICLKernel::configure_internal(win_config.second);
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
- ARM_COMPUTE_ERROR_ON(!_is_quantized && has_padding_changed(padding_info));
+ ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
@@ -359,15 +193,12 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::configure(const CLCompileContext
}
Status CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
- const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(),
biases != nullptr ? biases->clone().get() : nullptr,
- output->clone().get(), conv_info, depth_multiplier, dilation,
- (output_multipliers != nullptr) ? output_multipliers->clone().get() : nullptr,
- (output_shifts != nullptr) ? output_shifts->clone().get() : nullptr)
+ output->clone().get(), conv_info, depth_multiplier, dilation)
.first);
return Status{};
}
@@ -382,16 +213,7 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::run(const Window &window, cl::Com
Window win = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
win.set(Window::DimZ, Window::Dimension(0, std::ceil(_output->info()->dimension(2) / static_cast<float>(_num_planes_processed_per_iteration)) * total_batches, 1));
- unsigned int idx = 2 * num_arguments_per_4D_tensor() + (_is_quantized ? num_arguments_per_2D_tensor() : num_arguments_per_3D_tensor());
-
- if(_is_quantized)
- {
- Window slice;
- slice.use_tensor_dimensions(_output_multipliers->info()->tensor_shape());
- slice.set_dimension_step(Window::DimX, window.x().step());
- add_1D_tensor_argument(idx, _output_multipliers, slice);
- add_1D_tensor_argument(idx, _output_shifts, slice);
- }
+ unsigned int idx = 2 * num_arguments_per_4D_tensor() + num_arguments_per_3D_tensor();
if(_biases != nullptr)
{
@@ -401,62 +223,14 @@ void CLDepthwiseConvolutionLayer3x3NHWCKernel::run(const Window &window, cl::Com
add_1D_tensor_argument(idx, _biases, win_biases);
}
- if(_is_quantized)
- {
- // Calculate the max_offset.
- // max_offset is the offset for the last NOT valid value in the Z dimension (spatial dimension Y for NHWC)
- // |******************|
- // | pad_top |
- // |******************|
- // | |
- // | plane0 |
- // | batch0 |
- // |__________________|
- // |******************| Batch 0
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane1 |
- // | batch0 |
- // |__________________|-----> max_offset
- // |******************|
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane0 |
- // | batch1 |
- // |__________________|
- // |******************| Batch 1
- // | pad_bottom |
- // | pad_top |
- // |******************|
- // | |
- // | plane1 |
- // | batch1 |
- // |__________________|
- // | pad_bottom |
- // |******************|
- const int max_offset = ((_input->info()->dimension(1) * _input->info()->dimension(2)) + (_input->info()->padding().bottom + _input->info()->padding().top) * (_input->info()->dimension(
- 2) - 1)) * _input->info()->strides_in_bytes().y();
- _kernel.setArg(idx, max_offset);
- }
-
Window slice = win.first_slice_window_4D();
do
{
unsigned int idx = 0;
add_4D_tensor_argument(idx, _input, slice);
add_4D_tensor_argument(idx, _output, slice);
- if(_is_quantized)
- {
- add_2D_tensor_argument(idx, _weights, slice);
- }
- else
- {
- add_3D_tensor_argument(idx, _weights, slice);
- }
+ add_3D_tensor_argument(idx, _weights, slice);
+
enqueue(queue, *this, slice, lws_hint());
}
while(win.slide_window_slice_4D(slice));
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
index ce0bf5ceb..ee47d9880 100644
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
+++ b/src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2018-2020 Arm Limited.
+ * Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -24,7 +24,7 @@
#ifndef ARM_COMPUTE_CLDEPTHWISECONVOLUTIONNHWCKERNEL3x3_H
#define ARM_COMPUTE_CLDEPTHWISECONVOLUTIONNHWCKERNEL3x3_H
-#include "src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h"
+#include "src/core/CL/ICLKernel.h"
namespace arm_compute
{
@@ -32,81 +32,78 @@ class ICLTensor;
/** Interface for the kernel to run a 3x3 depthwise convolution on a tensor when the data layout is NHWC.
