aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGian Marco Iodice <gianmarco.iodice@arm.com>2020-06-19 16:56:57 +0100
committerGian Marco Iodice <gianmarco.iodice@arm.com>2020-06-29 22:06:22 +0000
commit781cba7f33e056b1ca470ab34eb478177768eaf4 (patch)
tree58a33f8a3a98904a0463f601e5faaa1ce24c1baf
parentc5b6d8822da0fae1807dda46674f68d00db8e321 (diff)
downloadComputeLibrary-781cba7f33e056b1ca470ab34eb478177768eaf4.tar.gz
COMPMID-3322: Add cl_image support for GEMMReshapedOnlyRHS NT
COMPMID-3323: Add cl_image support for GEMMReshapedOnlyRHS T - Added support for cl_image in CLGEMMMatrixMultiplyReshapedInlyRHSKernel (both NT and T kernels) - Extended the tests for the validating rhs_info.export_to_cl_image = true - Updated doxygen documentation in CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h Change-Id: If253794323aac072d84a4d8680b9a2339ab7ad92 Signed-off-by: Gian Marco Iodice <gianmarco.iodice@arm.com> Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/3437 Tested-by: Arm Jenkins <bsgcomp@arm.com> Reviewed-by: Michele Di Giorgio <michele.digiorgio@arm.com> Reviewed-by: Georgios Pinitas <georgios.pinitas@arm.com> Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
-rw-r--r--Android.bp1
-rw-r--r--arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h43
-rw-r--r--src/core/CL/CLKernelLibrary.cpp2
-rw-r--r--src/core/CL/CLUtils.cpp50
-rw-r--r--src/core/CL/CLUtils.h56
-rw-r--r--src/core/CL/cl_kernels/gemm.cl835
-rw-r--r--src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp22
-rw-r--r--src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.cpp101
-rw-r--r--tests/validation/CL/GEMMMatrixMultiplyReshapedOnlyRHS.cpp346
-rw-r--r--tests/validation/fixtures/GEMMFixture.h26
10 files changed, 1298 insertions, 184 deletions
diff --git a/Android.bp b/Android.bp
index 2d12d27211..e22aaea513 100644
--- a/Android.bp
+++ b/Android.bp
@@ -55,6 +55,7 @@ cc_library_static {
"src/core/CL/CLCoreRuntimeContext.cpp",
"src/core/CL/CLHelpers.cpp",
"src/core/CL/CLKernelLibrary.cpp",
+ "src/core/CL/CLUtils.cpp",
"src/core/CL/ICLDistribution1D.cpp",
"src/core/CL/ICLHOG.cpp",
"src/core/CL/ICLKernel.cpp",
diff --git a/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h b/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h
index f7d314a039..8f60557c01 100644
--- a/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h
+++ b/arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.h
@@ -51,7 +51,19 @@ public:
CLGEMMMatrixMultiplyReshapedOnlyRHSKernel &operator=(CLGEMMMatrixMultiplyReshapedOnlyRHSKernel &&) = default;
/** Initialise the kernel's input and output.
*
- * @param[in] input0 Input tensor containing the LHS matrix. Data type supported: F16/F32. The number of dimensions for the LHS matrix must be less or equal than 4.
+ * @note If rhs_info.export_to_cl_image = true, this OpenCL kernel will fetch the RHS data using the OpenCL read_image built-in function.
+ * Reading from the OpenCL image object can increase the performance. However, since the OpenCL image object is created importing the OpenCL buffer,
+ * the following conditions are required:
+ * -# rhs_info.n0 can only be 4, 8 and 16
+ * -# rhs_info.k0 can only be 4, 8 and 16
+ * -# Data type can only be F32
+ * -# The platform should support the OpenCL cl_khr_image2d_from_buffer extension
+ * -# The stride Y for the input1 should satisfy the OpenCL pitch alignment requirement
+ * -# input1 width should be less or equal to (CL_DEVICE_IMAGE2D_MAX_WIDTH * 4)
+ * -# input1 (height * depth) should be less or equal to CL_DEVICE_IMAGE2D_MAX_HEIGHT
+ *
+ * @param[in] input0 Input tensor containing the LHS matrix. Data type supported: F16/F32 (only F32 if rhs_info.export_to_cl_image = true).
