aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/gemm.cl
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-12 10:18:04 +0000
committerGian Marco Iodice <gianmarco.iodice@arm.com>2018-12-14 14:57:48 +0000
commitbf9731edfa0439cad4d70efc3065e71e199c62b8 (patch)
tree71340a3d04a6294744c642ed6e4a56c0e8a77592 /src/core/CL/cl_kernels/gemm.cl
parent92e278d5f462c930af1947883a5f48c10586ae9c (diff)
downloadComputeLibrary-bf9731edfa0439cad4d70efc3065e71e199c62b8.tar.gz
COMPMID-1687: Optimize CLGEMMMatrixMultiplyKernel for Mali-G76 - Part1
The current implementation is limited just to FP32 Change-Id: I185ab57e483e879d7c301e9cc3033efc8b41e244 Reviewed-on: https://review.mlplatform.org/389 Reviewed-by: Anthony Barbier <Anthony.barbier@arm.com> Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com>
Diffstat (limited to 'src/core/CL/cl_kernels/gemm.cl')
-rw-r--r--src/core/CL/cl_kernels/gemm.cl503
1 files changed, 484 insertions, 19 deletions
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index 40ee1d45ad..d37dd2d2d6 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -68,17 +68,17 @@ __kernel void gemm_reshape_lhs_matrix_nt(TENSOR3D_DECLARATION(src),
#endif // REINTERPRET_INPUT_AS_3D
)
{
-// Block size
+ // Block size
#define BLOCK_SIZE ((M0) * (K0))
-// Output offset X
+ // Output offset X
#if defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (K0)
#else // defined(INTERLEAVE)
#define OUTPUT_OFFSET_X (BLOCK_SIZE)
#endif // defined(INTERLEAVE)
-// Output step X
+ // Output step X
#if defined(INTERLEAVE)
#define OUTPUT_STEP_X (K0) * (V0)
#else // Do not interleave
@@ -711,27 +711,27 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
// 8x4 -> 4x8
// 8x8 -> 8x8
// 8x16 -> 16x8
- res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
- res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
+ res0 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s0, a1.s0, a2.s0, a3.s0, a4.s0, a5.s0, a6.s0, a7.s0);
+ res1 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s1, a1.s1, a2.s1, a3.s1, a4.s1, a5.s1, a6.s1, a7.s1);
#if N0 > 2
- res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
- res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
+ res2 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s2, a1.s2, a2.s2, a3.s2, a4.s2, a5.s2, a6.s2, a7.s2);
+ res3 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s3, a1.s3, a2.s3, a3.s3, a4.s3, a5.s3, a6.s3, a7.s3);
#endif // N0 > 2
#if N0 > 4
- res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
- res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
- res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
- res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
+ res4 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s4, a1.s4, a2.s4, a3.s4, a4.s4, a5.s4, a6.s4, a7.s4);
+ res5 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s5, a1.s5, a2.s5, a3.s5, a4.s5, a5.s5, a6.s5, a7.s5);
+ res6 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s6, a1.s6, a2.s6, a3.s6, a4.s6, a5.s6, a6.s6, a7.s6);
+ res7 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s7, a1.s7, a2.s7, a3.s7, a4.s7, a5.s7, a6.s7, a7.s7);
#endif // N0 > 4
#if N0 > 8
- res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
- res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
- resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
- resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
- resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
- resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
- resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
- resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
