aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2017-08-02 13:19:48 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:35:24 +0000
commitcb29283e0d65297f4756e202df07eac1107841e6 (patch)
tree22592fe8e4132110fd5f9f0df53afb3dc0ba26c9 /src/core/CL
parent484e7b3724c0e77751b5bed05180271fd5376e5d (diff)
downloadComputeLibrary-cb29283e0d65297f4756e202df07eac1107841e6.tar.gz
COMPMID-477 - Optimizing Pooling 3x3 with stride_x <= 3 on OpenCL
Change-Id: Ie000166307cdb5bfae00ebf84d35e49a6bfb9dbd Reviewed-on: http://mpd-gerrit.cambridge.arm.com/83372 Tested-by: Kaizen <jeremy.johnson+kaizengerrit@arm.com> Reviewed-by: Pablo Tello <pablo.tello@arm.com> Reviewed-by: Anthony Barbier <anthony.barbier@arm.com>
Diffstat (limited to 'src/core/CL')
-rw-r--r--src/core/CL/CLKernelLibrary.cpp1
-rw-r--r--src/core/CL/cl_kernels/pooling_layer.cl255
-rw-r--r--src/core/CL/kernels/CLPoolingLayerKernel.cpp76
3 files changed, 240 insertions, 92 deletions
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index cda2c5afe1..000cffa9ee 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -232,6 +232,7 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "pixelwise_mul_int", "pixelwise_mul_int.cl" },
{ "pooling_layer_2", "pooling_layer.cl" },
{ "pooling_layer_3", "pooling_layer.cl" },
+ { "pooling_layer_3_optimized", "pooling_layer.cl" },
{ "pooling_layer_7", "pooling_layer.cl" },
{ "remap_nearest_neighbour", "remap.cl" },
{ "remap_bilinear", "remap.cl" },
diff --git a/src/core/CL/cl_kernels/pooling_layer.cl b/src/core/CL/cl_kernels/pooling_layer.cl
index b7245203d4..06989aa15e 100644
--- a/src/core/CL/cl_kernels/pooling_layer.cl
+++ b/src/core/CL/cl_kernels/pooling_layer.cl
@@ -29,22 +29,143 @@
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* POOL_AVG */
-float calculate_avg_scale(const int pool_size, const int upper_bound_w, const int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+#if STRIDE_X == 1
+#define POOLING3x3(res, input, output) POOLING3x3_STRIDE1(res, input, output)
+#elif STRIDE_X == 2 /* STRIDE_X == 1 */
+#define POOLING3x3(res, input, output) POOLING3x3_STRIDE2(res, input, output)
+#elif STRIDE_X == 3 /* STRIDE_X not equals 1 or 2 */
+#define POOLING3x3(res, input, output) POOLING3x3_STRIDE3(res, input, output)
+#endif /* STRIDE_X == 3 */
+
+#define CONVERT_OP(data_type) convert_##data_type##4
+#define CONVERT_VECTOR4(data_type) CONVERT_OP(data_type)
+
+#define POOLING3x3_STRIDE1(res, input, output) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data00 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 2) \
+ data01 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 4); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data10 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 2) \
+ data11 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 4); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data20 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 2) \
+ data21 = vload2(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 4); \
+ \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values00 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data00.s01212323); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values01 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data01.s0, data00.s3, data01.s01); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values10 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data10.s01212323); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values11 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data11.s0, data10.s3, data11.s01); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values20 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data20.s01212323); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values21 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data21.s0, data20.s3, data21.s01); \
+ \
+ values00 = POOL_OP(values00, values10); \
+ values01 = POOL_OP(values01, values11); \
+ values00 = POOL_OP(values00, values20); \
+ values01 = POOL_OP(values01, values21); \
+ \
+ res = POOL_OP((VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s147, values01.s2)); \
+ res = POOL_OP(res, (VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s25, values01.s03)); \
+ })
+
+#define POOLING3x3_STRIDE2(res, input, output) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data00 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
+ DATA_TYPE data01 = *((__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data10 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
+ DATA_TYPE data11 = *((__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data20 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
+ DATA_TYPE data21 = *((__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8); \
