aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/convolution
diff options
context:
space:
mode:
authorAndrew Mundy <andrew.mundy@arm.com>2018-03-15 16:47:03 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:49:16 +0000
commit4d9379a9d3ada794f532ce8acdc8607f4faa2b21 (patch)
tree14ba02ebcdaf6cb927e9422e45cbab6456c9a097 /src/core/NEON/kernels/convolution
parent3f217ec4ff11e20fe686beb9a28d0bbd80a56cd6 (diff)
downloadComputeLibrary-4d9379a9d3ada794f532ce8acdc8607f4faa2b21.tar.gz
COMPMID-1040: Added support for nullptr bias tensor in NEWinogradLayer
Change-Id: Ie624ee17c63dede711d913a82819e128954a57c9 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/124861 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src/core/NEON/kernels/convolution')
-rw-r--r--src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_3x3_fp32.cpp344
-rw-r--r--src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_5x5_fp32.cpp339
-rw-r--r--src/core/NEON/kernels/convolution/winograd/transforms/output_4x4_3x3_fp32.cpp406
3 files changed, 769 insertions, 320 deletions
diff --git a/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_3x3_fp32.cpp b/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_3x3_fp32.cpp
index a95ce0e7d2..3b3cda0aa9 100644
--- a/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_3x3_fp32.cpp
+++ b/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_3x3_fp32.cpp
@@ -86,148 +86,288 @@ void Transform::process_tile(
const float *inptr = matrix_base;
const float *bptr = biases;
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
+ if (bptr)
{
- // Matrices used and computed during this transform
- float32x4_t F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 4; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[4][4], FZ[4][2], f[2][2], b;
+
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
{
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 4;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
- // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
- }
+ // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
- // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
- f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
- }
+ // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
+ }
- // Load the bias vector
- b = vld1q_f32(bptr);
- bptr += 4;
+ // Load the bias vector
+ b = vld1q_f32(bptr);
+ bptr += 4;
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
{
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
+ outptrs[i][j] += 4;
+ }
}
}
- }
#endif // __aarch64__
#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
+ for (; channels_remaining >= 2; channels_remaining -= 2)
{
- for (int j = 0; j < 4; j++, m++)
+ // Matrices used and computed during this transform
+ float32x2_t F[4][4], FZ[4][2], f[2][2], b;
+
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
{
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 2;
+ inptr += 2;
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
- // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
- }
+ // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
- // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
- f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
- }
+ // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
+ }
- // Load the bias vector
- b = vld1_f32(bptr);
- bptr += 2;
+ // Load the bias vector
+ b = vld1_f32(bptr);
+ bptr += 2;
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif // __arm_any__
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[4][4], FZ[4][2], f[2][2], b;
+
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
{
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ }
+
+ // Load the bias
+ b = *(bptr++);
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j] + b;
+ }
}
}
}
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
+ else
{
- // Matrices used and computed during this transform
- float F[4][4], FZ[4][2], f[2][2], b;
-
- // Read a 4x4 tile in the Winograd domain
- for (int i = 0, m = 0; i < 4; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 4; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[4][4], FZ[4][2], f[2][2];
+
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
{
- F[i][j] = *(inptr + m*matrix_stride);
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr++;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 4; i++)
- {
- FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
- FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
- }
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
- f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
+
+ // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 4;
+ }
+ }
}
+#endif // __aarch64__
+#ifdef __arm_any__
+ for (; channels_remaining >= 2; channels_remaining -= 2)
+ {
+ // Matrices used and computed during this transform
+ float32x2_t F[4][4], FZ[4][2], f[2][2];
- // Load the bias
- b = *(bptr++);
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
+ {
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
+ }
+ inptr += 2;
- // Write out the output tile