*/
-class CLDepthwiseConvolutionLayer3x3NHWCKernel : public ICLDepthwiseConvolutionLayer3x3Kernel
+class CLDepthwiseConvolutionLayer3x3NHWCKernel : public ICLKernel
{
public:
/** Default constructor */
CLDepthwiseConvolutionLayer3x3NHWCKernel();
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLDepthwiseConvolutionLayer3x3NHWCKernel(const CLDepthwiseConvolutionLayer3x3NHWCKernel &) = delete;
+ /** Prevent instances of this class from being copied (As this class contains pointers) */
+ CLDepthwiseConvolutionLayer3x3NHWCKernel &operator=(const CLDepthwiseConvolutionLayer3x3NHWCKernel &) = delete;
+ /** Default Move Constructor. */
+ CLDepthwiseConvolutionLayer3x3NHWCKernel(CLDepthwiseConvolutionLayer3x3NHWCKernel &&) = default;
+ /** Default move assignment operator */
+ CLDepthwiseConvolutionLayer3x3NHWCKernel &operator=(CLDepthwiseConvolutionLayer3x3NHWCKernel &&) = default;
/** Default move assignment operator. */
/** Initialize the function's source, destination, conv and border_size.
*
- * @param[in] input Source tensor. DataType supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] weights Weights tensor. A 3D tensor with dimensions [IFM, 3, 3].
- * Data type supported: Same as @p input or QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8/QASYMM8_SIGNED.
- * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED.
- * @param[out] output Destination tensor. Data type supported: Same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] output_multipliers (Optional) Output multipliers tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- * @param[in] output_shifts (Optional) Output shifts tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
+ * @param[in] input Source tensor. DataType supported: F16/F32.
+ * @param[in] weights Weights tensor. A 3D tensor with dimensions [IFM, 3, 3].
+ * Data type supported: Same as @p input.
+ * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
+ * Data type supported: Same as @p input.
+ * @param[out] output Destination tensor. Data type supported: Same as @p input.
+ * @param[in] conv_info Padding and stride information to use for the convolution.
+ * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
+ * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
+ * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
*/
void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) override;
+ unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
/** Initialize the function's source, destination, conv and border_size.
*
- * @param[in] compile_context The compile context to be used.
- * @param[in] input Source tensor. DataType supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] weights Weights tensor. A 3D tensor with dimensions [IFM, 3, 3].
- * Data type supported: Same as @p input or QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8/QASYMM8_SIGNED.
- * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED.
- * @param[out] output Destination tensor. Data type supported: Same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] output_multipliers (Optional) Output multipliers tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- * @param[in] output_shifts (Optional) Output shifts tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
+ * @param[in] compile_context The compile context to be used.
+ * @param[in] input Source tensor. DataType supported: F16/F32.
+ * @param[in] weights Weights tensor. A 3D tensor with dimensions [IFM, 3, 3].
+ * Data type supported: Same as @p input.
+ * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
+ * Data type supported: Same as @p input.
+ * @param[out] output Destination tensor. Data type supported: Same as @p input.
+ * @param[in] conv_info Padding and stride information to use for the convolution.
+ * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
+ * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
+ * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
*/
void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) override;
+ unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
/** Static function to check if given info will lead to a valid configuration of @ref CLDepthwiseConvolutionLayer3x3NHWCKernel
*
- * @param[in] input Source tensor info. DataType supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
- * @param[in] weights Weights tensor info. A 3D tensor with dimensions [IFM, 3, 3].
- * Data type supported: Same as @p input or QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8/QASYMM8_SIGNED.
- * @param[in] biases Biases tensor info. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8/QASYMM8_SIGNED.
- * @param[in] output Destination tensor info. Data type supported: Same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] output_multipliers (Optional) Output multipliers tensor info for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- * @param[in] output_shifts (Optional) Output shifts tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
+ * @param[in] input Source tensor info. DataType supported: F16/F32.
+ * @param[in] weights Weights tensor info. A 3D tensor with dimensions [IFM, 3, 3].
+ * Data type supported: Same as @p input.
+ * @param[in] biases Biases tensor info. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
+ * Data type supported: Same as @p input.
+ * @param[in] output Destination tensor info. Data type supported: Same as @p input.