+ res8 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s8, a1.s8, a2.s8, a3.s8, a4.s8, a5.s8, a6.s8, a7.s8);
+ res9 = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.s9, a1.s9, a2.s9, a3.s9, a4.s9, a5.s9, a6.s9, a7.s9);
+ resA = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sA, a1.sA, a2.sA, a3.sA, a4.sA, a5.sA, a6.sA, a7.sA);
+ resB = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sB, a1.sB, a2.sB, a3.sB, a4.sB, a5.sB, a6.sB, a7.sB);
+ resC = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sC, a1.sC, a2.sC, a3.sC, a4.sC, a5.sC, a6.sC, a7.sC);
+ resD = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sD, a1.sD, a2.sD, a3.sD, a4.sD, a5.sD, a6.sD, a7.sD);
+ resE = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sE, a1.sE, a2.sE, a3.sE, a4.sE, a5.sE, a6.sE, a7.sE);
+ resF = (VEC_DATA_TYPE(DATA_TYPE, K0))(a0.sF, a1.sF, a2.sF, a3.sF, a4.sF, a5.sF, a6.sF, a7.sF);
#endif // N0 > 8
#elif K0 == 16 // N0 == 16
@@ -832,6 +832,471 @@ __kernel void gemm_reshape_rhs_matrix_t(TENSOR3D_DECLARATION(src),
#endif // defined(TRANSPOSE)
#endif // defined(K0) && defined(N0) && defined(H0) && defined(DATA_TYPE) && defined(SRC_HEIGHT)
+#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+
+#define ARM_DOT(x, y, val) \
+ ({ \
+ val = fma(x.s0, y.s0, val); \
+ val = fma(x.s1, y.s1, val); \
+ val = fma(x.s2, y.s2, val); \
+ val = fma(x.s3, y.s3, val); \
+ })
+
+#if K0 == 4
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT(a, b, c); \
+ })
+#elif K0 == 8 // K0 == 8
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT((a).s0123, (b).s0123, c); \
+ ARM_DOT((a).s4567, (b).s4567, c); \
+ })
+#elif K0 == 16 // K0 == 16
+#define ARM_DOT_K0(a, b, c) \
+ ({ \
+ ARM_DOT((a).s0123, (b).s0123, c); \
+ ARM_DOT((a).s4567, (b).s4567, c); \
+ ARM_DOT((a).s89AB, (b).s89AB, c); \
+ ARM_DOT((a).sCDEF, (b).sCDEF, c); \
+ })
+#else // K0 not supported
+#error "K0 value not supported"
+#endif // K0 conditions
+
+#if N0 == 2
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ })
+#elif N0 == 4 // N0 == 4
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ })
+#elif N0 == 8 // N0 == 8
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ })
+#elif N0 == 16 // N0 == 16
+#define ARM_DOT_K0XN0(a, b, c) \
+ ({ \
+ ARM_DOT_K0((a), (b##0), (c.s0)); \
+ ARM_DOT_K0((a), (b##1), (c.s1)); \
+ ARM_DOT_K0((a), (b##2), (c.s2)); \
+ ARM_DOT_K0((a), (b##3), (c.s3)); \
+ ARM_DOT_K0((a), (b##4), (c.s4)); \
+ ARM_DOT_K0((a), (b##5), (c.s5)); \
+ ARM_DOT_K0((a), (b##6), (c.s6)); \
+ ARM_DOT_K0((a), (b##7), (c.s7)); \
+ ARM_DOT_K0((a), (b##8), (c.s8)); \
+ ARM_DOT_K0((a), (b##9), (c.s9)); \
+ ARM_DOT_K0((a), (b##A), (c.sA)); \
+ ARM_DOT_K0((a), (b##B), (c.sB)); \
+ ARM_DOT_K0((a), (b##C), (c.sC)); \
+ ARM_DOT_K0((a), (b##D), (c.sD)); \
+ ARM_DOT_K0((a), (b##E), (c.sE)); \
+ ARM_DOT_K0((a), (b##F), (c.sF)); \
+ })
+#else // N0 not supported
+#error "N0 value not supported"
+#endif // N0 conditions
+
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
+ * The LHS matrix must be reshaped with @ref CLGEMMReshapeLHSMatrixKernel and the M0xK0 must be NOT transposed
+ * The RHS matrix must be reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the K0xN0 must be transposed
+ *
+ * @note The number of columns in the RHS matrix NOT reshaped needs to be passed at compile time using -DK (i.e. -Dk=128).
+ * @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (i.e. -DM0=4, -DN0=8, -DK0=4).
+ * @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (i.e. -DV0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (i.e. -DH0=2)
+ * @note If the M0xK0 blocks in the reshaped LHS matrix have been interleaved, the option -DLHS_INTERLEAVE must passed at compile time.
