aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/winograd_input_transform.cl
diff options
context:
space:
mode:
authorGiorgio Arena <giorgio.arena@arm.com>2018-07-02 13:42:23 +0100
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:54:10 +0000
commita50e5e034a1b9fbce066639cbebcd457a6259ef9 (patch)
treeaafadd80bf4b309f490b710aa4e73ab30eb574b8 /src/core/CL/cl_kernels/winograd_input_transform.cl
parent767c9f77fa884ff7fd376b7bc477dc33a7603418 (diff)
downloadComputeLibrary-a50e5e034a1b9fbce066639cbebcd457a6259ef9.tar.gz
COMPMID-1338 Split winograd.cl
Change-Id: I583227fc1a38b1a34de253e383d71cca66007f18 Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/138273 Tested-by: Jenkins <bsgcomp@arm.com> Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/winograd_input_transform.cl')
-rw-r--r--src/core/CL/cl_kernels/winograd_input_transform.cl1623
1 files changed, 1623 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/winograd_input_transform.cl b/src/core/CL/cl_kernels/winograd_input_transform.cl
new file mode 100644
index 0000000000..4662426a72
--- /dev/null
+++ b/src/core/CL/cl_kernels/winograd_input_transform.cl
@@ -0,0 +1,1623 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+#if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H)
+/** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3 and the output tile is 2x2/2x1 or 1x2
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
+ * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_2x2_3x3_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z;
+
+ src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y);
+
+#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ float4 in_row0 = vload4(0, (__global float *)(src_addr));
+#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL)
+ float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)),
+ *((__global float *)(src_addr + 1 * src_stride_y)),
+ *((__global float *)(src_addr + 2 * src_stride_y)),
+ *((__global float *)(src_addr + 3 * src_stride_y)));
+#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
+ float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
+ float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
+ float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ float4 tmp0 = in_row0;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ tmp0 -= in_row2;
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ float out00 = tmp0.s0 - tmp0.s2;
+ float out01 = tmp0.s1 + tmp0.s2;
+ float out02 = tmp0.s2 - tmp0.s1;
+ float out03 = tmp0.s1 - tmp0.s3;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float4 tmp1 = in_row1 + in_row2;
+ float4 tmp2 = in_row2 - in_row1;
+ float4 tmp3 = in_row1 - in_row3;
+
+ float out10 = tmp1.s0 - tmp1.s2;
+ float out11 = tmp1.s1 + tmp1.s2;
+ float out12 = tmp1.s2 - tmp1.s1;
+ float out13 = tmp1.s1 - tmp1.s3;
+
+ float out20 = tmp2.s0 - tmp2.s2;
+ float out21 = tmp2.s1 + tmp2.s2;
+ float out22 = tmp2.s2 - tmp2.s1;
+ float out23 = tmp2.s1 - tmp2.s3;
+
+ float out30 = tmp3.s0 - tmp3.s2;
+ float out31 = tmp3.s1 + tmp3.s2;
+ float out32 = tmp3.s2 - tmp3.s1;
+ float out33 = tmp3.s1 - tmp3.s3;
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y;
+
+ *((__global float *)(dst_addr + 0 * dst_stride_z)) = out00; // in_row0.s0; out00;
+ *((__global float *)(dst_addr + 1 * dst_stride_z)) = out01; // in_row0.s1; out01;
+ *((__global float *)(dst_addr + 2 * dst_stride_z)) = out02; // in_row0.s2; out02;
+ *((__global float *)(dst_addr + 3 * dst_stride_z)) = out03; // in_row0.s3; out03;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ *((__global float *)(dst_addr + 4 * dst_stride_z)) = out10;
+ *((__global float *)(dst_addr + 5 * dst_stride_z)) = out11;
+ *((__global float *)(dst_addr + 6 * dst_stride_z)) = out12;
+ *((__global float *)(dst_addr + 7 * dst_stride_z)) = out13;
+ *((__global float *)(dst_addr + 8 * dst_stride_z)) = out20;
+ *((__global float *)(dst_addr + 9 * dst_stride_z)) = out21;
+ *((__global float *)(dst_addr + 10 * dst_stride_z)) = out22;
+ *((__global float *)(dst_addr + 11 * dst_stride_z)) = out23;
+ *((__global float *)(dst_addr + 12 * dst_stride_z)) = out30;
+ *((__global float *)(dst_addr + 13 * dst_stride_z)) = out31;
+ *((__global float *)(dst_addr + 14 * dst_stride_z)) = out32;
+ *((__global float *)(dst_addr + 15 * dst_stride_z)) = out33;
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 3x3/3x1 or 1x3, the output tile is 2x2/2x1 or 1x2 and the number of channels is multiple of 2
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
+ * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_2x2_3x3_stepz2_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2) * 2;
+
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z;
+
+ src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y);
+
+#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ float4 in_row0 = vload4(0, (__global float *)(src_addr));
+#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL)
+ float4 in_row0 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)),
+ *((__global float *)(src_addr + 1 * src_stride_y)),
+ *((__global float *)(src_addr + 2 * src_stride_y)),
+ *((__global float *)(src_addr + 3 * src_stride_y)));
+#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
+ float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
+ float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
+ float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ src_addr += src_stride_z;
+#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+ float4 in_row4 = vload4(0, (__global float *)(src_addr));
+#elif defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL) // !defined(WINOGRAD_FILTER_TRANSFORM_HORIZONTAL)
+ float4 in_row4 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)),
+ *((__global float *)(src_addr + 1 * src_stride_y)),
+ *((__global float *)(src_addr + 2 * src_stride_y)),
+ *((__global float *)(src_addr + 3 * src_stride_y)));
+#else // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float4 in_row4 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
+ float4 in_row5 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
+ float4 in_row6 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
+ float4 in_row7 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ float4 tmp0 = in_row0;
+ float4 tmp4 = in_row4;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ tmp0 -= in_row2;
+ tmp4 -= in_row6;