+ * @param[in] conv_info Padding and stride information to use for the convolution.
+ * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
+ * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported.
+ * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
*
* @return a status
*/
static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ITensorInfo *output_multipliers = nullptr, const ITensorInfo *output_shifts = nullptr);
+ unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U));
// Inherited methods overridden:
void run(const Window &window, cl::CommandQueue &queue) override;
- BorderSize border_size() const override;
private:
+ const ICLTensor *_input;
+ ICLTensor *_output;
+ const ICLTensor *_weights;
+ const ICLTensor *_biases;
+
unsigned int _num_planes_processed_per_iteration;
};
} // namespace arm_compute
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.cpp b/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.cpp
deleted file mode 100644
index 386d634ce..000000000
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.cpp
+++ /dev/null
@@ -1,131 +0,0 @@
-/*
- * Copyright (c) 2019-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h"
-
-#include "arm_compute/core/CL/CLHelpers.h"
-#include "arm_compute/core/CL/CLKernelLibrary.h"
-#include "arm_compute/core/CL/ICLTensor.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/AccessWindowStatic.h"
-#include "src/core/CL/CLValidate.h"
-#include "src/core/CL/ICLKernel.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-#include "support/StringSupport.h"
-
-namespace arm_compute
-{
-namespace
-{
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const DepthwiseConvolutionReshapeInfo &info)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
- const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
- const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
-
- ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
- ARM_COMPUTE_RETURN_ERROR_ON(info.c0 != 4);
- ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(idx_h) != 3);
- ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(idx_w) != 3);
- ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
-
- if(output->total_size() != 0)
- {
- auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*input, info);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), reshaped_weights_shape);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
- }
-
- return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const DepthwiseConvolutionReshapeInfo &info)
-{
- auto reshaped_input_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*input, info);
- auto_init_if_empty(*output, reshaped_input_shape, 1, input->data_type(), input->quantization_info());
-
- Window win = calculate_max_window(*input, Steps(info.c0));
- AccessWindowHorizontal weights_access(input, 0, info.c0);
- const bool window_changed = update_window_and_padding(win, weights_access);
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-} // namespace
-
-CLDepthwiseConvolutionLayerReshapeWeightsKernel::CLDepthwiseConvolutionLayerReshapeWeightsKernel()
- : _input(nullptr), _output(nullptr)
-{
-}
-
-void CLDepthwiseConvolutionLayerReshapeWeightsKernel::configure(const ICLTensor *input, ICLTensor *output, const DepthwiseConvolutionReshapeInfo &info)
-{
- configure(CLKernelLibrary::get().get_compile_context(), input, output, info);
-}
-
-void CLDepthwiseConvolutionLayerReshapeWeightsKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const DepthwiseConvolutionReshapeInfo &info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), info));
- auto win_config = validate_and_configure_window(input->info(), output->info(), info);
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
-
- ICLKernel::configure_internal(win_config.second);
-
- _input = input;
- _output = output;
-
- // Build the kernel
- CLBuildOptions build_opts;
- build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(info.c0));
- build_opts.add_option("-DDST_WIDTH=" + support::cpp11::to_string(_output->info()->dimension(0)));
- build_opts.add_option_if(info.transpose, "-DTRANSPOSE");
- build_opts.add_option("-DDATA_TYPE=" + get_cl_unsigned_type_from_element_size(input->info()->element_size()));
-
- _kernel = create_kernel(compile_context, "depthwise_convolution_reshape_weights", build_opts.options());
-}
-
-Status CLDepthwiseConvolutionLayerReshapeWeightsKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const DepthwiseConvolutionReshapeInfo &info)
-{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, info));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(), info).first);
- return Status{};
-}
-
-void CLDepthwiseConvolutionLayerReshapeWeightsKernel::run(const Window &window, cl::CommandQueue &queue)
-{
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
-
- unsigned int idx = 0;
