aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemmlowp.cl
diff options
context:
space:
mode:
authorGian Marco <gianmarco.iodice@arm.com>2017-11-21 10:57:50 +0000
committerAnthony Barbier <anthony.barbier@arm.com>2018-11-02 16:41:17 +0000
commit05288a2b871ef99f544771621c3bba409b2f70df (patch)
tree21e3d2a9927ef31f6d5bcdd5523c4c8e933047a6 /src/core/CL/cl_kernels/gemmlowp.cl
parentc82799003fbfdc5bb9526ff944e41eaae23e3f03 (diff)
downloadComputeLibrary-05288a2b871ef99f544771621c3bba409b2f70df.tar.gz
COMPMID-697 - Rework GEMMLowp interface on OpenCL
Reworked the interface of GemmLowp in order to make easy the integration in Android NN - Added support for different output stage - Added validation for both matrix multiplication and output stage - Added bounded relu support in the output stage - Added in32_t bias support - Added optimized path for vector by matrix case This rework is required for: - Convolution quantized - Fully connected quantized Change-Id: I512283d406099cf8c614dd89d0a97ed411143afc Reviewed-on: https://eu-gerrit-1.euhpc.arm.com/110625 Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Tested-by: BSG Visual Compute Jenkins server to access repositories on http://mpd-gerrit.cambridge.arm.com <bsgcomp@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/gemmlowp.cl')
-rw-r--r--src/core/CL/cl_kernels/gemmlowp.cl540
1 files changed, 540 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/gemmlowp.cl b/src/core/CL/cl_kernels/gemmlowp.cl
new file mode 100644
index 0000000000..7cd0c0b8db
--- /dev/null
+++ b/src/core/CL/cl_kernels/gemmlowp.cl
@@ -0,0 +1,540 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+#if defined(COLS_B)
+/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
+ * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
+ *
+ * @attention The number of matrix B columns needs to be passed at compile time using -DCOLS_B
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemmlowp_mm_interleaved_transposed(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ // src_addr.s0 = address of matrix A
+ // src_addr.s1 = address of matrix B
+ // Compute address for matrix A and B
+ int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
+ (src1_stride_y));
+
+ // Add offset_first_element_in_bytes
+ src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Compute end row address for matrix B
+ int end_row_mtx_b = src_addr.s1 + COLS_B;
+
+ // Reset accumulators
+ int16 c00 = 0;
+ int16 c10 = 0;
+ int16 c20 = 0;
+ int16 c30 = 0;
+
+ for(; src_addr.s1 <= (end_row_mtx_b - 32); src_addr += (int2)(8, 32))
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ int8 a0 = convert_int8(vload8(0, ((__global uchar *)src0_ptr) + src_addr.s0));
+ int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+
+ c00 += (int16)a0.s0 * b0;
+ c10 += (int16)a0.s1 * b0;
+ c20 += (int16)a0.s2 * b0;
+ c30 += (int16)a0.s3 * b0;
+
+ int16 b1 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1 + 16));
+
+ c00 += (int16)a0.s4 * b1;
+ c10 += (int16)a0.s5 * b1;
+ c20 += (int16)a0.s6 * b1;
+ c30 += (int16)a0.s7 * b1;
+ }
+
+ for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 16))
+ {
+ // Load values from matrix A (interleaved) and matrix B (transposed)
+ int4 a0 = convert_int4(vload4(0, ((__global uchar *)src0_ptr) + src_addr.s0));
+ int16 b0 = convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
+
+ c00 += (int16)a0.s0 * b0;
+ c10 += (int16)a0.s1 * b0;
+ c20 += (int16)a0.s2 * b0;
+ c30 += (int16)a0.s3 * b0;
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Store 4x16 block
+ vstore16(c00, 0, (__global int *)(offset(&dst, 0, 0)));
+ vstore16(c10, 0, (__global int *)(offset(&dst, 0, 1)));
+ vstore16(c20, 0, (__global int *)(offset(&dst, 0, 2)));
+ vstore16(c30, 0, (__global int *)(offset(&dst, 0, 3)));
+}
+#endif // defined(COLS_B)
+
+#if defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
+#define VECTOR_UCHAR VEC_DATA_TYPE(uchar, NUM_ELEMS_PROCESSED_PER_THREAD_X)
+#define VECTOR_UINT VEC_DATA_TYPE(uint, NUM_ELEMS_PROCESSED_PER_THREAD_X)
+#define VECTOR_INT VEC_DATA_TYPE(int, NUM_ELEMS_PROCESSED_PER_THREAD_X)
+/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ *
+ * @param[in] src0_ptr Pointer to the source matrix. Supported data type: QASYMM8
+ * @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[in] src1_ptr Pointer to the source matrix. Supported data type: same as @p src0_ptr
+ * @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
+ * @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
+ * @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ */
+__kernel void gemmlowp_mm(IMAGE_DECLARATION(src0),
+ IMAGE_DECLARATION(src1),
+ IMAGE_DECLARATION(dst))
+{
+ int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
+
+ // Compute starting address for matrix A and Matrix B
+ int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
+
+ // Update address for the matrix A