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ float2 out00 = (float2)(tmp0.s0 - tmp0.s2, tmp4.s0 - tmp4.s2);
+ float2 out01 = (float2)(tmp0.s1 + tmp0.s2, tmp4.s1 + tmp4.s2);
+ float2 out02 = (float2)(tmp0.s2 - tmp0.s1, tmp4.s2 - tmp4.s1);
+ float2 out03 = (float2)(tmp0.s1 - tmp0.s3, tmp4.s1 - tmp4.s3);
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float4 tmp1 = in_row1 + in_row2;
+ float4 tmp2 = in_row2 - in_row1;
+ float4 tmp3 = in_row1 - in_row3;
+
+ float4 tmp5 = in_row5 + in_row6;
+ float4 tmp6 = in_row6 - in_row5;
+ float4 tmp7 = in_row5 - in_row7;
+
+ float2 out10 = (float2)(tmp1.s0 - tmp1.s2, tmp5.s0 - tmp5.s2);
+ float2 out11 = (float2)(tmp1.s1 + tmp1.s2, tmp5.s1 + tmp5.s2);
+ float2 out12 = (float2)(tmp1.s2 - tmp1.s1, tmp5.s2 - tmp5.s1);
+ float2 out13 = (float2)(tmp1.s1 - tmp1.s3, tmp5.s1 - tmp5.s3);
+
+ float2 out20 = (float2)(tmp2.s0 - tmp2.s2, tmp6.s0 - tmp6.s2);
+ float2 out21 = (float2)(tmp2.s1 + tmp2.s2, tmp6.s1 + tmp6.s2);
+ float2 out22 = (float2)(tmp2.s2 - tmp2.s1, tmp6.s2 - tmp6.s1);
+ float2 out23 = (float2)(tmp2.s1 - tmp2.s3, tmp6.s1 - tmp6.s3);
+
+ float2 out30 = (float2)(tmp3.s0 - tmp3.s2, tmp7.s0 - tmp7.s2);
+ float2 out31 = (float2)(tmp3.s1 + tmp3.s2, tmp7.s1 + tmp7.s2);
+ float2 out32 = (float2)(tmp3.s2 - tmp3.s1, tmp7.s2 - tmp7.s1);
+ float2 out33 = (float2)(tmp3.s1 - tmp3.s3, tmp7.s1 - tmp7.s3);
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y;
+
+ vstore2(out00, 0, (__global float *)(dst_addr + 0 * dst_stride_z));
+ vstore2(out01, 0, (__global float *)(dst_addr + 1 * dst_stride_z));
+ vstore2(out02, 0, (__global float *)(dst_addr + 2 * dst_stride_z));
+ vstore2(out03, 0, (__global float *)(dst_addr + 3 * dst_stride_z));
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ vstore2(out10, 0, (__global float *)(dst_addr + 4 * dst_stride_z));
+ vstore2(out11, 0, (__global float *)(dst_addr + 5 * dst_stride_z));
+ vstore2(out12, 0, (__global float *)(dst_addr + 6 * dst_stride_z));
+ vstore2(out13, 0, (__global float *)(dst_addr + 7 * dst_stride_z));
+ vstore2(out20, 0, (__global float *)(dst_addr + 8 * dst_stride_z));
+ vstore2(out21, 0, (__global float *)(dst_addr + 9 * dst_stride_z));
+ vstore2(out22, 0, (__global float *)(dst_addr + 10 * dst_stride_z));
+ vstore2(out23, 0, (__global float *)(dst_addr + 11 * dst_stride_z));
+ vstore2(out30, 0, (__global float *)(dst_addr + 12 * dst_stride_z));
+ vstore2(out31, 0, (__global float *)(dst_addr + 13 * dst_stride_z));
+ vstore2(out32, 0, (__global float *)(dst_addr + 14 * dst_stride_z));
+ vstore2(out33, 0, (__global float *)(dst_addr + 15 * dst_stride_z));
+#endif // !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+}
+
+/** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NCHW
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
+ * @note If this kernel is used to perform Winograd input transform 3x1, -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ * @note If this kernel is used to perform Winograd input transform 1x3, -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x4_3x3_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * OUTPUT_TILE_W * sizeof(float) + y * OUTPUT_TILE_H * src_stride_y + z * src_stride_z;
+
+ src_addr = src_addr - ((int)PAD_LEFT * sizeof(float)) - ((int)PAD_TOP * src_stride_y);
+
+#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ // Row0
+ float4 d00 = (float4)(*((__global float *)(src_addr + 0 * src_stride_y)),
+ *((__global float *)(src_addr + 1 * src_stride_y)),
+ *((__global float *)(src_addr + 2 * src_stride_y)),
+ *((__global float *)(src_addr + 3 * src_stride_y)));
+ float2 d01 = (float2)(*((__global float *)(src_addr + 4 * src_stride_y)),
+ *((__global float *)(src_addr + 5 * src_stride_y)));
+#else // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ // Row0
+ float4 d00 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
+ float2 d01 = vload2(2, (__global float *)(src_addr + 0 * src_stride_y));
+#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ float out0 = 0.0f;
+ float out1 = 0.0f;
+ float out2 = 0.0f;
+ float out3 = 0.0f;
+ float out4 = 0.0f;
+ float out5 = 0.0f;
+
+ // Channels [0, 5]: [out00, out01, out02, out03, out04, out05]
+ out0 += 16.0f * d00.s0 - 20.0f * d00.s2 + 4.0f * d01.s0;
+ out1 += -16.0f * d00.s1 - 16.0f * d00.s2 + 4.0f * d00.s3 + 4.0f * d01.s0;
+ out2 += 16.0f * d00.s1 - 16.0f * d00.s2 - 4.0f * d00.s3 + 4.0f * d01.s0;
+ out3 += -8.0f * d00.s1 - 4.0f * d00.s2 + 8.0f * d00.s3 + 4.0f * d01.s0;
+ out4 += 8.0f * d00.s1 - 4.0f * d00.s2 - 8.0f * d00.s3 + 4.0f * d01.s0;
+ out5 += 16.0f * d00.s1 - 20.0f * d00.s3 + 4.0f * d01.s1;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ // Row4
+ float4 d40 = vload4(0, (__global float *)(src_addr + 4 * src_stride_y));
+ float2 d41 = vload2(2, (__global float *)(src_addr + 4 * src_stride_y));
+
+ // k0, k1, k2, k3, k4, k5 are common terms for row0, row1, row2, row3 and row4
+ float k0 = d41.s0;
+ float k1 = d41.s0;
+ float k2 = d41.s0;
+ float k3 = d41.s0;
+ float k4 = d41.s0;
+ float k5 = 0.0f;
+
+ k0 += 4.0f * d40.s0 - 5.0f * d40.s2;
+ k1 += -4.0f * d40.s1 - 4.0f * d40.s2 + d40.s3;
+ k2 += 4.0f * d40.s1 - 4.0f * d40.s2 - d40.s3;
+ k3 += -2.0f * d40.s1 + 2.0f * d40.s3 - d40.s2;
+ k4 += 2.0f * d40.s1 - 2.0f * d40.s3 - d40.s2;
+ k5 += 4.0f * d40.s1 - 5.0f * d40.s3 + d41.s1;
+
+ out0 += k0;
+ out1 += k1;
+ out2 += k2;
+ out3 += k3;
+ out4 += k4;
+ out5 += k5;
+
+ // Row2
+ float4 d20 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
+ float2 d21 = vload2(2, (__global float *)(src_addr + 2 * src_stride_y));
+
+ out0 += -20.0f * d20.s0 + 25.0f * d20.s2 - 5.0f * d21.s0;
+ out1 += +20.0f * d20.s1 + 20.0f * d20.s2 - 5.0f * d20.s3 - 5.0f * d21.s0;
+ out2 += -20.0f * d20.s1 + 20.0f * d20.s2 + 5.0f * d20.s3 - 5.0f * d21.s0;
+ out3 += +10.0f * d20.s1 + 5.0f * d20.s2 - 10.0f * d20.s3 - 5.0f * d21.s0;
+ out4 += -10.0f * d20.s1 + 5.0f * d20.s2 + 10.0f * d20.s3 - 5.0f * d21.s0;
+ out5 += -20.0f * d20.s1 + 25.0f * d20.s3 - 5.0f * d21.s1;
+#endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+ // Compute destination address
+ __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + z * sizeof(float) + (x + y * (int)NUM_TILES_X) * dst_stride_y);
+
+ uint dst_plane_stride = dst_stride_z / sizeof(float);
+
+ *(dst_addr) = out0;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out1;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out2;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out3;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out4;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out5;