- add_3D_tensor_argument(idx, _input, window);
- add_2D_tensor_argument(idx, _output, window);
- enqueue(queue, *this, window, lws_hint());
-}
-} // namespace arm_compute
diff --git a/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h b/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h
deleted file mode 100644
index 650fe9a11..000000000
--- a/src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h
+++ /dev/null
@@ -1,85 +0,0 @@
-/*
- * Copyright (c) 2019-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_CLDEPTHWISECONVOLUTIONLAYERRESHAPEWEIGHTSKERNEL_H
-#define ARM_COMPUTE_CLDEPTHWISECONVOLUTIONLAYERRESHAPEWEIGHTSKERNEL_H
-
-#include "src/core/CL/ICLKernel.h"
-
-namespace arm_compute
-{
-class ICLTensor;
-
-/** Interface for the kernel to reshape the weights of depthwise convolution. */
-class CLDepthwiseConvolutionLayerReshapeWeightsKernel : public ICLKernel
-{
-public:
- /** Default constructor */
- CLDepthwiseConvolutionLayerReshapeWeightsKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLDepthwiseConvolutionLayerReshapeWeightsKernel(const CLDepthwiseConvolutionLayerReshapeWeightsKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- CLDepthwiseConvolutionLayerReshapeWeightsKernel &operator=(const CLDepthwiseConvolutionLayerReshapeWeightsKernel &) = delete;
- /** Default Move Constructor. */
- CLDepthwiseConvolutionLayerReshapeWeightsKernel(CLDepthwiseConvolutionLayerReshapeWeightsKernel &&) = default;
- /** Default move assignment operator */
- CLDepthwiseConvolutionLayerReshapeWeightsKernel &operator=(CLDepthwiseConvolutionLayerReshapeWeightsKernel &&) = default;
-
- /** Initialize the function's source and destination.
- *
- * @param[in] input The input tensor of dimension [IFM, W, H]. Data types supported: All. Data layouts supported: NHWC
- * @param[out] output The output tensor of dimension [W*H*C0, ceil(IFM/C0)]. C0 is the number of channels read by each thread. Data types supported: same as @p weights.
- * @param[in] info Depthwise convolution information to reshape the input tensor.
- */
- void configure(const ICLTensor *input, ICLTensor *output, const DepthwiseConvolutionReshapeInfo &info);
- /** Initialize the function's source and destination.
- *
- * @param[in] compile_context The compile context to be used.
- * @param[in] input The input tensor of dimension [IFM, W, H]. Data types supported: All. Data layouts supported: NHWC
- * @param[out] output The output tensor of dimension [W*H*C0, ceil(IFM/C0)]. C0 is the number of channels read by each thread. Data types supported: same as @p weights.
- * @param[in] info Depthwise convolution information to reshape the input tensor.
- */
- void configure(const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const DepthwiseConvolutionReshapeInfo &info);
-
- /** Static function to check if given info will lead to a valid configuration of @ref CLDepthwiseConvolutionLayer3x3NHWCKernel
- *
- * @param[in] input The input tensor info of dimension [IFM, W, H]. Data types supported: All. Data layouts supported: NHWC
- * @param[in] output The output tensor info of dimension [W*H*C0, ceil(IFM/C0)]. C0 is the number of channels read by each thread. Data types supported: same as @p weights.
- * @param[in] info Depthwise convolution information to reshape the input tensor.
- *
- * @return a Status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *output, const DepthwiseConvolutionReshapeInfo &info);
-
- // Inherited methods overridden:
- void run(const Window &window, cl::CommandQueue &queue) override;
-
-private:
- const ICLTensor *_input;
- ICLTensor *_output;
-
- void configure_dot_product(const DepthwiseConvolutionReshapeInfo &info);
- void configure_generic(const DepthwiseConvolutionReshapeInfo &info);
-};
-} // namespace arm_compute
-#endif /* ARM_COMPUTE_CLDEPTHWISECONVOLUTIONLAYERRESHAPEWEIGHTSKERNEL_H */
diff --git a/src/core/CL/kernels/CLL2NormalizeLayerKernel.cpp b/src/core/CL/kernels/CLL2NormalizeLayerKernel.cpp
index d9f293ba7..c688951d5 100644
--- a/src/core/CL/kernels/CLL2NormalizeLayerKernel.cpp
+++ b/src/core/CL/kernels/CLL2NormalizeLayerKernel.cpp
@@ -36,8 +36,6 @@
#include "support/StringSupport.h"
-#include "utils/TypePrinter.h"
-
namespace arm_compute
{
namespace
diff --git a/src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h b/src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h
deleted file mode 100644
index 4c92ae417..000000000
--- a/src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h
+++ /dev/null
@@ -1,105 +0,0 @@
-/*
- * Copyright (c) 2017-2020 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_ICLDEPTHWISECONVOLUTIONKERNEL3x3_H
-#define ARM_COMPUTE_ICLDEPTHWISECONVOLUTIONKERNEL3x3_H
-
-#include "src/core/CL/ICLKernel.h"
-
-namespace arm_compute
-{
-class ICLTensor;
-
-/** Interface for the kernel to run a 3x3 depthwise convolution on a tensor.