+ \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values00 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data00.s01223445); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values01 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data00.s667, data01); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values10 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data10.s01223445); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values11 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data10.s667, data11); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ values20 = (VEC_DATA_TYPE(DATA_TYPE, 8))(data20.s01223445); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ values21 = (VEC_DATA_TYPE(DATA_TYPE, 4))(data20.s667, data21); \
+ \
+ values00 = POOL_OP(values00, values10); \
+ values01 = POOL_OP(values01, values11); \
+ values00 = POOL_OP(values00, values20); \
+ values01 = POOL_OP(values01, values21); \
+ \
+ res = POOL_OP((VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s147, values01.s2)); \
+ res = POOL_OP(res, (VEC_DATA_TYPE(DATA_TYPE, 4))(values00.s25, values01.s03)); \
+ })
+
+#define POOLING3x3_STRIDE3(res, input, output) \
+ ({ \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data00 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data01 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data10 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data11 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8); \
+ VEC_DATA_TYPE(DATA_TYPE, 8) \
+ data20 = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
+ VEC_DATA_TYPE(DATA_TYPE, 4) \
+ data21 = vload4(0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8); \
+ \
+ data00 = POOL_OP(data00, data10); \
+ data01 = POOL_OP(data01, data11); \
+ data00 = POOL_OP(data00, data20); \
+ data01 = POOL_OP(data01, data21); \
+ \
+ res = POOL_OP((VEC_DATA_TYPE(DATA_TYPE, 4))(data00.s036, data01.s1), (VEC_DATA_TYPE(DATA_TYPE, 4))(data00.s147, data01.s2)); \
+ res = POOL_OP(res, (VEC_DATA_TYPE(DATA_TYPE, 4))(data00.s25, data01.s03)); \
+ })
+
+DATA_TYPE calculate_avg_scale(const int pool_size, const int upper_bound_w, const int upper_bound_h,
+ const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
- int start_x = get_global_id(0) * stride_x - pad_x;
- int start_y = get_global_id(1) * stride_y - pad_y;
- int end_x = min(start_x + pool_size, upper_bound_w);
- int end_y = min(start_y + pool_size, upper_bound_h);
+ const int start_x = get_global_id(0) * stride_x - pad_x;
+ const int start_y = get_global_id(1) * stride_y - pad_y;
+ const int end_x = min(start_x + pool_size, upper_bound_w);
+ const int end_y = min(start_y + pool_size, upper_bound_h);
return 1.f / ((end_y - start_y) * (end_x - start_x));
}
+VEC_DATA_TYPE(DATA_TYPE, 4)
+calculate_avg_scale4(const int pool_size, const int upper_bound_w, const int upper_bound_h,
+ const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+{
+ const int4 start_x = ((int4)get_global_id(0) * 4 + (int4)(0, 1, 2, 3)) * (int4)stride_x - (int4)pad_x;
+ const int start_y = get_global_id(1) * stride_y - pad_y;
+ const int4 end_x = min(start_x + (int4)pool_size, (int4)upper_bound_w);
+ const int end_y = min(start_y + pool_size, upper_bound_h);
+ return (VEC_DATA_TYPE(DATA_TYPE, 4))(1.f) / CONVERT_VECTOR4(DATA_TYPE)(((int4)(end_y - start_y)) * (end_x - start_x));
+}
+
/** Performs a pooling function of pool size equal to 2.
*
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16, F32;
- * @note In case of average pooling -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
+ * @note In case of average pooling the following information must be passed at compile time:
+ * -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
+ * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
*
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16, F32
+ * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
@@ -52,7 +173,7 @@ float calculate_avg_scale(const int pool_size, const int upper_bound_w, const in
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: F16, F32
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
@@ -60,18 +181,10 @@ float calculate_avg_scale(const int pool_size, const int upper_bound_w, const in
* @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- * @param[in] max_dims The maximum index that can be accessed in x and y dimension (width + pad)
- * @param[in] strides The pooling operation strides in each dimension
- * @param[in] paddings The pooling operation paddings in each dimension
*/
__kernel void pooling_layer_2(
TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output)
-#ifdef POOL_AVG
- ,
- int2 max_dims, int2 strides, int2 paddings
-#endif /* POOL_AVG */
-)
+ TENSOR3D_DECLARATION(output))
{
// Get pixels pointer
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
@@ -89,19 +202,23 @@ __kernel void pooling_layer_2(
// Divide by pool region in case of average pooling
#ifdef POOL_AVG
- res *= calculate_avg_scale(2, max_dims.x, max_dims.y, paddings.x, paddings.y, strides.x, strides.y);
+ res *= calculate_avg_scale(2, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
#endif /* POOL_AVG */
// Store result
*(__global DATA_TYPE *)output.ptr = res;
}
-/** Performs a pooling function of pool size equal to 3.