+ dst_addr += dst_plane_stride;
+
+#if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+ float out6 = k0;
+ float out7 = k1;
+ float out8 = k2;
+ float out9 = k3;
+ float out10 = k4;
+ float out11 = k5;
+ float out12 = k0;
+ float out13 = k1;
+ float out14 = k2;
+ float out15 = k3;
+ float out16 = k4;
+ float out17 = k5;
+ float out18 = k0;
+ float out19 = k1;
+ float out20 = k2;
+ float out21 = k3;
+ float out22 = k4;
+ float out23 = k5;
+ float out24 = k0;
+ float out25 = k1;
+ float out26 = k2;
+ float out27 = k3;
+ float out28 = k4;
+ float out29 = k5;
+
+ // Row1
+ float4 d10 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
+ float2 d11 = vload2(2, (__global float *)(src_addr + 1 * src_stride_y));
+
+ // Row3
+ float4 d30 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));
+ float2 d31 = vload2(2, (__global float *)(src_addr + 3 * src_stride_y));
+
+ // Compute common parts for the channels between [6, 29]
+ // Channels [6, 11]: [out10, out11, out12, out13, out14, out15]
+ // Channels [12, 17]: [out20, out21, out22, out23, out24, out25]
+ float part0 = -16.0f * d20.s0 + 20.0f * d20.s2 - 4.0f * d21.s0;
+ float part1 = 16.0f * d10.s0 - 20.0f * d10.s2 + 4.0f * d11.s0 - 4.0f * d30.s0 + 5.0f * d30.s2 - d31.s0;
+ float part2 = 16.0f * d20.s2 - 4.0f * d21.s0;
+ float part3 = 16.0f * d20.s1 - 4.0f * d20.s3;
+ float part4 = 16.0f * d10.s2 - 4.0f * d11.s0 - 4.0f * d30.s2 + d31.s0;
+ float part5 = 16.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + d30.s3;
+ float part6 = 4.0f * d20.s2 - 4.0f * d21.s0;
+ float part7 = 8.0f * d10.s1 - 8.0f * d10.s3 - 2.0f * d30.s1 + 2.0f * d30.s3;
+ float part8 = 4.0f * d10.s2 - 4.0f * d11.s0 - d30.s2 + d31.s0;
+ float part9 = 8.0f * d20.s1 - 8.0f * d20.s3;
+ float part10 = -16.0f * d20.s1 + 20.0f * d20.s3 - 4.0f * d21.s1;
+ float part11 = -16.0f * d10.s1 + 20.0f * d10.s3 - 4.0f * d11.s1 + 4.0f * d30.s1 - 5.0f * d30.s3 + d31.s1;
+
+ // Channels [18, 23]: [out30, out31, out32, out33, out34, out35]
+ // Channels [24, 29]: [out40, out41, out42, out43, out44, out45]
+ float part12 = 8.0f * d10.s0 - 10.0f * d10.s2 + 2.0f * d11.s0 - 8.0f * d30.s0 + 10.0f * d30.s2 - 2.0f * d31.s0;
+ float part13 = part0 * 0.25f; // -4.0f * d20.s0 + 5.0f * d20.s2 - d21.s0
+ float part14 = part2 * 0.25f; // 4.0f * d20.s2 - d21.s0
+ float part15 = 8.0f * d10.s1 - 2.0f * d10.s3 - 8.0f * d30.s1 + 2.0f * d30.s3;
+ float part16 = 8.0f * d10.s2 - 2.0f * d11.s0 - 8.0f * d30.s2 + 2.0f * d31.s0;
+ float part17 = part3 * 0.25f; // 4.0f * d20.s1 - d20.s3
+ float part18 = part6 * 0.25f; // d20.s2 - d21.s0
+ float part19 = 4.0f * d10.s1 - 4.0f * d10.s3 - 4.0f * d30.s1 + 4.0f * d30.s3;
+ float part20 = 2.0f * d10.s2 - 2.0f * d11.s0 - 2.0f * d30.s2 + 2.0f * d31.s0;
+ float part21 = part9 * 0.25f; // 2.0f * (d20.s1 - d20.s3)
+ float part22 = part10 * 0.25f; // - 4.0f * d20.s1 + 5.0f * d20.s3 - d21.s1
+ float part23 = part11 * 0.5f + 6.0f * d30.s1 - 7.5f * d30.s3 + 1.5f * d31.s1; // - 8.0f * d10.s1 + 10.0f * d10.s3 - 2.0f * d11.s1 + 8.0f * d30.s1 - 10.0f * d30.s3 + 2.0f * d31.s1;
+
+ out6 += part0 - part1;
+ out12 += part0 + part1;
+ out7 += part2 + part3 + part4 + part5;
+ out8 += part2 - part3 + part4 - part5;
+ out13 += part2 + part3 - part4 - part5;
+ out14 += part2 - part3 - part4 + part5;
+ out9 += part6 + part7 + part8 + part9;
+ out10 += part6 - part7 + part8 - part9;
+ out15 += part6 - part7 - part8 + part9;
+ out16 += part6 + part7 - part8 - part9;
+ out11 += part10 + part11;
+ out17 += part10 - part11;
+
+ out18 += part13 - part12;
+ out24 += part13 + part12;
+ out19 += part14 + part15 + part16 + part17;
+ out20 += part14 - part15 + part16 - part17;
+ out25 += part14 - part15 - part16 + part17;
+ out26 += part14 + part15 - part16 - part17;
+ out21 += part18 + part19 + part20 + part21;
+ out22 += part18 - part19 + part20 - part21;
+ out27 += part18 - part19 - part20 + part21;
+ out28 += part18 + part19 - part20 - part21;
+ out23 += part22 + part23;
+ out29 += part22 - part23;
+
+ *(dst_addr) = out6;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out7;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out8;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out9;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out10;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out11;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out12;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out13;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out14;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out15;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out16;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out17;
+ dst_addr += dst_plane_stride;
+
+ *(dst_addr) = out18;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out19;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out20;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out21;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out22;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out23;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out24;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out25;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out26;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out27;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out28;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out29;
+ dst_addr += dst_plane_stride;
+
+ // Row5
+ float4 d50 = vload4(0, (__global float *)(src_addr + 5 * src_stride_y));
+ float2 d51 = vload2(2, (__global float *)(src_addr + 5 * src_stride_y));
+
+ // Channels [30, 35]
+ out0 = 16.0f * d10.s0 - 20.0f * d10.s2 - 20.0f * d30.s0 + 25.0f * d30.s2 + 4.0f * d50.s0 - 5.0f * d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0;
+ out1 = -16.0f * d10.s1 - 16.0f * d10.s2 + 4.0f * d10.s3 + 20.0f * d30.s1 + 20.0f * d30.s2 - 5.0f * d30.s3 - 4.0f * d50.s1 - 4.0f * d50.s2 + d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0;
+ out2 = 16.0f * d10.s1 - 16.0f * d10.s2 - 4.0f * d10.s3 - 20.0f * d30.s1 + 20.0f * d30.s2 + 5.0f * d30.s3 + 4.0f * d50.s1 - 4.0f * d50.s2 - d50.s3 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0;
+ out3 = -8.0f * d10.s1 - 4.0f * d10.s2 + 8.0f * d10.s3 + 10.0f * d30.s1 - 10.0f * d30.s3 + 5.0f * d30.s2 - 2.0f * d50.s1 + 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0;