- */
-class ICLDepthwiseConvolutionLayer3x3Kernel : public ICLKernel
-{
-public:
- /** Default constructor */
- ICLDepthwiseConvolutionLayer3x3Kernel()
- : _border_size(0), _input(), _output(), _weights(), _biases(), _conv_stride_y(1), _output_multipliers(), _output_shifts(), _is_quantized(false)
- {
- }
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- ICLDepthwiseConvolutionLayer3x3Kernel(const ICLDepthwiseConvolutionLayer3x3Kernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- ICLDepthwiseConvolutionLayer3x3Kernel &operator=(const ICLDepthwiseConvolutionLayer3x3Kernel &) = delete;
- /** Default Move Constructor. */
- ICLDepthwiseConvolutionLayer3x3Kernel(ICLDepthwiseConvolutionLayer3x3Kernel &&) = default;
- /** Default move assignment operator */
- ICLDepthwiseConvolutionLayer3x3Kernel &operator=(ICLDepthwiseConvolutionLayer3x3Kernel &&) = default;
- /** Initialize the function's source, destination, conv and border_size.
- *
- * @param[in] input Source tensor. DataType supported: QASYMM8/F16/F32.
- * @param[in] weights Weights tensor. A 3D tensor with dimensions [3, 3, IFM].
- * Data type supported: Same as @p input, QASYMM8/QSYMM8_PER_CHANNEL when input is QASYMM8.
- * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8.
- * @param[out] output Destination tensor. Data type supported: Same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported for QASYMM8.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] output_multipliers (Optional) Output multipliers tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- * @param[in] output_shifts (Optional) Output shifts tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- */
- virtual void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) = 0;
- /** Initialize the function's source, destination, conv and border_size.
- *
- * @param[in] compile_context The compile context to be used.
- * @param[in] input Source tensor. DataType supported: QASYMM8/F16/F32.
- * @param[in] weights Weights tensor. A 3D tensor with dimensions [3, 3, IFM].
- * Data type supported: Same as @p input, QASYMM8/QSYMM8_PER_CHANNEL when input is QASYMM8.
- * @param[in] biases Biases tensor. A 1D tensor with dimensions [IFM]. Must be nullptr if not needed.
- * Data type supported: Same as @p input, S32 when input is QASYMM8.
- * @param[out] output Destination tensor. Data type supported: Same as @p input.
- * @param[in] conv_info Padding and stride information to use for the convolution.
- * @param[in] depth_multiplier (Optional) Multiplier to apply to the input's depth in order to retrieve the output's depth. Defaults to 1.
- * @param[in] act_info (Optional) Activation layer information in case of a fused activation. Only RELU, BOUNDED_RELU and LU_BOUNDED_RELU are supported for QASYMM8.
