aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool3d/neon/impl.h
diff options
context:
space:
mode:
authorPablo Marquez Tello <pablo.tello@arm.com>2023-08-30 15:20:15 +0100
committerPablo Marquez Tello <pablo.tello@arm.com>2023-09-01 10:00:32 +0000
commit324ba7a98aaa4375629ee023cce70ea9601efe10 (patch)
tree1dd3bd510c61c380f3d284e84dea9a4e8e2512d4 /src/cpu/kernels/pool3d/neon/impl.h
parent2e6d659267d10d6f46f89aac91b52f6b7c211316 (diff)
downloadComputeLibrary-324ba7a98aaa4375629ee023cce70ea9601efe10.tar.gz
Pool3d changes to enable fp16 in armv8a multi_isa builds
* Code guarded with __ARM_FEATURE_FP16_VECTOR_ARITHMETIC needs to be moved to an fp16.cpp file to allow compilation with -march=armv8.2-a+fp16 * fp16.cpp needs to use various templates that had to be moved from impl.cpp to impl.h * Removed src/cpu/kernels/pool3d/neon/impl.cpp * Partially resolves MLCE-1102 Change-Id: I71e6a54a27fd8f04ae2a67231709aad723b09fa3 Signed-off-by: Pablo Marquez Tello <pablo.tello@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/10220 Benchmark: Arm Jenkins <bsgcomp@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Viet-Hoa Do <viet-hoa.do@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/cpu/kernels/pool3d/neon/impl.h')
-rw-r--r--src/cpu/kernels/pool3d/neon/impl.h427
1 files changed, 420 insertions, 7 deletions
diff --git a/src/cpu/kernels/pool3d/neon/impl.h b/src/cpu/kernels/pool3d/neon/impl.h
index 7ad8c8eb05..013e25537c 100644
--- a/src/cpu/kernels/pool3d/neon/impl.h
+++ b/src/cpu/kernels/pool3d/neon/impl.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2022 Arm Limited.
+ * Copyright (c) 2022-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -25,20 +25,433 @@
#define SRC_CORE_POOLING_3D_LAYER_IMPL_H
#include "arm_compute/core/Helpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+#include "src/core/helpers/PoolingHelpers.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/cpu/kernels/pool3d/neon/quantized.h"
namespace arm_compute
{
-// Forward declarations
-class ITensor;
-class Window;
-struct Pooling3dLayerInfo;
namespace cpu
{
+namespace
+{
template <typename T>
-void poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window);
+void max_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window_out,
+ const int window_start_x, const int window_end_x, const int window_step_x)
+
+{
+ using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
+ using vector_type = typename vtype::type;
+ using tag_type = typename vtype::tag_type;
+
+ int pool_stride_x = static_cast<int>(pool_info.stride.width);
+ int pool_stride_y = static_cast<int>(pool_info.stride.height);
+ int pool_stride_z = static_cast<int>(pool_info.stride.depth);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
+
+ const int pool_pad_top = static_cast<int>(pool_info.padding.top);
+ const int pool_pad_left = static_cast<int>(pool_info.padding.left);
+ const int pool_pad_front = static_cast<int>(pool_info.padding.front);
+
+ const int input_dim_w = src->info()->dimension(1);
+ const int input_dim_h = src->info()->dimension(2);
+ const int input_dim_d = src->info()->dimension(3);
+
+ const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
+ const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
+ const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
+
+ const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
+
+ Iterator out(dst0, window_out);
+
+ vector_type vres;
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ // Computing the theoretical input starting/ending points
+ const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
+ const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
+ const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
+
+ const int pool_start_x = std::max(0, -in_idx_width);
+ const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
+ const int pool_start_y = std::max(0, -in_idx_height);
+ const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
+
+ const int pool_start_z = std::max(0, -in_idx_depth);
+ const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
+
+ // The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
+ const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
+ const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
+ const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
+
+ const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
+
+ int x_off = window_start_x;
+
+ for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
+ {
+ vres = wrapper::vdup_n(static_cast<T>(-std::numeric_limits<float>::infinity()), tag_type());
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ vres = wrapper::vmax(vres, data);
+ }
+ }
+ }
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
+ }
+
+ // Left-overs loop
+ for(; x_off < window_end_x; ++x_off)
+ {
+ T res(0);
+ res = -std::numeric_limits<float>::infinity();
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ res = std::max(res, data);
+ }
+ }
+ }
