aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
diff options
context:
space:
mode:
authorGeorgios Pinitas <georgios.pinitas@arm.com>2018-09-24 16:31:08 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:55:19 +0000
commitebf6b8a00b77ea796d877bc1d0e6850c055318a6 (patch)
treea8c2bb26d951dd0d25c5e223358d6695ad5f0468 /src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
parent96e922e8ee4187906211ee0d1dd0f3e27667c170 (diff)
downloadComputeLibrary-ebf6b8a00b77ea796d877bc1d0e6850c055318a6.tar.gz
COMPMID-1518: Add support for GEMM3D in CLGEMMLowpMatrixMultiplyCore
Change-Id: Ib14ac821ee5d4aff80bd602cd3e76e7018abb5e6 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/150268 Tested-by: bsgcomp <bsgcomp@arm.com> Reviewed-by: Isabella Gottardi <isabella.gottardi@arm.com> Reviewed-by: Michele DiGiorgio <michele.digiorgio@arm.com>
Diffstat (limited to 'src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp')
-rw-r--r--src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp164
1 files changed, 127 insertions, 37 deletions
diff --git a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
index 9adf95fa33..cf66ebd5fe 100644
--- a/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMLowpMatrixMultiplyKernel.cpp
@@ -59,17 +59,12 @@ Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1,
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 2 && reshape_info.reinterpret_input_as_3d(), "The input1 tensor cannot have more than 2 dimensions if input0 has to be reinterpreted as 3D");
if(!is_interleaved_transposed)
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
-
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
- ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
- }
}
else
{
@@ -95,43 +90,82 @@ Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1,
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
+ }
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
- ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
- }
+ if(output->total_size() != 0)
+ {
+ const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info));
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output, bool is_interleaved_transposed,
- ElementsProcessed &num_elements_processed)
+ const GEMMReshapeInfo &reshape_info, ElementsProcessed &num_elements_processed)
{
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
+ bool reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
+ bool reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 1);
Window win{};
+ Window win_out{};
bool window_changed = false;
+ // In case both input and output have to be reinterpreted as 3D tensors,
+ // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
+ if(reinterpret_input_as_3d == reinterpret_output_as_3d)
+ {
+ reinterpret_input_as_3d = false;
+ reinterpret_output_as_3d = false;
+ }
+
+ // Output tensor auto inizialitation if not yet initialized
+ auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, is_interleaved_transposed, reshape_info)));
+
+ TensorInfo tmp_info(*output);
+
+ if(reinterpret_output_as_3d)
+ {
+ // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
+ // the window needs to be constructed on the 2D collapsed version of the tensor
+ TensorShape tmp_shape(output->tensor_shape());
+ tmp_shape.collapse(2U, 1U);
+ tmp_info.set_tensor_shape(tmp_shape);
+ }
+
// Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
if(is_interleaved_transposed)
{
+ // reinterpret_input_as_3d is not supported if is_interleaved_transposed is set
+ ARM_COMPUTE_ERROR_ON(reshape_info.reinterpret_input_as_3d());
+
// Configure kernel window
num_elems_processed_per_iteration_x = 4;
num_elems_processed_per_iteration_y = 4;
- win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ // Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
+ // The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
+ const int m = reshape_info.m();
+ const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
+
+ win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
- AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
- AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
+ AccessWindowStatic input1_access(input1, 0, 0,
+ ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
+ ceil_to_multiple(input1->dimension(1), num_elems_processed_per_iteration_y));
+ AccessWindowStatic output_access(output, 0, 0,
+ ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
+ output->dimension(1) + bottom_pad);
- window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
+ window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
+ update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
- output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
+ output_access.set_valid_region(win_out, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
}
else
{
@@ -139,27 +173,42 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITe
num_elems_processed_per_iteration_x = 4;
num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 5);
+ // Note: bottom paddings are calculated manually as the output can be reinterpreted as 3D tensor
+ // The only way to set properly the paddings, it is to set those explicitly through the AccessWindowStatic
+ const int m = reinterpret_input_as_3d ? input0->tensor_shape()[1] * input0->tensor_shape()[2] : input0->tensor_shape()[1];
+ const int bottom_pad = (num_elems_processed_per_iteration_y - (m % num_elems_processed_per_iteration_y)) % num_elems_processed_per_iteration_y;
+
// Configure window
- win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
- AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), ceil_to_multiple(input0->dimension(1), num_elems_processed_per_iteration_y));
- AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
- AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
+ AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), input0->dimension(1) + bottom_pad);
+ AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
+ AccessWindowStatic output_access(output, 0, 0,
+ ceil_to_multiple(output->dimension(0), num_elems_processed_per_iteration_x),
+ output->dimension(1) + bottom_pad);
- window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
+ window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
+ update_window_and_padding(win_out, output_access); // window used to update the padding requirements of output tensor
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape()));
}
+ // Collapse along the Z direction
+ // This collapse needs to be here in order to tune the Z dimension of LWS
+ Window collapsed = win;
+ const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
+ collapsed = win.collapse(win, dimension_to_collapse);
+
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
+ return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMLowpMatrixMultiplyKernel::CLGEMMLowpMatrixMultiplyKernel()
- : _input0(nullptr), _input1(nullptr), _output(nullptr)
+ : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false)
{
}
@@ -176,9 +225,23 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info));
- _input0 = input0;
- _input1 = input1;
- _output = output;
+ _input0 = input0;
+ _input1 = input1;
+ _output = output;
+ _reinterpret_input_as_3d = reshape_info.reinterpret_input_as_3d();
+ _reinterpret_output_as_3d = (reshape_info.depth_output_gemm3d() != 1);
+
+ // In case both input and output have to be reinterpreted as 3D tensors,
+ // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
+ if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
+ {
+ _reinterpret_input_as_3d = false;
+ _reinterpret_output_as_3d = false;
+ }
+
+ // Check if we need to slide the matrix B
+ const unsigned int num_dimensions_input0 = _reinterpret_input_as_3d ? _input0->info()->num_dimensions() - 1 : _input0->info()->num_dimensions();
+ _slide_matrix_b = (_input1->info()->num_dimensions() >= num_dimensions_input0);
ElementsProcessed num_elements_processed{};
@@ -186,15 +249,21 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
GPUTarget arch_target = get_arch_from_target(get_target());
// Configure kernel window
- auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, num_elements_processed);
+ auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
// Create build options
- CLBuildOptions build_opts;
std::string kernel_name(" ");
+ CLBuildOptions build_opts;
+ build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
+ build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
+ build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(1)));
+ build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(output->info()->dimension(2)));
+ build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
+
if(is_interleaved_transposed)
{
const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
@@ -225,6 +294,8 @@ void CLGEMMLowpMatrixMultiplyKernel::configure(const ICLTensor *input0, const IC
// Set config_id for enabling LWS tuning
_config_id = "gemmlowp_";
_config_id += (is_interleaved_transposed ? "reshaped_" : "");
+ _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
+ _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += lower_string(string_from_data_type(input0->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
@@ -242,6 +313,7 @@ Status CLGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const
input1->clone().get(),
output->clone().get(),
is_interleaved_transposed,
+ reshape_info,
num_elements_processed)
.first);
@@ -253,18 +325,33 @@ void CLGEMMLowpMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
- Window slice = window.first_slice_window_2D();
+ Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
- slice_matrix_b.set(Window::DimX, Window::Dimension(0, _input1->info()->dimension(0), 1));
- slice_matrix_b.set(Window::DimY, Window::Dimension(0, _input1->info()->dimension(1), 1));
- slice_matrix_b.set(Window::DimZ, Window::Dimension(0, 1, 1));
+ slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
+ slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ if(_reinterpret_input_as_3d)
+ {
+ // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
+ const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3;
+ const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
+ _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
+ }
+
+ if(_reinterpret_output_as_3d)
+ {
+ // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
+ const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
+ const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
+ _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
+ }
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(_input1->info()->num_dimensions() < 3)
+ if(_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
@@ -273,7 +360,10 @@ void CLGEMMLowpMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue
add_2D_tensor_argument(idx, _input0, slice);
add_2D_tensor_argument(idx, _input1, slice_b);
add_2D_tensor_argument(idx, _output, slice);
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
enqueue(queue, *this, slice, lws_hint());
}
- while(window.slide_window_slice_2D(slice));
+ while(window.slide_window_slice_3D(slice));
}