- for (int i = 0; i < cells_i; i++)
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ // FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
+
+ // FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
+
+ // f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif // __arm_any__
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[4][4], FZ[4][2], f[2][2];
+
+ // Read a 4x4 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 4; i++)
+ {
+ for (int j = 0; j < 4; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 4; i++)
+ {
+ FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
+ FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
+ f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
{
- *(outptrs[i][j]++) = f[i][j] + b;
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j];
+ }
}
}
}
diff --git a/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_5x5_fp32.cpp b/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_5x5_fp32.cpp
index 262f71118c..cafce9549d 100644
--- a/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_5x5_fp32.cpp
+++ b/src/core/NEON/kernels/convolution/winograd/transforms/output_2x2_5x5_fp32.cpp
@@ -35,6 +35,7 @@ template <>
template <>
int Transform::ops_performed(const Tensor4DShape &shape)
{
+ (void) shape;
return 0; // TODO
}
@@ -83,142 +84,282 @@ void Transform::process_tile(
const float *inptr = matrix_base;
const float *bptr = biases;
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
+ if (bptr)
{
- // Matrices used and computed during this transform
- float32x4_t F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[6][6], FZ[6][2], f[2][2], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 4;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
- }
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
- f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
- }
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
+ }
- // Write out the output tile
- b = vld1q_f32(bptr);
- bptr += 4;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
+ // Write out the output tile
+ b = vld1q_f32(bptr);
+ bptr += 4;
+ for (int i = 0; i < cells_i; i++)
{
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
+ outptrs[i][j] += 4;
+ }
}
}
- }
#endif // __aarch64__
#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ for (; channels_remaining >= 2; channels_remaining -= 2)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x2_t F[6][6], FZ[6][2], f[2][2], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 2;
+ inptr += 2;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
- }
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
- f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
- }
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
+ }
- // Write out the output tile
- b = vld1_f32(bptr);
- bptr += 2;
- for (int i = 0; i < cells_i; i++)
+ // Write out the output tile
+ b = vld1_f32(bptr);
+ bptr += 2;
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif // __arm_any__
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[6][6], FZ[6][2], f[2][2], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ }
+
+ // Write out the output tile
+ b = *(bptr++);
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j] + b;
+ }
}
}
}
-#endif // __arm_any__
- for (; channels_remaining; channels_remaining--)
+ else
{
- // Matrices used and computed during this transform
- float F[6][6], FZ[6][2], f[2][2], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[6][6], FZ[6][2], f[2][2];
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = *(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr++;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
- }
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 2; j++)
- {
- f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ FZ[i][1] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ f[1][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 4;
+ }
+ }
}
+#endif // __aarch64__
+#ifdef __arm_any__
+ for (; channels_remaining >= 2; channels_remaining -= 2)
+ {
+ // Matrices used and computed during this transform
+ float32x2_t F[6][6], FZ[6][2], f[2][2];
- // Write out the output tile
- b = *(bptr++);
- for (int i = 0; i < cells_i; i++)
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
+ }
+ inptr += 2;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
+
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ FZ[i][1] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ f[1][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif // __arm_any__
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[6][6], FZ[6][2], f[2][2];
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4] + 1*F[i][5];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 2; j++)
+ {
+ f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j] + 1*FZ[5][j];
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
{
- *(outptrs[i][j]++) = f[i][j] + b;
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j];
+ }
}
}
}
diff --git a/src/core/NEON/kernels/convolution/winograd/transforms/output_4x4_3x3_fp32.cpp b/src/core/NEON/kernels/convolution/winograd/transforms/output_4x4_3x3_fp32.cpp