+ src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
+
+ // Update address for the matrix B
+ src_addr.s1 += idx;
+
+ int end_row_vec_a = src_addr.s0 + COLS_A;
+
+ VECTOR_UINT acc0 = 0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ VECTOR_UINT acc1 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ VECTOR_UINT acc2 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ VECTOR_UINT acc3 = 0;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+
+ for(; src_addr.s0 <= (end_row_vec_a - 2); src_addr += (int2)(2, 2 * src1_stride_y))
+ {
+ // Load values from matrix A
+ uchar2 a0 = vload2(0, src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar2 a1 = vload2(0, src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar2 a2 = vload2(0, src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar2 a3 = vload2(0, src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ // Load values from matrix B
+ VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
+ VECTOR_UCHAR b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1 + src1_stride_y);
+
+ // Accumulate
+ acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0.s0;
+ acc0 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a0.s1;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1.s0;
+ acc1 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a1.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2.s0;
+ acc2 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a2.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3.s0;
+ acc3 += CONVERT(b1, VECTOR_UINT) * (VECTOR_UINT)a3.s1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+
+ for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
+ {
+ // Load values from matrix A
+ uchar a0 = *(src0_ptr + src_addr.s0 + 0 * src0_stride_y);
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ uchar a1 = *(src0_ptr + src_addr.s0 + 1 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ uchar a2 = *(src0_ptr + src_addr.s0 + 2 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ uchar a3 = *(src0_ptr + src_addr.s0 + 3 * src0_stride_y);
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ // Load values from matrix B
+ VECTOR_UCHAR b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, src1_ptr + src_addr.s1);
+
+ // Accumulate
+ acc0 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a0;
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ acc1 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a1;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ acc2 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a2;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ acc3 += CONVERT(b0, VECTOR_UINT) * (VECTOR_UINT)a3;
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ }
+
+ // Compute destination address
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ // Store the result
+ VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
+ (CONVERT(acc0, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 0)));
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+ VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
+ (CONVERT(acc1, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 1)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+ VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
+ (CONVERT(acc2, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 2)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
+#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+ VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
+ (CONVERT(acc3, VECTOR_INT), 0, (__global int *)(offset(&dst, 0, 3)));
+#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
+}
+#endif // defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_Y) && defined(COLS_A)
+
+#if defined(COLS_A)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix A columns needs to be passed at compile time using -DCOLS_A
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_a_reduction(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ uint4 sum_row_u32 = (uint4)0;
+ uint sum_row = 0;
+
+ __global const uchar *matrix_a = (__global const uchar *)(src.ptr + get_global_id(0) * src_stride_y + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+
+ // This for loop performs 16 accumulations
+ for(; i <= ((int)COLS_A - 16); i += 16)
+ {
+ const uchar16 a0_u8 = vload16(0, matrix_a + i);
+
+ sum_row_u32 += convert_uint4(a0_u8.s0123) + convert_uint4(a0_u8.s4567) + convert_uint4(a0_u8.s89AB) + convert_uint4(a0_u8.sCDEF);
+ }
+
+ // This for loop performs the leftover accumulations
+ for(; i < COLS_A; ++i)
+ {
+ sum_row += matrix_a[i];
+ }
+
+ sum_row += sum_row_u32.s0 + sum_row_u32.s1 + sum_row_u32.s2 + sum_row_u32.s3;
+
+ *((__global int *)dst.ptr) = (int)sum_row;
+}
+#endif // defined(COLS_A)
+
+#if defined(COLS_B) && defined(ROWS_B)
+/** OpenCL kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B.
