aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON
diff options
context:
space:
mode:
authorViet-Hoa Do <viet-hoa.do@arm.com>2022-12-20 12:07:23 +0000
committerViet-Hoa Do <viet-hoa.do@arm.com>2022-12-21 10:13:51 +0000
commit24c87f098c2ebb8f629a7069d1851f2546c28e42 (patch)
treededa5a79dd27d7d1190c88f4e8e5284d7d8a4ee7 /src/core/NEON
parent9d7b690fd886bcc514a6aa8d17d53e25e3500a33 (diff)
downloadComputeLibrary-24c87f098c2ebb8f629a7069d1851f2546c28e42.tar.gz
Optimize SVE natural exponential function
Resolves: COMPMID-5664 Signed-off-by: Viet-Hoa Do <viet-hoa.do@arm.com> Change-Id: Ica2fd82645d95bd64226a1950a013d8a9b9035eb Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/8833 Benchmark: Arm Jenkins <bsgcomp@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Gunes Bayir <gunes.bayir@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Diffstat (limited to 'src/core/NEON')
-rw-r--r--src/core/NEON/SVEMath.inl98
1 files changed, 63 insertions, 35 deletions
diff --git a/src/core/NEON/SVEMath.inl b/src/core/NEON/SVEMath.inl
index 5ebef5ad6a..5f41e2138d 100644
--- a/src/core/NEON/SVEMath.inl
+++ b/src/core/NEON/SVEMath.inl
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2020-2021 Arm Limited.
+ * Copyright (c) 2020-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -74,42 +74,70 @@ inline svfloat32_t svinv_f32_z(svbool_t pg, svfloat32_t x)
return recip;
}
+static const uint32_t svexp_f32_coeff[] = {
+ 0x3f7ffff6, // x^1: 0x1.ffffecp-1f
+ 0x3efffedb, // x^2: 0x1.fffdb6p-2f
+ 0x3e2aaf33, // x^3: 0x1.555e66p-3f
+ 0x3d2b9f17, // x^4: 0x1.573e2ep-5f
+ 0x3c072010, // x^5: 0x1.0e4020p-7f
+};
+
inline svfloat32_t svexp_f32_z(svbool_t pg, svfloat32_t x)
{
- const auto CONST_LN2 = svdup_n_f32(0.6931471805f); // ln(2)
- const auto CONST_INV_LN2 = svdup_n_f32(1.4426950408f); // 1/ln(2)
- const auto CONST_INF = svdup_n_f32(std::numeric_limits<float>::infinity());
- const auto CONST_MAX_INPUT = svdup_n_f32(88.7f);
- const auto CONST_0 = svdup_n_f32(0.f);
- const auto CONST_NEGATIVE_126 = svdup_n_s32(-126);
-
- /** Exponent polynomial coefficients */
- const svfloat32_t exp_tab_1 = svdup_n_f32(1.f);
- const svfloat32_t exp_tab_2 = svdup_n_f32(0.0416598916054f);
- const svfloat32_t exp_tab_3 = svdup_n_f32(0.500000596046f);
- const svfloat32_t exp_tab_4 = svdup_n_f32(0.0014122662833f);
- const svfloat32_t exp_tab_5 = svdup_n_f32(1.00000011921f);
- const svfloat32_t exp_tab_6 = svdup_n_f32(0.00833693705499f);
- const svfloat32_t exp_tab_7 = svdup_n_f32(0.166665703058f);
- const svfloat32_t exp_tab_8 = svdup_n_f32(0.000195780929062f);
-
- // Perform range reduction [-log(2),log(2)]
- auto m = svcvt_s32_f32_z(pg, svmul_f32_z(pg, x, CONST_INV_LN2));
- auto val = svmls_f32_z(pg, x, svcvt_f32_s32_z(pg, m), CONST_LN2);
-
- // Polynomial Approximation
- auto poly = svtaylor_poly_f32_z(pg, val, exp_tab_1, exp_tab_2, exp_tab_3, exp_tab_4, exp_tab_5, exp_tab_6, exp_tab_7, exp_tab_8);
-
- // Reconstruct
- poly = svreinterpret_f32_s32(svqadd_s32(svreinterpret_s32_f32(poly), svlsl_n_s32_z(pg, m, 23)));
-
- // Handle underflow
- svbool_t ltpg = svcmplt_s32(pg, m, CONST_NEGATIVE_126);
- poly = svsel_f32(ltpg, CONST_0, poly);
-
- // Handle overflow
- svbool_t gtpg = svcmpgt_f32(pg, x, CONST_MAX_INPUT);
- poly = svsel_f32(gtpg, CONST_INF, poly);
+ const auto c1 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[0]));
+ const auto c2 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[1]));
+ const auto c3 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[2]));
+ const auto c4 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[3]));
+ const auto c5 = svreinterpret_f32_u32(svdup_n_u32(svexp_f32_coeff[4]));
+
+ const auto shift = svreinterpret_f32_u32(svdup_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
+ const auto inv_ln2 = svreinterpret_f32_u32(svdup_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
+ const auto neg_ln2_hi = svreinterpret_f32_u32(svdup_n_u32(0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
+ const auto neg_ln2_lo = svreinterpret_f32_u32(svdup_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
+
+ const auto inf = svdup_n_f32(std::numeric_limits<float>::infinity());
+ const auto max_input = svdup_n_f32(88.7f); // Approximately ln(0x1.fffffep+127)
+ const auto zero = svdup_n_f32(0.f);
+ const auto min_input = svdup_n_f32(-86.6f); // Approximately ln(2^-125)
+
+ // Range reduction:
+ // e^x = 2^n * e^r
+ // where:
+ // n = floor(x / ln(2))
+ // r = x - n * ln(2)
+ //
+ // By adding x / ln(2) with 2^23 + 127 (shift):
+ // * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
+ // of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
+ // the whole fraction part of z in FP32 format.
+ // Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
+ // (i.e. n) because the decimal part has been pushed out and lost.
+ // * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
+ // in FP32 format. Left shifting z by 23 bits will result in 2^n.
+ const auto z = svmla_f32_z(pg, shift, x, inv_ln2);
+ const auto n = svsub_f32_z(pg, z, shift);
+ const auto scale = svreinterpret_f32_u32(svlsl_n_u32_z(pg, svreinterpret_u32_f32(z), 23)); // 2^n
+
+ // The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
+ // This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
+ const auto r_hi = svmla_f32_z(pg, x, n, neg_ln2_hi);
+ const auto r = svmla_f32_z(pg, r_hi, n, neg_ln2_lo);
+
+ // Compute the truncated Taylor series of e^r.
+ // poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
+ const auto r2 = svmul_f32_z(pg, r, r);
+
+ const auto p1 = svmul_f32_z(pg, c1, r);
+ const auto p23 = svmla_f32_z(pg, c2, c3, r);
+ const auto p45 = svmla_f32_z(pg, c4, c5, r);
+ const auto p2345 = svmla_f32_z(pg, p23, p45, r2);
+ const auto p12345 = svmla_f32_z(pg, p1, p2345, r2);
+
+ auto poly = svmla_f32_z(pg, scale, p12345, scale);
+
+ // Handle underflow and overflow.
+ poly = svsel_f32(svcmplt_f32(pg, x, min_input), zero, poly);
+ poly = svsel_f32(svcmpgt_f32(pg, x, max_input), inf, poly);
return poly;
}