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 2, 4, 8, 16
+ * - K0 = 4, 8, 16
+ *
+ * @note In case the output has to be reinterpreted as a 3D tensor (i.e. output of convolution layer), the following information must be passed at compile time:
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix NOT reshaped
+ *
+ * @param[in] lhs_ptr Pointer to the LHS reshaped matrix. Supported data type: F16/F32
+ * @param[in] lhs_stride_x Stride of the LHS reshaped matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS reshaped matrix
+ * @param[in] rhs_ptr Pointer to the RHS reshaped matrix. Supported data type: same as @p src0_ptr
+ * @param[in] rhs_stride_x Stride of the RHS reshaped matrix in X dimension (in bytes)
+ * @param[in] rhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] rhs_stride_y Stride of the RHS reshaped matrix in Y dimension (in bytes)
+ * @param[in] rhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] rhs_offset_first_element_in_bytes The offset of the first element in the RHS reshaped matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: S32
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
+ IMAGE_DECLARATION(rhs),
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+ uint dst_stride_z
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Block size
+#define LHS_BLOCK_SIZE ((K0) * (M0))
+
+#if defined(LHS_INTERLEAVE)
+#define LHS_OFFSET_X (K0)
+#define LHS_STEP_X ((K0) * (V0))
+#define LHS_STEP_LOOP (1)
+#else // defined(INTERLEAVE)
+#define LHS_OFFSET_X (LHS_BLOCK_SIZE)
+#define LHS_STEP_X (K0)
+#define LHS_STEP_LOOP (V0)
+#endif // defined(INTERLEAVE)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (K0)
+#define RHS_STEP_X ((K0) * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (K0)
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ // Compute LHS matrix address
+ __global uchar *lhs_addr = lhs_ptr + lhs_offset_first_element_in_bytes + (get_global_id(1) % V0) * (uint)LHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(1) / V0) * (uint)lhs_stride_y +
+ (get_global_id(2) * lhs_stride_z);
+
+ // Compute RHS matrix address
+ __global uchar *rhs_addr = rhs_ptr + rhs_offset_first_element_in_bytes + (get_global_id(0) % H0) * (uint)RHS_OFFSET_X * sizeof(DATA_TYPE) + (get_global_id(0) / (uint)H0) * rhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ rhs_addr += (get_global_id(2) % MATRIX_B_DEPTH) * rhs_stride_z;
+#else // defined(MATRIX_B_DEPTH)
+ rhs_addr += get_global_id(2) * rhs_stride_z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Initialize the accumulators
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c0 = 0;
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c1 = 0;
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c2 = 0;
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c3 = 0;
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c4 = 0;
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c5 = 0;
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c6 = 0;
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ c7 = 0;
+#endif // M0 > 7
+
+ for(int i = 0; i < K; i += K0)
+ {
+ // Supported cases (M0, K0):
+ // 2,4 - 2,8 - 2,16
+ // 3,4 - 3,8 - 3,16
+ // 4,4 - 4,8 - 4,16
+ // 5,4 - 5,8 - 5,16
+ // 6,4 - 6,8 - 6,16
+ // Load values from LHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a0 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 0 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a1 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 1 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a2 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 2 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a3 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 3 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a4 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 4 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a5 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 5 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a6 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 6 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ a7 = VLOAD(K0)(0, (__global DATA_TYPE *)(lhs_addr + 7 * LHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // M0 > 7
+
+ // Load values from RHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b0 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b1 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#if N0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b2 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b3 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 2
+#if N0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b4 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b5 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b6 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b7 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 4
+#if N0 > 8