+ out4 = 8.0f * d10.s1 - 4.0f * d10.s2 - 8.0f * d10.s3 - 10.0f * d30.s1 + 5.0f * d30.s2 + 10.0f * d30.s3 + 2.0f * d50.s1 - 2.0f * d50.s3 - d50.s2 + d51.s0 + 4.0f * d11.s0 - 5.0f * d31.s0;
+ out5 = 16.0f * d10.s1 - 20.0f * d10.s3 + 4.0f * d11.s1 - 20.0f * d30.s1 + 25.0f * d30.s3 - 5.0f * d31.s1 + 4.0f * d50.s1 - 5.0f * d50.s3 + d51.s1;
+
+ *(dst_addr) = out0;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out1;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out2;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out3;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out4;
+ dst_addr += dst_plane_stride;
+ *(dst_addr) = out5;
+ dst_addr += dst_plane_stride;
+#endif // #if !defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+}
+
+#if defined(SRC_DIM_1) && defined(SRC_DIM_2)
+/** This OpenCL kernel computes the input transform when the output tile is 4x4, the filter size 3x3 and the data layout is NHWC
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note Dimension one of the input tensor (width for NHWC data layout) must be passed at compile time using -DSRC_DIM1 (e.g. -DSRC_DIM_1=112)
+ * @note Dimension two of the input tensor (height for NHWC data layout) must be passed at compile time using -DSRC_DIM2 (e.g. -DSRC_DIM_2=112)
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x4_3x3_stepz1_nhwc(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * src_stride_x;
+
+ // Clamp coordinates. This clamp is valid for all rows
+ int4 y_coord0 = (int4)(y * 4) + (int4)(0, 1, 2, 3) - (int4)PAD_LEFT;
+ int2 y_coord1 = (int2)(y * 4) + (int2)(4, 5) - (int2)PAD_LEFT;
+ y_coord0 = clamp(y_coord0, -1, SRC_DIM_1);
+ y_coord1 = clamp(y_coord1, -1, SRC_DIM_1);
+
+ // Row4
+ int z_coord = (z * 4) - PAD_TOP + 4;
+
+ // If z < 0, set y to -1
+ int4 valid_y0 = select(y_coord0, -1, (int4)z_coord < 0);
+ int2 valid_y1 = select(y_coord1, -1, (int2)z_coord < 0);
+ // If z >= SRC_DIM_2, set y to SRC_DIM_2
+ valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2);
+ valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2);
+
+ // Clamp z coordinate
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ float d40 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d41 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d42 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d43 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d44 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d45 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ float k0 = d44;
+ float k1 = d44;
+ float k2 = d44;
+ float k3 = d44;
+ float k4 = d44;
+ float k5 = (float)0.0f;
+
+ k0 += 4.0f * d40 - 5.0f * d42;
+ k1 += -4.0f * d41 - 4.0f * d42 + d43;
+ k2 += 4.0f * d41 - 4.0f * d42 - d43;
+ k3 += -2.0f * d41 + 2.0f * d43 - d42;
+ k4 += 2.0f * d41 - 2.0f * d43 - d42;
+ k5 += 4.0f * d41 - 5.0f * d43 + d45;
+
+ // Row0
+ z_coord = (z * 4) - PAD_TOP + 0;
+
+#if PAD_TOP != 0
+ valid_y0 = select(y_coord0, -1, (int4)z_coord < 0);
+ valid_y1 = select(y_coord1, -1, (int2)z_coord < 0);
+ valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2);
+ valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+#else // PAD_TOP != 0
+ valid_y0 = y_coord0;
+ valid_y1 = y_coord1;
+#endif // if PAD_TOP == 0, we cannot read out of bound
+
+ float d00 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d01 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d02 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d03 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d04 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d05 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row2
+ z_coord = (z * 4) - PAD_TOP + 2;
+ valid_y0 = select(y_coord0, -1, (int4)z_coord < 0);
+ valid_y1 = select(y_coord1, -1, (int2)z_coord < 0);
+ valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2);
+ valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ float d20 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d21 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d22 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d23 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d24 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d25 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Compute destination address
+ __global float *dst_addr = (__global float *)(dst_ptr + dst_offset_first_element_in_bytes + x * dst_stride_x + (y + z * (int)NUM_TILES_X) * dst_stride_y);
+
+ uint dst_plane_stride = dst_stride_z / sizeof(float);
+
+ float out0 = k0;
+ float out1 = k1;
+ float out2 = k2;
+ float out3 = k3;
+ float out4 = k4;
+ float out5 = k5;
+ float out6 = k0;
+ float out7 = k1;
+ float out8 = k2;
+ float out9 = k3;
+ float out10 = k4;
+ float out11 = k5;
+ float out12 = k0;
+ float out13 = k1;
+ float out14 = k2;
+ float out15 = k3;
+ float out16 = k4;
+ float out17 = k5;
+ float out18 = k0;
+ float out19 = k1;
+ float out20 = k2;
+ float out21 = k3;
+ float out22 = k4;
+ float out23 = k5;
+ float out24 = k0;
+ float out25 = k1;
+ float out26 = k2;
+ float out27 = k3;
+ float out28 = k4;
+ float out29 = k5;
+
+ // Channels [0, 5]: [out00, out01, out02, out03, out04, out05]
+ out0 += 16.0f * d00 - 20.0f * d02 - 20.0f * d20 + 25.0f * d22 + 4.0f * d04 - 5.0f * d24;
+ out1 += -16.0f * d01 - 16.0f * d02 + 4.0f * d03 + 20.0f * d21 + 20.0f * d22 - 5.0f * d23 + 4.0f * d04 - 5.0f * d24;
+ out2 += 16.0f * d01 - 16.0f * d02 - 4.0f * d03 - 20.0f * d21 + 20.0f * d22 + 5.0f * d23 + 4.0f * d04 - 5.0f * d24;
+ out3 += -8.0f * d01 - 4.0f * d02 + 8.0f * d03 + 10.0f * d21 + 5.0f * d22 - 10.0f * d23 + 4.0f * d04 - 5.0f * d24;
+ out4 += 8.0f * d01 - 4.0f * d02 - 8.0f * d03 - 10.0f * d21 + 5.0f * d22 + 10.0f * d23 + 4.0f * d04 - 5.0f * d24;
+ out5 += 16.0f * d01 - 20.0f * d03 - 20.0f * d21 + 4.0f * d05 + 25.0f * d23 - 5.0f * d25;
+
+ *((__global float *)dst_addr) = out0;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out1;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out2;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out3;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out4;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out5;
+ dst_addr += dst_plane_stride;
+
+ // Row1
+ z_coord = (z * 4) - PAD_TOP + 1;
+ // Row1 can never be out of bounds
+ valid_y0 = y_coord0;
+ valid_y1 = y_coord1;
+