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ },
+ out);
+}
template <typename T>
-void poolingMxNxD_q8_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window);
+void avg_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info,
+ const Window &window_out, const int window_start_x, const int window_end_x, const int window_step_x)
+{
+ using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
+ using vector_type = typename vtype::type;
+ using tag_type = typename vtype::tag_type;
+
+ int pool_stride_x = static_cast<int>(pool_info.stride.width);
+ int pool_stride_y = static_cast<int>(pool_info.stride.height);
+ int pool_stride_z = static_cast<int>(pool_info.stride.depth);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
+
+ const int pool_pad_top = static_cast<int>(pool_info.padding.top);
+ const int pool_pad_bottom = static_cast<int>(pool_info.padding.bottom);
+ const int pool_pad_left = static_cast<int>(pool_info.padding.left);
+ const int pool_pad_right = static_cast<int>(pool_info.padding.right);
+ const int pool_pad_front = static_cast<int>(pool_info.padding.front);
+ const int pool_pad_back = static_cast<int>(pool_info.padding.back);
+
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const int upper_bound_d = src->info()->dimension(3) + (pool_info.exclude_padding ? 0 : pool_pad_back);
+
+ const int input_dim_w = src->info()->dimension(1);
+ const int input_dim_h = src->info()->dimension(2);
+ const int input_dim_d = src->info()->dimension(3);
+
+ const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
+ const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
+ const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
+
+ const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
+
+ Iterator out(dst0, window_out);
+
+ vector_type vres;
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ // Computing the theoretical input starting/ending points
+ const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
+ const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
+ const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
+
+ const int pool_start_x = std::max(0, -in_idx_width);
+ const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
+ const int pool_start_y = std::max(0, -in_idx_height);
+ const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
+
+ const int pool_start_z = std::max(0, -in_idx_depth);
+ const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
+
+ // The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
+ const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
+ const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
+ const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
+
+ const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool3d(pool_info.exclude_padding, id, pool_size_x, pool_size_y, pool_size_z, upper_bound_w, upper_bound_h, upper_bound_d, pool_pad_left,
+ pool_pad_top, pool_pad_front, pool_stride_x,
+ pool_stride_y, pool_stride_z);
+ const vector_type scale_v = wrapper::vdup_n(static_cast<T>(scale), tag_type());
+
+ int x_off = window_start_x;
+
+ for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
+ {
+ // Perform pooling
+ vres = wrapper::vdup_n(static_cast<T>(0.0f), tag_type());
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ vres = wrapper::vadd(vres, data);
+ }
+ }
+ }
+
+ // Divide by scale
+ vres = wrapper::vmul(vres, scale_v);
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
+ }
+
+ // Left-overs loop
+ for(; x_off < window_end_x; ++x_off)
+ {
+ T res(0);
+
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ res += data;
+ }
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ },
+ out);
+}
+
+template <typename T>
+void l2_poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info,
+ const Window &window_out, const int window_start_x, const int window_end_x, const int window_step_x)
+{
+ using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
+ using vector_type = typename vtype::type;
+ using tag_type = typename vtype::tag_type;
+
+ int pool_stride_x = static_cast<int>(pool_info.stride.width);
+ int pool_stride_y = static_cast<int>(pool_info.stride.height);
+ int pool_stride_z = static_cast<int>(pool_info.stride.depth);
+
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
+ const int pool_size_z = pool_info.is_global_pooling ? src->info()->tensor_shape()[3] : pool_info.pool_size.depth;
+
+ const int pool_pad_top = static_cast<int>(pool_info.padding.top);
+ const int pool_pad_bottom = static_cast<int>(pool_info.padding.bottom);
+ const int pool_pad_left = static_cast<int>(pool_info.padding.left);
+ const int pool_pad_right = static_cast<int>(pool_info.padding.right);
+ const int pool_pad_front = static_cast<int>(pool_info.padding.front);
+ const int pool_pad_back = static_cast<int>(pool_info.padding.back);
+
+ const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const int upper_bound_d = src->info()->dimension(3) + (pool_info.exclude_padding ? 0 : pool_pad_back);
+