+ * The number of dimensions for the LHS matrix must be less or equal than 4.
* @param[in] input1 Input tensor containing the RHS reshaped matrix. Data type supported: same as @p input0. The number of dimensions for the RHS matrix must be less or equal than 3.
* @param[in] input2 Input tensor containing the bias matrix. Data type supported: same as @p input0.
* @param[out] output Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0
@@ -70,8 +82,20 @@ public:
const GEMMKernelInfo &gemm_info);
/** Initialise the kernel's input and output.
*
+ * @note If rhs_info.export_to_cl_image = true, this OpenCL kernel will fetch the RHS data using the OpenCL read_image built-in function.
+ * Reading from the OpenCL image object can increase the performance. However, since the OpenCL image object is created importing the OpenCL buffer,
+ * the following conditions are required:
+ * -# rhs_info.n0 can only be 4, 8 and 16
+ * -# rhs_info.k0 can only be 4, 8 and 16
+ * -# Data type can only be F32
+ * -# The platform should support the OpenCL cl_khr_image2d_from_buffer extension
+ * -# The stride Y for the input1 should satisfy the OpenCL pitch alignment requirement
+ * -# input1 width should be less or equal to (CL_DEVICE_IMAGE2D_MAX_WIDTH * 4)
+ * -# input1 (height * depth) should be less or equal to CL_DEVICE_IMAGE2D_MAX_HEIGHT
+ *
* @param[in] compile_context The compile context to be used.
- * @param[in] input0 Input tensor containing the LHS matrix. Data type supported: F16/F32. The number of dimensions for the LHS matrix must be less or equal than 4.
+ * @param[in] input0 Input tensor containing the LHS matrix. Data type supported: F16/F32 (only F32 if rhs_info.export_to_cl_image = true).
+ * The number of dimensions for the LHS matrix must be less or equal than 4.
* @param[in] input1 Input tensor containing the RHS reshaped matrix. Data type supported: same as @p input0. The number of dimensions for the RHS matrix must be less or equal than 3.
* @param[in] input2 Input tensor containing the bias matrix. Data type supported: same as @p input0.
* @param[out] output Output tensor to store the result of matrix multiplication. Data type supported: same as @p input0
@@ -91,7 +115,19 @@ public:
const GEMMKernelInfo &gemm_info);
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel
*
- * @param[in] input0 Input tensor info for the LHS matrix. Data type supported: F16/F32. The number of dimensions for the LHS matrix must be less or equal than 4.
+ * @note If rhs_info.export_to_cl_image = true, this OpenCL kernel will fetch the RHS data using the OpenCL read_image built-in function.
+ * Reading from the OpenCL image object can increase the performance. However, since the OpenCL image object is created importing the OpenCL buffer,
+ * the following conditions are required:
+ * -# rhs_info.n0 can only be 4, 8 and 16
+ * -# rhs_info.k0 can only be 4, 8 and 16
+ * -# Data type can only be F32
+ * -# The platform should support the OpenCL cl_khr_image2d_from_buffer extension
+ * -# The stride Y for the input1 should satisfy the OpenCL pitch alignment requirement
+ * -# input1 width should be less or equal to (CL_DEVICE_IMAGE2D_MAX_WIDTH * 4)
+ * -# input1 (height * depth) should be less or equal to CL_DEVICE_IMAGE2D_MAX_HEIGHT
+ *
+ * @param[in] input0 Input tensor info for the LHS matrix. Data type supported: F16/F32 (only F32 if rhs_info.export_to_cl_image = true).
+ * The number of dimensions for the LHS matrix must be less or equal than 4.
* @param[in] input1 Input tensor info for the RHS reshaped matrix. Data type supported: same as @p input0. The number of dimensions for the RHS matrix must be less or equal than 3.
* @param[in] input2 Input tensor info containing the bias matrix. Data type supported: same as @p input0.