+ float d10 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d11 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d12 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d13 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d14 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d15 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row3
+ z_coord = (z * 4) - PAD_TOP + 3;
+ valid_y0 = select(y_coord0, -1, (int4)z_coord < 0);
+ valid_y1 = select(y_coord1, -1, (int2)z_coord < 0);
+ valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2);
+ valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ float d30 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d31 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d32 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d33 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d34 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d35 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Compute common parts for the channels between [6, 29]
+ // Channels [6, 11]: [out10, out11, out12, out13, out14, out15]
+ // Channels [12, 17]: [out20, out21, out22, out23, out24, out25]
+ float part0 = -16.0f * d20 + 20.0f * d22 - 4.0f * d24;
+ float part1 = 16.0f * d10 - 20.0f * d12 + 4.0f * d14 - 4.0f * d30 + 5.0f * d32 - d34;
+ float part2 = 16.0f * d22 - 4.0f * d24;
+ float part3 = 16.0f * d21 - 4.0f * d23;
+ float part4 = 16.0f * d12 - 4.0f * d14 - 4.0f * d32 + d34;
+ float part5 = 16.0f * d11 - 4.0f * d13 - 4.0f * d31 + d33;
+ float part6 = 4.0f * d22 - 4.0f * d24;
+ float part7 = 8.0f * d11 - 8.0f * d13 - 2.0f * d31 + 2.0f * d33;
+ float part8 = 4.0f * d12 - 4.0f * d14 - d32 + d34;
+ float part9 = 8.0f * d21 - 8.0f * d23;
+ float part10 = -16.0f * d21 + 20.0f * d23 - 4.0f * d25;
+ float part11 = -16.0f * d11 + 20.0f * d13 - 4.0f * d15 + 4.0f * d31 - 5.0f * d33 + d35;
+
+ // Channels [18, 23]: [out30, out31, out32, out33, out34, out35]
+ // Channels [24, 29]: [out40, out41, out42, out43, out44, out45]
+ float part12 = 8.0f * d10 - 10.0f * d12 + 2.0f * d14 - 8.0f * d30 + 10.0f * d32 - 2.0f * d34;
+ float part13 = part0 * 0.25f; // -4.0f * d20 + 5.0f * d22 - d24
+ float part14 = part2 * 0.25f; // 4.0f * d22 - d24
+ float part15 = 8.0f * d11 - 2.0f * d13 - 8.0f * d31 + 2.0f * d33;
+ float part16 = 8.0f * d12 - 2.0f * d14 - 8.0f * d32 + 2.0f * d34;
+ float part17 = part3 * 0.25f; // 4.0f * d21 - d23
+ float part18 = part6 * 0.25f; // d22 - d24
+ float part19 = 4.0f * d11 - 4.0f * d13 - 4.0f * d31 + 4.0f * d33;
+ float part20 = 2.0f * d12 - 2.0f * d14 - 2.0f * d32 + 2.0f * d34;
+ float part21 = part9 * 0.25f; // 2.0f * (d21 - d23)
+ float part22 = part10 * 0.25f; // - 4.0f * d21 + 5.0f * d23 - d25
+ float part23 = part11 * 0.5f + 6.0f * d31 - 7.5f * d33 + 1.5f * d35; // - 8.0f * d11 + 10.0f * d13 - 2.0f * d15 + 8.0f * d31 - 10.0f * d33 + 2.0f * d35;
+
+ out6 += part0 - part1;
+ out12 += part0 + part1;
+ out7 += part2 + part3 + part4 + part5;
+ out8 += part2 - part3 + part4 - part5;
+ out13 += part2 + part3 - part4 - part5;
+ out14 += part2 - part3 - part4 + part5;
+ out9 += part6 + part7 + part8 + part9;
+ out10 += part6 - part7 + part8 - part9;
+ out15 += part6 - part7 - part8 + part9;
+ out16 += part6 + part7 - part8 - part9;
+ out11 += part10 + part11;
+ out17 += part10 - part11;
+
+ out18 += part13 - part12;
+ out24 += part13 + part12;
+ out19 += part14 + part15 + part16 + part17;
+ out20 += part14 - part15 + part16 - part17;
+ out25 += part14 - part15 - part16 + part17;
+ out26 += part14 + part15 - part16 - part17;
+ out21 += part18 + part19 + part20 + part21;
+ out22 += part18 - part19 + part20 - part21;
+ out27 += part18 - part19 - part20 + part21;
+ out28 += part18 + part19 - part20 - part21;
+ out23 += part22 + part23;
+ out29 += part22 - part23;
+
+ *((__global float *)dst_addr) = out6;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out7;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out8;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out9;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out10;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out11;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out12;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out13;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out14;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out15;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out16;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out17;
+ dst_addr += dst_plane_stride;
+
+ *((__global float *)dst_addr) = out18;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out19;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out20;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out21;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out22;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out23;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out24;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out25;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out26;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out27;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out28;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out29;
+ dst_addr += dst_plane_stride;
+
+ // Row5
+ z_coord = (z * 4) - PAD_TOP + 5;
+ valid_y0 = select(y_coord0, -1, (int4)z_coord < 0);
+ valid_y1 = select(y_coord1, -1, (int2)z_coord < 0);
+ valid_y0 = select(valid_y0, SRC_DIM_1, (int4)z_coord >= SRC_DIM_2);
+ valid_y1 = select(valid_y1, SRC_DIM_1, (int2)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ float d50 = *(__global float *)(src_addr + valid_y0.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d51 = *(__global float *)(src_addr + valid_y0.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ float d52 = *(__global float *)(src_addr + valid_y0.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ float d53 = *(__global float *)(src_addr + valid_y0.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ float d54 = *(__global float *)(src_addr + valid_y1.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ float d55 = *(__global float *)(src_addr + valid_y1.s1 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Channels [30, 35]
+ out0 = 16.0f * d10 - 20.0f * d12 - 20.0f * d30 + 25.0f * d32 + 4.0f * d50 - 5.0f * d52 + d54 + 4.0f * d14 - 5.0f * d34;
+ out1 = -16.0f * d11 - 16.0f * d12 + 4.0f * d13 + 20.0f * d31 + 20.0f * d32 - 5.0f * d33 - 4.0f * d51 - 4.0f * d52 + d53 + d54 + 4.0f * d14 - 5.0f * d34;