+ const int input_dim_w = src->info()->dimension(1);
+ const int input_dim_h = src->info()->dimension(2);
+ const int input_dim_d = src->info()->dimension(3);
+
+ const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
+ const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
+ const int w_stride = static_cast<int>(src->info()->strides_in_bytes()[3]);
+ const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[4]);
+
+ const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
+
+ Iterator out(dst0, window_out);
+
+ vector_type vres;
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ // Computing the theoretical input starting/ending points
+ const int in_idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
+ const int in_idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
+ const int in_idx_depth = static_cast<int>(id[3]) * pool_stride_z - pool_pad_front;
+
+ const int pool_start_x = std::max(0, -in_idx_width);
+ const int pool_end_x_t = std::min(input_dim_w + pool_pad_left - in_idx_width, pool_size_x);
+ const int pool_start_y = std::max(0, -in_idx_height);
+ const int pool_end_y_t = std::min(input_dim_h + pool_pad_top - in_idx_height, pool_size_y);
+
+ const int pool_start_z = std::max(0, -in_idx_depth);
+ const int pool_end_z_t = std::min(input_dim_d + pool_pad_front - in_idx_depth, pool_size_z);
+
+ // The end of width to consider in calculation should exclude PAD_X, PAD_Y and PAD_Z
+ const int pool_end_x = std::min(pool_end_x_t, input_dim_w - in_idx_width);
+ const int pool_end_y = std::min(pool_end_y_t, input_dim_h - in_idx_height);
+ const int pool_end_z = std::min(pool_end_z_t, input_dim_d - in_idx_depth);
+
+ const uint8_t *in_ptr_n = in_ptr_start + id[4] * n_stride;
+
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool3d(pool_info.exclude_padding, id, pool_size_x, pool_size_y, pool_size_z, upper_bound_w, upper_bound_h, upper_bound_d, pool_pad_left,
+ pool_pad_top, pool_pad_front, pool_stride_x,
+ pool_stride_y, pool_stride_z);
+
+ int x_off = window_start_x;
+
+ for(; x_off <= (window_end_x - window_step_x); x_off += window_step_x) // C
+ {
+ // Perform pooling
+ vres = wrapper::vdup_n(static_cast<T>(0.0f), tag_type());
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const vector_type data = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ vres = wrapper::vmla(vres, data, data);
+ }
+ }
+ }
+
+ const vector_type scale_v = wrapper::vdup_n(static_cast<T>(scale), tag_type());
+
+ // Divide by scale
+ vres = wrapper::vmul(vres, scale_v);
+
+ // Calculate square-root
+ vres = wrapper::vinv(wrapper::vinvsqrt(vres));
+
+ // Store result
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr()) + x_off, vres);
+ }
+
+ // Left-overs loop
+ for(; x_off < window_end_x; ++x_off)
+ {
+ T res(0);
+
+ for(int z = pool_start_z; z < pool_end_z; ++z)
+ {
+ const uint8_t *in_ptr_z = in_ptr_n + (z + in_idx_depth) * w_stride;
+ for(int y = pool_start_y; y < pool_end_y; ++y)
+ {
+ const uint8_t *in_ptr_y = in_ptr_z + (y + in_idx_height) * z_stride;
+ for(int x = pool_start_x; x < pool_end_x; ++x)
+ {
+ const uint8_t *in_ptr_x = in_ptr_y + (x + in_idx_width) * y_stride;
+ const T data = *(reinterpret_cast<const T *>(in_ptr_x) + x_off);
+ res += data * data;
+ }
+ }
+ }
+
+ // Divide by scale
+ res *= scale;
+
+ // Square root
+ res = std::sqrt(res);
+
+ // Store result
+ *(reinterpret_cast<T *>(out.ptr()) + x_off) = res;
+ }
+ },
+ out);
+}
+} // namespace
+
+template <typename T>
+void poolingMxNxD_fp_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window)
+{
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ constexpr int window_step_x = 16 / sizeof(T);
+ Window window_out = window;
+
+ // Needed to handle loop left-over
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ switch(pool_info.pool_type)
+ {
+ case PoolingType::MAX:
+ max_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
+ break;
+ case PoolingType::AVG:
+ avg_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
+ break;
+ case PoolingType::L2:
+ l2_poolingMxNxD_fp_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_start_x, window_end_x, window_step_x);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Pool operation not supported");
+ }
+}
+
+template <typename T>
+void poolingMxNxD_q8_neon_ndhwc(const ITensor *src, ITensor *dst0, Pooling3dLayerInfo &pool_info, const Window &window)
+{
+ constexpr int window_step_x = 16;
+ Window window_out = window;
+
+ // Needed to handle loop left-over
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ switch(pool_info.pool_type)
+ {
+ case PoolingType::MAX:
+ max_poolingMxNxD_q8_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_step_x);
+ break;
+ case PoolingType::AVG:
+ avg_poolingMxNxD_q8_neon_ndhwc<T>(src, dst0, pool_info, window_out, window_step_x);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Pool operation not supported");
+ }
+}
} // namespace cpu
} // namespace arm_compute
#endif //define SRC_CORE_POOLING_3D_LAYER_IMPL_H