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b8 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ b9 = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bA = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bB = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bC = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bD = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bE = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ bF = VLOAD(K0)(0, (__global DATA_TYPE *)(rhs_addr + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
+#endif // N0 > 8
+
+ // Accumulate
+ ARM_DOT_K0XN0(a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(a7, b, c7);
+#endif // M0 > 7
+
+ lhs_addr += (M0 * LHS_STEP_X * LHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ rhs_addr += (N0 * RHS_STEP_X * RHS_STEP_LOOP) * sizeof(DATA_TYPE);
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * dst_stride_y);
+
+ uint zout0 = 0;
+ uint zout1 = 0;
+ uint zout2 = 0;
+ uint zout3 = 0;
+ uint zout4 = 0;
+ uint zout5 = 0;
+ uint zout6 = 0;
+ uint zout7 = 0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // Since we store a 2D output tile in a 3D tensor, we need to check when the plane changes across the z dimension
+ // in order to take into account the presence of possible cross plane paddings
+ //
+ // | |
+ // | plane0 |
+ // | |
+ // |__________________|
+ // |******************|
+ // | cross_plane_pad |
+ // |******************|
+ // | |
+ // | plane1 |
+ // | |
+ // |__________________|
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ zout0 = (0 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout0 = min((uint)(DEPTH_GEMM3D - 1), zout0);
+ zout0 *= (dst_cross_plane_pad * dst_stride_z);
+#if M0 > 1
+ zout1 = (1 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout1 = min((uint)(DEPTH_GEMM3D - 1), zout1);
+ zout1 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 1
+#if M0 > 2
+ zout2 = (2 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout2 = min((uint)(DEPTH_GEMM3D - 1), zout2);
+ zout2 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 2
+#if M0 > 3
+ zout3 = (3 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout3 = min((uint)(DEPTH_GEMM3D - 1), zout3);
+ zout3 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 3
+#if M0 > 4
+ zout4 = (4 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout4 = min((uint)(DEPTH_GEMM3D - 1), zout4);
+ zout4 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 4
+#if M0 > 5
+ zout5 = (5 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout5 = min((uint)(DEPTH_GEMM3D - 1), zout5);
+ zout5 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 5
+#if M0 > 6
+ zout6 = (6 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout6 = min((uint)(DEPTH_GEMM3D - 1), zout6);
+ zout6 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 6
+#if M0 > 6
+ zout7 = (7 + (uint)(get_global_id(1) * (uint)M0)) / (uint)HEIGHT_GEMM3D;
+ zout7 = min((uint)(DEPTH_GEMM3D - 1), zout7);
+ zout7 *= (dst_cross_plane_pad * dst_stride_z);
+#endif // M0 > 7
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += get_global_id(2) * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += get_global_id(2) * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ c0 = c0 * (DATA_TYPE)ALPHA;
+#if M0 > 1
+ c1 = c1 * (DATA_TYPE)ALPHA;
+#endif // M0 > 1
+#if M0 > 2
+ c2 = c2 * (DATA_TYPE)ALPHA;
+#endif // M0 > 2
+#if M0 > 3
+ c3 = c3 * (DATA_TYPE)ALPHA;
+#endif // M0 > 3
+#if M0 > 4
+ c4 = c4 * (DATA_TYPE)ALPHA;
+#endif // M0 > 4
+#if M0 > 5
+ c5 = c5 * (DATA_TYPE)ALPHA;
+#endif // M0 > 5
+#if M0 > 6
+ c6 = c6 * (DATA_TYPE)ALPHA;
+#endif // M0 > 5
+#if M0 > 7
+ c7 = c7 * (DATA_TYPE)ALPHA;
+#endif // M0 > 7
+#endif // defined(ALPHA)
+
+ // Store output block
+ VSTORE(N0)
+ (c0, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y + zout0));
+#if M0 > 1
+ VSTORE(N0)
+ (c1, 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y + zout1));
+#endif // M0 > 1
+#if M0 > 2
+ VSTORE(N0)
+ (c2, 0, (__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y + zout2));
+#endif // M0 > 2
+#if M0 > 3
+ VSTORE(N0)
+ (c3, 0, (__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y + zout3));
+#endif // M0 > 3
+#if M0 > 4
+ VSTORE(N0)
+ (c4, 0, (__global DATA_TYPE *)(dst_addr + 4 * dst_stride_y + zout4));
+#endif // M0 > 4
+#if M0 > 5
+ VSTORE(N0)
+ (c5, 0, (__global DATA_TYPE *)(dst_addr + 5 * dst_stride_y + zout5));
+#endif // M0 > 5
+#if M0 > 6
+ VSTORE(N0)
+ (c6, 0, (__global DATA_TYPE *)(dst_addr + 6 * dst_stride_y + zout6));
+#endif // M0 > 6
+#if M0 > 7
+ VSTORE(N0)
+ (c7, 0, (__global DATA_TYPE *)(dst_addr + 7 * dst_stride_y + zout7));
+#endif // M0 > 7
+
+#undef LHS_BLOCK_SIZE
+#undef LHS_OFFSET_X
+#undef LHS_STEP_X
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#endif // defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(K) && defined(DATA_TYPE)
+
#if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
#if ELEMENT_SIZE == 1