+ out2 = 16.0f * d11 - 16.0f * d12 - 4.0f * d13 - 20.0f * d31 + 20.0f * d32 + 5.0f * d33 + 4.0f * d51 - 4.0f * d52 - d53 + d54 + 4.0f * d14 - 5.0f * d34;
+ out3 = -8.0f * d11 - 4.0f * d12 + 8.0f * d13 + 10.0f * d31 - 10.0f * d33 + 5.0f * d32 - 2.0f * d51 + 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34;
+ out4 = 8.0f * d11 - 4.0f * d12 - 8.0f * d13 - 10.0f * d31 + 5.0f * d32 + 10.0f * d33 + 2.0f * d51 - 2.0f * d53 - d52 + d54 + 4.0f * d14 - 5.0f * d34;
+ out5 = 16.0f * d11 - 20.0f * d13 + 4.0f * d15 - 20.0f * d31 + 25.0f * d33 - 5.0f * d35 + 4.0f * d51 - 5.0f * d53 + d55;
+
+ *((__global float *)dst_addr) = out0;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out1;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out2;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out3;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out4;
+ dst_addr += dst_plane_stride;
+ *((__global float *)dst_addr) = out5;
+ dst_addr += dst_plane_stride;
+}
+
+#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
+
+#define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact) \
+ ({ \
+ comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6; \
+ comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5; \
+ comm_fact.s2 = 2.5f * tmp.s3; \
+ comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \
+ comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6; \
+ comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4; \
+ comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \
+ \
+ out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \
+ out.s1 = comm_fact.s0 + comm_fact.s1; \
+ out.s2 = comm_fact.s0 - comm_fact.s1; \
+ out.s3 = comm_fact.s3 + comm_fact.s4; \
+ out.s4 = comm_fact.s4 - comm_fact.s3; \
+ out.s5 = comm_fact.s5 + comm_fact.s6; \
+ out.s6 = comm_fact.s5 - comm_fact.s6; \
+ out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \
+ })
+
+/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NCHW
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x4_5x5_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 4 * src_stride_x + y * 4 * src_stride_y + z * src_stride_z;
+
+ src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y);
+
+ // Load 8x8 input tile
+ const float8 in_row0 = vload8(0, (__global float *)(src_addr + 0 * src_stride_y));
+ const float8 in_row1 = vload8(0, (__global float *)(src_addr + 1 * src_stride_y));
+ const float8 in_row2 = vload8(0, (__global float *)(src_addr + 2 * src_stride_y));
+ const float8 in_row3 = vload8(0, (__global float *)(src_addr + 3 * src_stride_y));
+ const float8 in_row4 = vload8(0, (__global float *)(src_addr + 4 * src_stride_y));
+ const float8 in_row5 = vload8(0, (__global float *)(src_addr + 5 * src_stride_y));
+ const float8 in_row6 = vload8(0, (__global float *)(src_addr + 6 * src_stride_y));
+ const float8 in_row7 = vload8(0, (__global float *)(src_addr + 7 * src_stride_y));
+
+ // Calculate common factors for intermediate tensor
+ float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4;
+ float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3;
+ float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6;
+
+ // Calculate intermediate tensor and reuse common factor vectors
+ const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2;
+ const float8 tmp1 = comm_fact0 + comm_fact1;
+ const float8 tmp2 = comm_fact0 - comm_fact1;
+
+ comm_fact0 = 2.5f * in_row3;
+ comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5;
+
+ const float8 tmp3 = comm_fact1 + comm_fact2;
+ const float8 tmp4 = comm_fact2 - comm_fact1;
+
+ comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5;
+ comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6;
+
+ const float8 tmp5 = comm_fact1 + comm_fact2;
+ const float8 tmp6 = comm_fact2 - comm_fact1;
+ const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5;
+
+ // Calculate output rows (reuse comm_fact0 vector)
+ float8 out0, out1, out2, out3, out4, out5, out6, out7;
+
+ OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0);
+
+ // Store values across the 64 channels
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y;
+
+ *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0;
+ *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1;
+ *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2;
+ *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3;
+ *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4;
+ *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5;
+ *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6;
+ *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7;
+ *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0;
+ *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1;
+ *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2;
+ *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3;
+ *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4;
+ *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5;
+ *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6;
+ *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7;
+ *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0;
+ *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1;
+ *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2;
+ *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3;
+ *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4;
+ *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5;
+ *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6;
+ *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7;
+ *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0;
+ *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1;
+ *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2;
+ *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3;
+ *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4;
+ *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5;
+ *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6;
+ *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7;
+ *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0;
+ *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1;
+ *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2;
+ *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3;
+ *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4;
+ *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5;
+ *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6;