index 609823b9e1..cd3bdef0d2 100644
--- a/src/core/NEON/kernels/convolution/winograd/transforms/output_4x4_3x3_fp32.cpp
+++ b/src/core/NEON/kernels/convolution/winograd/transforms/output_4x4_3x3_fp32.cpp
@@ -100,170 +100,338 @@ void Transform::process_tile(
const float *inptr = matrix_base;
const float *bptr = biases;
- // For each channel of the output
- int channels_remaining = n_channels;
-#ifdef __aarch64__
- for (; channels_remaining >= 4; channels_remaining -= 4)
+ if (bptr)
{
- // Matrices used and computed during this transform
- float32x4_t F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 4;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][1] = vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f);
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f);
- // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][2] = vmlaq_n_f32(vaddq_f32(F[i][1], F[i][2]), vaddq_f32(F[i][3], F[i][4]), 4.0f);
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vmlaq_n_f32(vaddq_f32(F[i][1], F[i][2]), vaddq_f32(F[i][3], F[i][4]), 4.0f);
- // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- FZ[i][3] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
- }
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[1][j] = vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f);
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f);
- // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[2][j] = vmlaq_n_f32(vaddq_f32(FZ[1][j], FZ[2][j]), vaddq_f32(FZ[3][j], FZ[4][j]), 4.0f);
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vmlaq_n_f32(vaddq_f32(FZ[1][j], FZ[2][j]), vaddq_f32(FZ[3][j], FZ[4][j]), 4.0f);
- // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
- f[3][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
- }
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
+ }
- // Write out the output tile
- b = vld1q_f32(bptr);
- bptr += 4;
- for (int i = 0; i < cells_i; i++)
- {
- for (int j = 0; j < cells_j; j++)
+ // Write out the output tile
+ b = vld1q_f32(bptr);
+ bptr += 4;
+ for (int i = 0; i < cells_i; i++)
{
- vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
- outptrs[i][j] += 4;
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], vaddq_f32(f[i][j], b));
+ outptrs[i][j] += 4;
+ }
}
}
- }
#endif // __aarch64__
#ifdef __arm_any__
- for (; channels_remaining >= 2; channels_remaining -= 2)
- {
- // Matrices used and computed during this transform
- float32x2_t F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ for (; channels_remaining >= 2; channels_remaining -= 2)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x2_t F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr += 2;
+ inptr += 2;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
- // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][1] = vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f);
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f);
- // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][2] = vmla_n_f32(vadd_f32(F[i][1], F[i][2]), vadd_f32(F[i][3], F[i][4]), 4.0f);
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vmla_n_f32(vadd_f32(F[i][1], F[i][2]), vadd_f32(F[i][3], F[i][4]), 4.0f);
- // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- FZ[i][3] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
- }
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
+ }
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
- // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[1][j] = vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f);
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f);
- // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[2][j] = vmla_n_f32(vadd_f32(FZ[1][j], FZ[2][j]), vadd_f32(FZ[3][j], FZ[4][j]), 4.0f);
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vmla_n_f32(vadd_f32(FZ[1][j], FZ[2][j]), vadd_f32(FZ[3][j], FZ[4][j]), 4.0f);
- // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
- f[3][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
- }
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
+ }
- // Write out the output tile
- b = vld1_f32(bptr);
- bptr += 2;
- for (int i = 0; i < cells_i; i++)
+ // Write out the output tile
+ b = vld1_f32(bptr);
+ bptr += 2;
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[6][6], FZ[6][4], f[4][4], b;
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
{
- vst1_f32(outptrs[i][j], vadd_f32(f[i][j], b));
- outptrs[i][j] += 2;
+ FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ }
+
+ // Write out the output tile
+ b = *(bptr++);
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j] + b;
+ }
}
}
}
-#endif
- for (; channels_remaining; channels_remaining--)
+ else
{
- // Matrices used and computed during this transform
- float F[6][6], FZ[6][4], f[4][4], b;
-
- // Read a 6x6 tile in the Winograd domain
- for (int i = 0, m = 0; i < 6; i++)
+ // For each channel of the output
+ int channels_remaining = n_channels;
+#ifdef __aarch64__
+ for (; channels_remaining >= 4; channels_remaining -= 4)