* @param[in] output Output tensor info. Data type supported: same as @p input0
@@ -125,6 +161,7 @@ private:
bool _use_dummy_work_items;
bool _add_bias;
bool _broadcast_bias;
+ bool _export_to_cl_image;
};
} // namespace arm_compute
#endif /*ARM_COMPUTE_CLGEMMMATRIXMULTIPLYRESHAPEDONLYRHSKERNEL_H*/
diff --git a/src/core/CL/CLKernelLibrary.cpp b/src/core/CL/CLKernelLibrary.cpp
index 5efc4683a2..d4ff800234 100644
--- a/src/core/CL/CLKernelLibrary.cpp
+++ b/src/core/CL/CLKernelLibrary.cpp
@@ -224,7 +224,9 @@ const std::map<std::string, std::string> CLKernelLibrary::_kernel_program_map =
{ "gemm_mm_reshaped_lhs_t_rhs_nt", "gemm.cl" },
{ "gemm_mm_reshaped_lhs_t_rhs_nt_texture", "gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_nt", "gemm.cl" },
+ { "gemm_mm_reshaped_only_rhs_nt_texture", "gemm.cl" },
{ "gemm_mm_reshaped_only_rhs_t", "gemm.cl" },
+ { "gemm_mm_reshaped_only_rhs_t_texture", "gemm.cl" },
{ "gemm_lc_vm_f32", "gemm.cl" },
{ "gemm_reshape_lhs_matrix_nt", "gemm.cl" },
{ "gemm_reshape_lhs_matrix_t", "gemm.cl" },
diff --git a/src/core/CL/CLUtils.cpp b/src/core/CL/CLUtils.cpp
new file mode 100644
index 0000000000..80a0019bf5
--- /dev/null
+++ b/src/core/CL/CLUtils.cpp
@@ -0,0 +1,50 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Types.h"
+
+#include "src/core/CL/CLUtils.h"
+
+cl::Image2D arm_compute::create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, cl_channel_type data_type, size_t image_row_pitch)
+{
+ cl_mem cl_image;
+ cl_int err = CL_SUCCESS;
+
+ const cl_image_format format = { CL_RGBA, data_type };
+
+ cl_image_desc desc;
+ memset(&desc, 0, sizeof(desc));
+ desc.image_type = CL_MEM_OBJECT_IMAGE2D;
+ desc.mem_object = buffer();
+ desc.image_row_pitch = image_row_pitch;
+ desc.image_width = shape2d[0];
+ desc.image_height = shape2d[1];
+
+ cl_image = clCreateImage(ctx(), CL_MEM_READ_ONLY, &format, &desc, nullptr, &err);
+
+ ARM_COMPUTE_UNUSED(err);
+ ARM_COMPUTE_ERROR_ON_MSG(err != CL_SUCCESS, "Error during the creation of CL image from buffer");
+
+ return cl::Image2D(cl_image);
+}
diff --git a/src/core/CL/CLUtils.h b/src/core/CL/CLUtils.h
new file mode 100644
index 0000000000..676daade12
--- /dev/null
+++ b/src/core/CL/CLUtils.h
@@ -0,0 +1,56 @@
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#ifndef ARM_COMPUTE_CL_CLUTILS_H
+#define ARM_COMPUTE_CL_CLUTILS_H
+
+#include "arm_compute/core/CL/OpenCL.h"
+
+namespace arm_compute
+{
+class TensorShape;
+
+/** Create a cl::Image2D object from an OpenCL buffer
+ *
+ * @note The following conditions are required to create a OpenCL image object from OpenCL buffer,
+ * -# The platform should support the OpenCL cl_khr_image2d_from_buffer extension
+ * -# The stride Y for the input1 should satisfy the OpenCL pitch alignment requirement
+ * -# input width should be less or equal to (CL_DEVICE_IMAGE2D_MAX_WIDTH * 4)
+ * -# input height should be less or equal to CL_DEVICE_IMAGE2D_MAX_HEIGHT
+ *
+ * It is user responsibility to ensure the above conditions are satisfied since no checks are performed within this function
+ *
+ * @param[in] ctx cl::Context object
+ * @param[in] buffer cl::Buffer object from which the OpenCL image2d object is created
+ * @param[in] shape2d 2D tensor shape
+ * @param[in] data_type cl_channel_type to use. Only supported CL_FLOAT
+ * @param[in] image_row_pitch Image row pitch (a.k.a. stride Y) to be used in the image2d object
+ *
+ * @return cl::Image2D object
+ */
+cl::Image2D create_image2d_from_buffer(const cl::Context &ctx, const cl::Buffer &buffer, const TensorShape &shape2d, cl_channel_type data_type, size_t image_row_pitch);
+
+} // arm_compute
+
+#endif /* ARM_COMPUTE_CL_CLUTILS_H */
diff --git a/src/core/CL/cl_kernels/gemm.cl b/src/core/CL/cl_kernels/gemm.cl
index b0b8b2c6b0..3c017325b1 100644
--- a/src/core/CL/cl_kernels/gemm.cl
+++ b/src/core/CL/cl_kernels/gemm.cl
@@ -1293,94 +1293,423 @@ __kernel void gemm_mm_reshaped_only_rhs_t(IMAGE_DECLARATION(lhs),
#undef RHS_STEP_X
}
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices. The RHS matrix is stored in OpenCL image
+ * The LHS matrix is NOT reshaped
+ * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is transposed
+ *
+ * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
+ * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
+ * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90)
+ * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
+ * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
+ * could be different from the value returned by get_image_height(rhs_img).
+ * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
+ * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 4, 8, 16
+ * - K0 = 4, 8, 16
+ * - H0 >= 1
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
+ *
+ * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32
+ * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
+ * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr
+ * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_reshaped_only_rhs_t_texture(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(K0)
+
+#define LEFTOVER_K (K % K0)
+
+ // Block size
+#define RHS_BLOCK_SIZE (PIXEL_UNIT * (N0))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X (PIXEL_UNIT * (H0))
+#define RHS_STEP_LOOP (1)
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X PIXEL_UNIT
+#define RHS_STEP_LOOP (H0)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (get_global_id(2) % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = get_global_id(2);
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (get_global_id(0) % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (get_global_id(0) / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zlhs, 0);
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+ // The plane (zlhs) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zlhs, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zlhs);
+
+ // Load values from RHS matrix stored in a cl_image
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(K0, a1, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(K0, a2, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(K0, a3, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(K0, a4, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(K0, a5, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(K0, a6, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(K0, a7, b, c7);
+#endif // M0 > 7
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ x_rhs += N0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+#if LEFTOVER_K != 0
+ // Note: We cannot read out-of-bound elements from the RHS matrix because
+ // the RHS width is always multiple of K0. This is not be true for the LHS matrix
+
+ union UNION_VEC_TYPE
+ {
+ DATA_TYPE s[K0];
+ VEC_DATA_TYPE(DATA_TYPE, K0)
+ v;
+ };
+
+ union UNION_VEC_TYPE a0 = {.v = 0 };
+#if M0 > 1
+ union UNION_VEC_TYPE a1 = {.v = 0 };
+#endif // M0 > 1
+#if M0 > 2
+ union UNION_VEC_TYPE a2 = {.v = 0 };
+#endif // M0 > 2
+#if M0 > 3
+ union UNION_VEC_TYPE a3 = {.v = 0 };
+#endif // M0 > 3
+#if M0 > 4
+ union UNION_VEC_TYPE a4 = {.v = 0 };
+#endif // M0 > 4
+#if M0 > 5
+ union UNION_VEC_TYPE a5 = {.v = 0 };
+#endif // M0 > 5
+#if M0 > 6
+ union UNION_VEC_TYPE a6 = {.v = 0 };
+#endif // M0 > 6
+#if M0 > 7
+ union UNION_VEC_TYPE a7 = {.v = 0 };
+#endif // M0 > 7
+
+ REPEAT_VAR_INIT_TO_CONST(N0, VEC_DATA_TYPE(DATA_TYPE, K0), b, 0);
+
+ // Load from RHS matrix
+ LOAD_TEXTURE2D(N0, PIXEL_UNIT, DATA_TYPE, b, rhs_img, x_rhs, y_rhs, RHS_STEP_X, 0);
+
+ // Load from LHS matrix
+ for(int k = 0; k < LEFTOVER_K; ++k)
+ {
+ a0.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zlhs0);
+#if M0 > 1
+ a1.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zlhs1);
+#endif // M0 > 1
+#if M0 > 2
+ a2.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zlhs2);
+#endif // M0 > 2
+#if M0 > 3
+ a3.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zlhs3);
+#endif // M0 > 3
+#if M0 > 4
+ a4.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zlhs4);
+#endif // M0 > 4
+#if M0 > 5
+ a5.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zlhs5);
+#endif // M0 > 5
+#if M0 > 6
+ a6.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zlhs6);
+#endif // M0 > 6
+#if M0 > 7
+ a7.s[k] = *(__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zlhs7);
+#endif // M0 > 7
+
+ lhs_offset += sizeof(DATA_TYPE);
+ }
+