+ *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7;
+ *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0;
+ *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1;
+ *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2;
+ *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3;
+ *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4;
+ *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5;
+ *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6;
+ *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7;
+ *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0;
+ *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1;
+ *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2;
+ *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3;
+ *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4;
+ *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5;
+ *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6;
+ *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7;
+ *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0;
+ *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1;
+ *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2;
+ *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3;
+ *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4;
+ *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5;
+ *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6;
+ *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7;
+}
+
+#if defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 2x1
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
+ * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_2x1_3x1_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 3x1, the output tile is 2x1 and the number of channels is multiple of 2
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
+ * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_2x1_3x1_stepz2_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 3x1 and the output tile is 4x1
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
+ * @note -DWINOGRAD_INPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x1_3x1_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+#endif // defined(WINOGRAD_INPUT_TRANSFORM_HORIZONTAL)
+
+#if defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x2
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
+ * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_1x2_1x3_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_2x2_3x3_stepz1_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 1x3, the output tile is 1x2 and the number of channels is multiple of 2
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
+ * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_1x2_1x3_stepz2_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_2x2_3x3_stepz2_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+
+/** This OpenCL kernel computes the input transform when the kernel size is 1x3 and the output tile is 1x4
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
+ * @note -DWINOGRAD_INPUT_TRANSFORM_VERTICAL has to be passed at compile time
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_1x4_1x3_stepz1_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ winograd_input_transform_4x4_3x3_stepz1_nchw(src_ptr,
+ src_stride_x,
+ src_step_x,
+ src_stride_y,
+ src_step_y,
+ src_stride_z,
+ src_step_z,
+ src_offset_first_element_in_bytes,
+ dst_ptr,
+ dst_stride_x,
+ dst_step_x,
+ dst_stride_y,
+ dst_step_y,
+ dst_stride_z,
+ dst_step_z,
+ dst_offset_first_element_in_bytes);
+}
+#endif // defined(WINOGRAD_INPUT_TRANSFORM_VERTICAL)
+
+#if defined(SRC_DIM_1) && defined(SRC_DIM_2)
+/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4 when the data layout is NHWC
+ *
+ * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
+ * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
+ * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
+ * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
+ *
+ * @param[in] src_ptr Pointer to the source image. Supported data types: F32
+ * @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_ptr Pointer to the destination tensor. Supported data types: as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void winograd_input_transform_4x4_5x5_stepz1_nhwc(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ int z = get_global_id(2);
+
+ // Compute input address
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * sizeof(float);
+
+ // Clamp coordinates. This clamp is valid for all rows
+ int8 y_coord = (int8)(y * 4) + (int8)(0, 1, 2, 3, 4, 5, 6, 7) - (int8)PAD_LEFT;
+ y_coord = clamp(y_coord, -1, SRC_DIM_1);
+
+ // Load 8x8 input tile
+ float8 in_row0, in_row1, in_row2, in_row3, in_row4, in_row5, in_row6, in_row7;
+
+ // Row0
+ int z_coord = (z * 4) - PAD_TOP + 0;
+ int8 valid_y = select(y_coord, -1, (int8)z_coord < 0); // If z < 0, set y to -1
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2); // If z >= SRC_DIM_2, set y to SRC_DIM_2
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1); // Clamp z coordinate
+
+ in_row0.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row0.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row1
+ z_coord = (z * 4) - PAD_TOP + 1;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row1.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row1.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row2
+ z_coord = (z * 4) - PAD_TOP + 2;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row2.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row2.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row3
+ z_coord = (z * 4) - PAD_TOP + 3;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row3.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row3.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row4
+ z_coord = (z * 4) - PAD_TOP + 4;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row4.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row4.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row5
+ z_coord = (z * 4) - PAD_TOP + 5;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row5.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row5.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row6
+ z_coord = (z * 4) - PAD_TOP + 6;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row6.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row6.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Row7