+/** Performs a pooling function of pool size equal to 3
*
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16, F32;
- * @note In case of average pooling -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
+ * @note In case of average pooling the following information must be passed at compile time:
+ * -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
+ * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
*
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16, F32
+ * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
@@ -109,7 +226,7 @@ __kernel void pooling_layer_2(
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: F16, F32
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
@@ -117,18 +234,10 @@ __kernel void pooling_layer_2(
* @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- * @param[in] max_dims The maximum index that can be accessed in x and y dimension (width + pad)
- * @param[in] strides The pooling operation strides in each dimension
- * @param[in] paddings The pooling operation paddings in each dimension
*/
__kernel void pooling_layer_3(
TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output)
-#ifdef POOL_AVG
- ,
- int2 max_dims, int2 strides, int2 paddings
-#endif /* POOL_AVG */
-)
+ TENSOR3D_DECLARATION(output))
{
// Get pixels pointer
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
@@ -149,19 +258,73 @@ __kernel void pooling_layer_3(
// Divide by pool region in case of average pooling
#ifdef POOL_AVG
- res *= calculate_avg_scale(3, max_dims.x, max_dims.y, paddings.x, paddings.y, strides.x, strides.y);
-#endif /* POOL_AVG */
+ res *= calculate_avg_scale(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
+#endif //POOL_AVG
// Store result
*(__global DATA_TYPE *)output.ptr = res;
}
+#if defined(POOLING3x3)
+/** Performs an optimized pooling function of pool size equal to 3 when the stride_x is less equal than 3
+ *
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
+ * @note In case of average pooling the following information must be passed at compile time:
+ * -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
+ * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
+ *
+ * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
+ * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+__kernel void pooling_layer_3_optimized(
+ TENSOR3D_DECLARATION(input),
+ TENSOR3D_DECLARATION(output))
+{
+ // Get pixels pointer
+ Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
+ Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+
+ VEC_DATA_TYPE(DATA_TYPE, 4)
+ res;
+
+ // Perform pooling 3x3 for 4 output elements
+ POOLING3x3(res, input, output);
+
+ // Divide by pool region in case of average pooling
+#ifdef POOL_AVG
+ res *= calculate_avg_scale4(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
+#endif // POOL_AVG
+
+ vstore4(res, 0, (__global DATA_TYPE *)output.ptr);
+}
+#endif // defined(POOLING3x3)
+
/** Performs a pooling function of pool size equal to 7.
*
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16, F32;
- * @note In case of average pooling -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
+ * @note In case of average pooling the following information must be passed at compile time:
+ * -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
+ * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
*
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16, F32
+ * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
@@ -169,7 +332,7 @@ __kernel void pooling_layer_3(
* @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: F16, F32
+ * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
@@ -177,18 +340,10 @@ __kernel void pooling_layer_3(
* @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- * @param[in] max_dims The maximum index that can be accessed in x and y dimension (width + pad)
- * @param[in] strides The pooling operation strides in each dimension
- * @param[in] paddings The pooling operation paddings in each dimension
*/
__kernel void pooling_layer_7(
TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output)
-#ifdef POOL_AVG
- ,
- int2 max_dims, int2 strides, int2 paddings
-#endif /* POOL_AVG */
-)
+ TENSOR3D_DECLARATION(output))
{
// Get pixels pointer
Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
@@ -234,7 +389,7 @@ __kernel void pooling_layer_7(
// Divide by pool region in case of average pooling
#ifdef POOL_AVG
- res *= calculate_avg_scale(7, max_dims.x, max_dims.y, paddings.x, paddings.y, strides.x, strides.y);
+ res *= calculate_avg_scale(7, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
#endif /* POOL_AVG */
// Store result
diff --git a/src/core/CL/kernels/CLPoolingLayerKernel.cpp b/src/core/CL/kernels/CLPoolingLayerKernel.cpp