- * @param[in] dilation (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
- * @param[in] output_multipliers (Optional) Output multipliers tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- * @param[in] output_shifts (Optional) Output shifts tensor for quantized computations. In case of per-channel quantization,
- * the number of multipliers must be equal to the number of filters (IFM). Supported data types: S32
- */
- virtual void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier = 1, ActivationLayerInfo act_info = ActivationLayerInfo(), const Size2D &dilation = Size2D(1U, 1U),
- const ICLTensor *output_multipliers = nullptr, const ICLTensor *output_shifts = nullptr) = 0;
-
-protected:
- BorderSize _border_size;
- const ICLTensor *_input;
- ICLTensor *_output;
- const ICLTensor *_weights;
- const ICLTensor *_biases;
- unsigned int _conv_stride_y;
- const ICLTensor *_output_multipliers;
- const ICLTensor *_output_shifts;
- bool _is_quantized;
-};
-} // namespace arm_compute
-#endif /*ARM_COMPUTE_ICLDEPTHWISECONVOLUTIONKERNEL3x3_H */
diff --git a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
index 8e3d01078..6467caffe 100644
--- a/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLDepthwiseConvolutionLayer.cpp
@@ -30,13 +30,9 @@
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
-#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
-#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "src/core/CL/kernels/CLDepthwiseConvolutionLayerNativeKernel.h"
-#include "src/core/CL/kernels/CLDepthwiseConvolutionLayerReshapeWeightsKernel.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
-#include "src/core/CL/kernels/ICLDepthwiseConvolutionLayer3x3Kernel.h"
namespace arm_compute
{
@@ -46,23 +42,18 @@ using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments_3x3(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
- unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
+ unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
// This function should be removed and incorporated inside CLDepthwiseConvolutionLayerInternal3x3 once CLDepthwiseConvolutionLayer3x3 is properly removed
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
- const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
- const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
- const bool needs_permute = is_nhwc && (depth_multiplier > 1);
- const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1) && is_quantized;
- const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
- const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
- const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
- DepthwiseConvolutionReshapeInfo info;
- info.c0 = 4;
- info.transpose = is_stride_1_dilation_1 && is_dot8_supported;
+ const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
+ const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
+ const bool needs_permute = is_nhwc && (depth_multiplier > 1);
+
+ ARM_COMPUTE_RETURN_ERROR_ON(is_quantized && is_nhwc && !needs_permute);
TensorInfo output_multipliers_shifts_info(TensorInfo(TensorShape(1U), 1, DataType::S32));
if(is_quantized)
@@ -96,27 +87,17 @@ Status validate_arguments_3x3(const ITensorInfo *input, const ITensorInfo *weigh
const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output,
- conv_info, depth_multiplier, act_info, gpu_target,
+ conv_info, depth_multiplier, act_info,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
else if(is_nhwc)
{
- if(needs_weights_reshape)
- {
- auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info);
- ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases,
- output, conv_info, depth_multiplier, act_info,
- dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
- }
- else
- {
- ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info,
- dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
- }
+ ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info,
+ dilation));
}
else
{
- ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target,
+ ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
return Status{};
@@ -351,12 +332,12 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::prepare()
CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::CLDepthwiseConvolutionLayerInternal3x3(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
- _kernel(nullptr),
+ _kernel_nchw(nullptr),
+ _kernel_nhwc(nullptr),
_border_handler(std::make_unique<CLFillBorderKernel>()),
_permute_input_to_nchw(),
_permute_weights_to_nchw(),
_permute_output_to_nhwc(),
- _reshape_weights(std::make_unique<CLDepthwiseConvolutionLayerReshapeWeightsKernel>()),
_permuted_input(),
_permuted_weights(),
_permuted_output(),
@@ -366,7 +347,6 @@ CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::CLDepthwise
_input(nullptr),
_output(nullptr),
_needs_permute(false),
- _needs_weights_reshape(false),
_is_prepared(false),
_is_quantized(false),
_is_nhwc(false)
@@ -383,8 +363,6 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
ICLTensor *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- const GPUTarget gpu_target = CLScheduler::get().target();
-
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLDepthwiseConvolutionLayerInternal3x3::validate(input->info(),
@@ -394,13 +372,11 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
conv_info,
depth_multiplier,
act_info,
- gpu_target,
dilation));
- _is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
- _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
- _needs_permute = _is_nhwc && (depth_multiplier > 1);
- _needs_weights_reshape = _is_nhwc && (depth_multiplier == 1) && _is_quantized;
+ _is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
+ _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