+ *
+ * @note This stage is needed to handle the offset of matrix product
+ * https://github.com/google/gemmlowp/blob/master/doc/low-precision.md
+ *
+ * @attention The number of matrix B columns and rows needs to be passed at compile time using -DCOLS_B and -DROWS_B
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: QASYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_matrix_b_reduction(TENSOR3D_DECLARATION(src),
+ IMAGE_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
+
+ uint16 sum_col_u32 = (uint16)0;
+
+ __global const uchar *matrix_b = (__global const uchar *)(src.ptr + get_global_id(1) * src_stride_z);
+
+ int i = 0;
+ // This for loop performs 4 accumulations
+ for(; i <= ((int)ROWS_B - 4); i += 4)
+ {
+ const uchar16 b0_u8 = vload16(0, matrix_b + 0 * src_stride_y);
+ const uchar16 b1_u8 = vload16(0, matrix_b + 1 * src_stride_y);
+ const uchar16 b2_u8 = vload16(0, matrix_b + 2 * src_stride_y);
+ const uchar16 b3_u8 = vload16(0, matrix_b + 3 * src_stride_y);
+
+ sum_col_u32 += convert_uint16(b0_u8) + convert_uint16(b1_u8) + convert_uint16(b2_u8) + convert_uint16(b3_u8);
+
+ matrix_b += 4 * src_stride_y;
+ }
+
+ // This for loop perfoms the leftover accumulations
+ for(; i < (int)ROWS_B; ++i)
+ {
+ const uchar16 b0_u8 = vload16(0, matrix_b);
+
+ sum_col_u32 += convert_uint16(b0_u8);
+
+ matrix_b += src_stride_y;
+ }
+
+ vstore16(convert_int16(sum_col_u32), 0, (__global int *)dst.ptr);
+}
+#endif // defined(COLS_B) && defined(ROWS_B)
+
+#if defined(K_OFFSET)
+/* OpenCL kernel used to add the offset contribution after @ref CLGEMMLowpMatrixMultiplyKernel. The computation is performed in-place
+ *
+ * This kernel takes a final int32 accumulator value (the output of @CLGEMMLowpMatrixMultiplyKernel),
+ * and adds to it the offset contribution of matrix A and matrix B in-place.
+ *
+ * @attention The k_offset = a_offset * b_offset * k (where k is the number of matrix A columns) needs to be passed at compile time using -DK_OFFSET (i.e. -DK_OFFSET=1200)
+ * @note In case the offset contribution due to a_offset is required, a_offset needs to be passed at compile time using -DA_OFFSET (i.e. -DA_OFFSET=1)
+ * @note In case the offset contribution due to b_offset is required, b_offset needs to be passed at compile time using -DB_OFFSET (i.e. -DB_OFFSET=6)
+ *
+ * The final result is:
+ *
+ * mm_result[i][k] = mm_result[i][k] +
+ * (sum_col[k] * A_OFFSET) +
+ * (sum_row[i] * B_OFFSET) +
+ * (K_OFFSET)
+ *
+ * @param[in] mm_result_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] mm_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] mm_result_step_x mm_result_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] mm_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] mm_result_step_y mm_result_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] mm_result_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] mm_result_step_z mm_result_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] mm_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_col_result_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_col_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_col_result_step_x sum_col_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_col_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_col_result_step_y sum_col_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_col_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] sum_row_result_ptr Pointer to the source tensor. Supported data type: same as @p mm_result_ptr
+ * @param[in] sum_row_result_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] sum_row_result_step_x sum_row_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] sum_row_result_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] sum_row_result_step_y sum_row_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] sum_row_result_offset_first_element_in_bytes The offset of the first element in the source tensor