index ca75fd56fb..6b2e881e68 100644
--- a/src/core/CL/kernels/CLPoolingLayerKernel.cpp
+++ b/src/core/CL/kernels/CLPoolingLayerKernel.cpp
@@ -41,7 +41,7 @@
using namespace arm_compute;
CLPoolingLayerKernel::CLPoolingLayerKernel()
- : _input(nullptr), _output(nullptr), _pool_info(), _border_size(0)
+ : _input(nullptr), _output(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1)
{
}
@@ -92,11 +92,21 @@ void CLPoolingLayerKernel::configure(const ICLTensor *input, ICLTensor *output,
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pooled_w) || (output->info()->dimension(1) != pooled_h));
- const int num_elements_read_per_iteration = (pool_size == 7) ? 8 : pool_size;
- const int input_width = input->info()->dimension(0);
- const int input_height = input->info()->dimension(1);
- const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elements_read_per_iteration) - input_width;
- const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
+ // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
+ // each thread computes 4 output elements
+ const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3);
+
+ int num_elements_read_per_iteration = (pool_size == 7) ? 8 : pool_size;
+ if(is_pool3x3_stride_le3)
+ {
+ // Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3
+ _num_elems_processed_per_iteration = 4;
+ num_elements_read_per_iteration = pool_size * (pool_stride_x + 1);
+ }
+ const int input_width = input->info()->dimension(0);
+ const int input_height = input->info()->dimension(1);
+ const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elements_read_per_iteration) - input_width;
+ const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
// Set instance variables
_input = input;
@@ -110,49 +120,31 @@ void CLPoolingLayerKernel::configure(const ICLTensor *input, ICLTensor *output,
std::set<std::string> build_opts;
build_opts.emplace(("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type())));
build_opts.emplace(("-DPOOL_" + ((PoolingType::MAX == pool_type) ? std::string("MAX") : std::string("AVG"))));
+ build_opts.emplace(("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x)));
+ if(pool_type == PoolingType::AVG)
+ {
+ build_opts.emplace(("-DMAX_WIDTH=" + support::cpp11::to_string(input->info()->dimension(0) + pool_pad_x)));
+ build_opts.emplace(("-DMAX_HEIGHT=" + support::cpp11::to_string(input->info()->dimension(1) + pool_pad_y)));
+ build_opts.emplace(("-DSTRIDE_Y=" + support::cpp11::to_string(pool_stride_y)));
+ build_opts.emplace(("-DPAD_X=" + support::cpp11::to_string(pool_pad_x)));
+ build_opts.emplace(("-DPAD_Y=" + support::cpp11::to_string(pool_pad_y)));
+ }
// Create kernel
std::string kernel_name = "pooling_layer_" + support::cpp11::to_string(pool_size);
- _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts));
-
- // Set static kernel arguments
- if(pool_type == PoolingType::AVG)
+ if(is_pool3x3_stride_le3)
+ {
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name + "_optimized", build_opts));
+ }
+ else
{
- // Create static kernel arguments
- const cl_int2 max_dims =
- {
- {
- static_cast<cl_int>(input->info()->dimension(0)) + pool_pad_x,
- static_cast<cl_int>(input->info()->dimension(1)) + pool_pad_y,
- }
- };
- const cl_int2 strides =
- {
- {
- pool_stride_x,
- pool_stride_y,
- }
- };
- const cl_int2 paddings =
- {
- {
- pool_pad_x,
- pool_pad_y,
- }
- };
-
- // Set static kernel arguments
- unsigned int idx = 2 * num_arguments_per_3D_tensor();
- _kernel.setArg<cl_int2>(idx++, max_dims);
- _kernel.setArg<cl_int2>(idx++, strides);
- _kernel.setArg<cl_int2>(idx++, paddings);
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts));
}
// Configure kernel window
- const unsigned int num_elems_processed_per_iteration = 1;
- Window win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration));
+ Window win = calculate_max_window(*output->info(), Steps(_num_elems_processed_per_iteration));
AccessWindowStatic input_access(input->info(), -pool_pad_x, -pool_pad_y, input_width + _border_size.right, input_height + _border_size.bottom);
- AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);
+ AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration);
update_window_and_padding(win, input_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));
ICLKernel::configure(win);
@@ -174,7 +166,7 @@ void CLPoolingLayerKernel::run(const Window &window, cl::CommandQueue &queue)
{
// Upsample input by pool size
Window in_slice(slice);
- in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x));
+ in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration));
in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y));
// Set inputs