+ _needs_permute = _is_nhwc && (depth_multiplier > 1);
_is_prepared = false;
_original_weights = weights;
@@ -412,13 +388,6 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
ICLTensor *output_to_use = output;
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
- const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
- const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
- const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
-
- DepthwiseConvolutionReshapeInfo info;
- info.c0 = 4;
- info.transpose = is_stride_1_dilation_1 && is_dot8_supported;
if(_needs_permute)
{
@@ -438,20 +407,15 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
weights_to_use = &_permuted_weights;
output_to_use = &_permuted_output;
- _kernel = std::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
+ _kernel_nchw = std::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
else if(_is_nhwc)
{
- if(_needs_weights_reshape)
- {
- _reshape_weights->configure(compile_context, weights, &_permuted_weights, info);
- weights_to_use = &_permuted_weights;
- }
- _kernel = std::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
+ _kernel_nhwc = std::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
}
else
{
- _kernel = std::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
+ _kernel_nchw = std::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
CLTensor *output_multipliers_to_use = nullptr;
@@ -469,9 +433,16 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
}
// Configure kernel
- _kernel->set_target(gpu_target);
- _kernel->configure(compile_context, input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier,
- act_info, dilation, output_multipliers_to_use, output_shifts_to_use);
+ if(_is_nhwc && !_needs_permute)
+ {
+ _kernel_nhwc->configure(compile_context, input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier,
+ act_info, dilation);
+ }
+ else
+ {
+ _kernel_nchw->configure(compile_context, input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier,
+ act_info, dilation, output_multipliers_to_use, output_shifts_to_use);
+ }
if(_is_quantized)
{
@@ -496,13 +467,16 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::config
{
zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().uniform().offset));
}
- _border_handler->configure(compile_context, input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value);
+ if(!_is_nhwc || _needs_permute)
+ {
+ _border_handler->configure(compile_context, input_to_use, _kernel_nchw->border_size(), BorderMode::CONSTANT, zero_value);
+ }
}
Status CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
- const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
+ const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- return validate_arguments_3x3(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation);
+ return validate_arguments_3x3(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::run()
@@ -516,7 +490,14 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::run()
_permute_input_to_nchw.run();
}
CLScheduler::get().enqueue(*_border_handler);
- CLScheduler::get().enqueue(*_kernel);
+ if(_is_nhwc && !_needs_permute)
+ {
+ CLScheduler::get().enqueue(*_kernel_nhwc);
+ }
+ else
+ {
+ CLScheduler::get().enqueue(*_kernel_nchw);
+ }
if(_needs_permute)
{
@@ -552,14 +533,6 @@ void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::prepar
_original_weights->mark_as_unused();
}
- if(_needs_weights_reshape)
- {
- ARM_COMPUTE_ERROR_ON(_needs_permute);
- ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
- _permuted_weights.allocator()->allocate();
- CLScheduler::get().enqueue(*_reshape_weights);
- _original_weights->mark_as_unused();
- }
_is_prepared = true;
}
}
@@ -580,9 +553,8 @@ void CLDepthwiseConvolutionLayer::configure(const CLCompileContext &compile_cont
unsigned int depth_multiplier,
ActivationLayerInfo act_info, const Size2D &dilation)
{
- const GPUTarget gpu_target = CLScheduler::get().target();
- _depth_conv_func = get_depthwiseconvolution_function(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info,
- dilation, gpu_target);
+ _depth_conv_func = get_depthwiseconvolution_function(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info,
+ dilation);
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
@@ -603,12 +575,11 @@ void CLDepthwiseConvolutionLayer::configure(const CLCompileContext &compile_cont
Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- const GPUTarget gpu_target = CLScheduler::get().target();
- DepthwiseConvolutionFunction depth_conv_func = get_depthwiseconvolution_function(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, gpu_target);
+ DepthwiseConvolutionFunction depth_conv_func = get_depthwiseconvolution_function(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
switch(depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
- return CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation);
+ return CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
case DepthwiseConvolutionFunction::GENERIC:
return CLDepthwiseConvolutionLayerGeneric::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
default:
@@ -618,10 +589,9 @@ Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITe
DepthwiseConvolutionFunction CLDepthwiseConvolutionLayer::get_depthwiseconvolution_function(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info,
- unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation, GPUTarget gpu_target)
+ unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
- if(bool(CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation)) && (is_data_type_float(input->data_type())
- || get_arch_from_target(gpu_target) == GPUTarget::MIDGARD))
+ if(bool(CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation)))
{
return DepthwiseConvolutionFunction::OPTIMIZED;
}