{
- for (int j = 0; j < 6; j++, m++)
+ // Matrices used and computed during this transform
+ float32x4_t F[6][6], FZ[6][4], f[4][4];
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
{
- F[i][j] = *(inptr + m*matrix_stride);
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1q_f32(inptr + m*matrix_stride);
+ }
}
- }
- inptr++;
+ inptr += 4;
- // Compute the matrix F Z
- for (int i = 0; i < 6; i++)
- {
- FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
- FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
- FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
- FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
- }
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vaddq_f32(vaddq_f32(vaddq_f32(F[i][0], F[i][1]), vaddq_f32(F[i][2], F[i][3])), F[i][4]);
- // Compute the output tile f = ZT F Z
- for (int j = 0; j < 4; j++)
- {
- f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
- f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
- f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
- f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 2.0f);
+
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vmlaq_n_f32(vaddq_f32(F[i][1], F[i][2]), vaddq_f32(F[i][3], F[i][4]), 4.0f);
+
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vaddq_f32(vmlaq_n_f32(vsubq_f32(F[i][1], F[i][2]), vsubq_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vaddq_f32(vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), vaddq_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 2.0f);
+
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vmlaq_n_f32(vaddq_f32(FZ[1][j], FZ[2][j]), vaddq_f32(FZ[3][j], FZ[4][j]), 4.0f);
+
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vaddq_f32(vmlaq_n_f32(vsubq_f32(FZ[1][j], FZ[2][j]), vsubq_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1q_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 4;
+ }
+ }
}
+#endif // __aarch64__
+#ifdef __arm_any__
+ for (; channels_remaining >= 2; channels_remaining -= 2)
+ {
+ // Matrices used and computed during this transform
+ float32x2_t F[6][6], FZ[6][4], f[4][4];
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = vld1_f32(inptr + m*matrix_stride);
+ }
+ }
+ inptr += 2;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ // FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][0] = vadd_f32(vadd_f32(vadd_f32(F[i][0], F[i][1]), vadd_f32(F[i][2], F[i][3])), F[i][4]);
+
+ // FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][1] = vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 2.0f);
- // Write out the output tile
- b = *(bptr++);
- for (int i = 0; i < cells_i; i++)
+ // FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][2] = vmla_n_f32(vadd_f32(F[i][1], F[i][2]), vadd_f32(F[i][3], F[i][4]), 4.0f);
+
+ // FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ FZ[i][3] = vadd_f32(vmla_n_f32(vsub_f32(F[i][1], F[i][2]), vsub_f32(F[i][3], F[i][4]), 8.0f), F[i][5]);
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ // f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[0][j] = vadd_f32(vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), vadd_f32(FZ[2][j], FZ[3][j])), FZ[4][j]);
+
+ // f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[1][j] = vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 2.0f);
+
+ // f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[2][j] = vmla_n_f32(vadd_f32(FZ[1][j], FZ[2][j]), vadd_f32(FZ[3][j], FZ[4][j]), 4.0f);
+
+ // f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ f[3][j] = vadd_f32(vmla_n_f32(vsub_f32(FZ[1][j], FZ[2][j]), vsub_f32(FZ[3][j], FZ[4][j]), 8.0f), FZ[5][j]);
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
+ {
+ for (int j = 0; j < cells_j; j++)
+ {
+ vst1_f32(outptrs[i][j], f[i][j]);
+ outptrs[i][j] += 2;
+ }
+ }
+ }
+#endif
+ for (; channels_remaining; channels_remaining--)
{
- for (int j = 0; j < cells_j; j++)
+ // Matrices used and computed during this transform
+ float F[6][6], FZ[6][4], f[4][4];
+
+ // Read a 6x6 tile in the Winograd domain
+ for (int i = 0, m = 0; i < 6; i++)
+ {
+ for (int j = 0; j < 6; j++, m++)
+ {
+ F[i][j] = *(inptr + m*matrix_stride);
+ }
+ }
+ inptr++;
+
+ // Compute the matrix F Z
+ for (int i = 0; i < 6; i++)
+ {
+ FZ[i][0] = 1*F[i][0] + 1*F[i][1] + 1*F[i][2] + 1*F[i][3] + 1*F[i][4];
+ FZ[i][1] = 1*F[i][1] + -1*F[i][2] + 2*F[i][3] + -2*F[i][4];
+ FZ[i][2] = 1*F[i][1] + 1*F[i][2] + 4*F[i][3] + 4*F[i][4];
+ FZ[i][3] = 1*F[i][1] + -1*F[i][2] + 8*F[i][3] + -8*F[i][4] + 1*F[i][5];
+ }
+
+ // Compute the output tile f = ZT F Z
+ for (int j = 0; j < 4; j++)
+ {
+ f[0][j] = 1*FZ[0][j] + 1*FZ[1][j] + 1*FZ[2][j] + 1*FZ[3][j] + 1*FZ[4][j];
+ f[1][j] = 1*FZ[1][j] + -1*FZ[2][j] + 2*FZ[3][j] + -2*FZ[4][j];
+ f[2][j] = 1*FZ[1][j] + 1*FZ[2][j] + 4*FZ[3][j] + 4*FZ[4][j];
+ f[3][j] = 1*FZ[1][j] + -1*FZ[2][j] + 8*FZ[3][j] + -8*FZ[4][j] + 1*FZ[5][j];
+ }
+
+ // Write out the output tile
+ for (int i = 0; i < cells_i; i++)
{
- *(outptrs[i][j]++) = f[i][j] + b;
+ for (int j = 0; j < cells_j; j++)
+ {
+ *(outptrs[i][j]++) = f[i][j];
+ }
}
}
}