+ */
+__kernel void gemmlowp_offset_contribution(TENSOR3D_DECLARATION(mm_result)
+#if defined(A_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_col)
+#endif // defined(A_OFFSET)
+#if defined(B_OFFSET)
+ ,
+ IMAGE_DECLARATION(sum_row)
+#endif // defined(B_OFFSET)
+ )
+{
+ Tensor3D mm_result = CONVERT_TO_TENSOR3D_STRUCT(mm_result);
+
+ int16 a_offset_s32 = (int16)0;
+ int16 b_offset_s32 = (int16)0;
+
+#if defined(A_OFFSET)
+ Image sum_col = CONVERT_TO_IMAGE_STRUCT(sum_col);
+
+ // Compute the offset contribution due to A_OFFSET
+ a_offset_s32 = vload16(0, (__global int *)sum_col.ptr + get_global_id(2) * sum_col_stride_y);
+ a_offset_s32 *= (int16)A_OFFSET;
+#endif // defined(A_OFFSET)
+
+#if defined(B_OFFSET)
+ Image sum_row = CONVERT_TO_IMAGE_STRUCT(sum_row);
+
+ // Compute the offset contribution due to B_OFFSET
+ b_offset_s32 = (int16) * (((__global int *)(sum_row.ptr + get_global_id(2) * sum_row_stride_y)) + get_global_id(1));
+ b_offset_s32 *= (int16)B_OFFSET;
+#endif // defined(B_OFFSET)
+
+ const int16 offset_term_s32 = (int16)K_OFFSET + a_offset_s32 + b_offset_s32;
+
+ int16 in_s32 = vload16(0, (__global int *)mm_result.ptr);
+
+ // Add the offset terms to GEMM's result
+ in_s32 += offset_term_s32;
+
+ // Store the result with the offset contribution
+ vstore16(in_s32, 0, (__global int *)mm_result.ptr);
+}
+#endif // defined(K_OFFSET)
+
+#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
+ *
+ * This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8 value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result (if -DADD_BIAS is passed at compile time)
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
+ * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ *
+ * @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
+ *
+ * @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
+ * These values can be used to implement "rectified linear unit" activation functions
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data type: S32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[in] biases_ptr Pointer to the biases tensor. Supported data type: same as @p src_ptr
+ * @param[in] biases_stride_x Stride of the biases tensor in X dimension (in bytes)
+ * @param[in] biases_step_x biases_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] biases_offset_first_element_in_bytes The offset of the first element in the biases tensor
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void gemmlowp_output_stage_quantize_down(TENSOR3D_DECLARATION(src),
+#if defined(ADD_BIAS)
+ VECTOR_DECLARATION(biases),
+#endif // defined(ADD_BIAS)
+ TENSOR3D_DECLARATION(dst))
+{
+ // Compute source and destination addresses
+ Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
+ Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
+#if defined(ADD_BIAS)
+ Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
+#endif // defined(ADD_BIAS)
+
+ int16 input_values = vload16(0, (__global int *)src.ptr);
+
+ // Add the offset terms to GEMM's result
+ input_values += (int16)RESULT_OFFSET;
+
+ // Multiply by result_mult_int
+ input_values *= (int16)RESULT_MULT_INT;
+
+#if defined(ADD_BIAS)
+ // Add bias
+ const int16 biases_values = vload16(0, (__global int *)biases.ptr);
+ input_values += (int16)biases_values;
+#endif // defined(ADD_BIAS)
+
+ // Shift final result
+ input_values >>= RESULT_SHIFT;
+
+ // Saturate negative values
+ input_values = max(input_values, (int16)0);
+
+ uchar16 res = convert_uchar16_sat(input_values);
+
+#if defined(MIN_BOUND)
+ res = max(res, (uchar16)MIN_BOUND);
+#endif // defined(MIN_BOUND)
+#if defined(MAX_BOUND)
+ res = min(res, (uchar16)MAX_BOUND);
+#endif // defined(MAX_BOUND)
+
+ // Store the result
+ vstore16(res, 0, dst.ptr);
+}
+#endif // defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT) \ No newline at end of file