+ z_coord = (z * 4) - PAD_TOP + 7;
+ valid_y = select(y_coord, -1, (int8)z_coord < 0);
+ valid_y = select(valid_y, SRC_DIM_1, (int8)z_coord >= SRC_DIM_2);
+ z_coord = clamp(z_coord, 0, SRC_DIM_2 - 1);
+
+ in_row7.s0 = *(__global float *)(src_addr + valid_y.s0 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s1 = *(__global float *)(src_addr + valid_y.s1 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s2 = *(__global float *)(src_addr + valid_y.s2 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s3 = *(__global float *)(src_addr + valid_y.s3 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s4 = *(__global float *)(src_addr + valid_y.s4 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s5 = *(__global float *)(src_addr + valid_y.s5 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s6 = *(__global float *)(src_addr + valid_y.s6 * (int)src_stride_y + z_coord * src_stride_z);
+ in_row7.s7 = *(__global float *)(src_addr + valid_y.s7 * (int)src_stride_y + z_coord * src_stride_z);
+
+ // Calculate common factors for intermediate tensor
+ float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4;
+ float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3;
+ float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6;
+
+ // Calculate intermediate tensor and reuse common factor vectors
+ const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2;
+ const float8 tmp1 = comm_fact0 + comm_fact1;
+ const float8 tmp2 = comm_fact0 - comm_fact1;
+
+ comm_fact0 = 2.5f * in_row3;
+ comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5;
+
+ const float8 tmp3 = comm_fact1 + comm_fact2;
+ const float8 tmp4 = comm_fact2 - comm_fact1;
+
+ comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5;
+ comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6;
+
+ const float8 tmp5 = comm_fact1 + comm_fact2;
+ const float8 tmp6 = comm_fact2 - comm_fact1;
+ const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5;
+
+ // Calculate output rows (reuse comm_fact0 vector)
+ float8 out0, out1, out2, out3, out4, out5, out6, out7;
+
+ OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0);
+ OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0);
+
+ // Store values across the 64 channels
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x * sizeof(float) + (y + z * (int)NUM_TILES_X) * dst_stride_y;
+
+ *((__global float *)(dst_addr + 0 * dst_stride_z)) = out0.s0;
+ *((__global float *)(dst_addr + 1 * dst_stride_z)) = out0.s1;
+ *((__global float *)(dst_addr + 2 * dst_stride_z)) = out0.s2;
+ *((__global float *)(dst_addr + 3 * dst_stride_z)) = out0.s3;
+ *((__global float *)(dst_addr + 4 * dst_stride_z)) = out0.s4;
+ *((__global float *)(dst_addr + 5 * dst_stride_z)) = out0.s5;
+ *((__global float *)(dst_addr + 6 * dst_stride_z)) = out0.s6;
+ *((__global float *)(dst_addr + 7 * dst_stride_z)) = out0.s7;
+ *((__global float *)(dst_addr + 8 * dst_stride_z)) = out1.s0;
+ *((__global float *)(dst_addr + 9 * dst_stride_z)) = out1.s1;
+ *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2;
+ *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3;
+ *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4;
+ *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5;
+ *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6;
+ *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7;
+ *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0;
+ *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1;
+ *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2;
+ *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3;
+ *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4;
+ *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5;
+ *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6;
+ *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7;
+ *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0;
+ *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1;
+ *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2;
+ *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3;
+ *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4;
+ *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5;
+ *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6;
+ *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7;
+ *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0;
+ *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1;
+ *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2;
+ *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3;
+ *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4;
+ *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5;
+ *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6;
+ *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7;
+ *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0;
+ *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1;
+ *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2;
+ *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3;
+ *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4;
+ *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5;
+ *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6;
+ *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7;
+ *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0;
+ *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1;
+ *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2;
+ *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3;
+ *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4;
+ *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5;
+ *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6;
+ *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7;
+ *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0;
+ *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1;
+ *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2;
+ *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3;
+ *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4;
+ *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5;
+ *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6;
+ *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7;
+}
+#endif // defined(SRC_DIM_1) && defined(SRC_DIM_2)
+#endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H) \ No newline at end of file