+ // Accumulate
+ ARM_DOT_K0XN0(K0, a0.v, b, c0);
+#if M0 > 1
+ ARM_DOT_K0XN0(K0, a1.v, b, c1);
+#endif // M0 > 1
+#if M0 > 2
+ ARM_DOT_K0XN0(K0, a2.v, b, c2);
+#endif // M0 > 2
+#if M0 > 3
+ ARM_DOT_K0XN0(K0, a3.v, b, c3);
+#endif // M0 > 3
+#if M0 > 4
+ ARM_DOT_K0XN0(K0, a4.v, b, c4);
+#endif // M0 > 4
+#if M0 > 5
+ ARM_DOT_K0XN0(K0, a5.v, b, c5);
+#endif // M0 > 5
+#if M0 > 6
+ ARM_DOT_K0XN0(K0, a6.v, b, c6);
+#endif // M0 > 6
+#if M0 > 7
+ ARM_DOT_K0XN0(K0, a7.v, b, c7);
+#endif // M0 > 7
+
+#endif // LEFTOVER_K != 0
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(M0, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store output block
+ STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+#undef LEFTOVER_K
+#undef PIXEL_UNIT
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
+
#define VFMA(a, b, c) \
({ \
c = fma(a, b, c); \
})
#if M0 == 1
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
})
#elif M0 == 2 // M0 == 2
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
})
#elif M0 == 3 // M0 == 3
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
})
#elif M0 == 4 // M0 == 4
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
})
#elif M0 == 5 // M0 == 5
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
})
#elif M0 == 6 // M0 == 6
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
})
#elif M0 == 7 // M0 == 7
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
})
#elif M0 == 8 // M0 == 8
-#define LD_RHS_VFMA_M0xN0(i, a, c) \
- ({ \
- VEC_DATA_TYPE(DATA_TYPE, N0) \
- b = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0x##i * RHS_STEP_X * sizeof(DATA_TYPE))); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
- VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
+#define VFMA_M0xN0(i, a, b, c) \
+ ({ \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##0).s##i), b, (c##0)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##1).s##i), b, (c##1)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##2).s##i), b, (c##2)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##3).s##i), b, (c##3)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##4).s##i), b, (c##4)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##5).s##i), b, (c##5)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##6).s##i), b, (c##6)); \
+ VFMA((VEC_DATA_TYPE(DATA_TYPE, N0))((a##7).s##i), b, (c##7)); \
})
#else // M0 not supported
#error "M0 not supported"
@@ -1539,29 +1868,48 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
// Load values from LHS matrix
LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
- LD_RHS_VFMA_M0xN0(0, a, c);
- LD_RHS_VFMA_M0xN0(1, a, c);
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(0, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 1 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(1, a, b0, c);
#if K0 > 2
- LD_RHS_VFMA_M0xN0(2, a, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 2 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(2, a, b0, c);
#endif // K0 > 2
#if K0 > 3
- LD_RHS_VFMA_M0xN0(3, a, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 3 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(3, a, b0, c);
#endif // K0 > 3
#if K0 > 4
- LD_RHS_VFMA_M0xN0(4, a, c);
- LD_RHS_VFMA_M0xN0(5, a, c);
- LD_RHS_VFMA_M0xN0(6, a, c);
- LD_RHS_VFMA_M0xN0(7, a, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 4 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(4, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 5 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(5, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 6 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(6, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 7 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(7, a, b0, c);
#endif // K0 > 4
#if K0 > 8
- LD_RHS_VFMA_M0xN0(8, a, c);
- LD_RHS_VFMA_M0xN0(9, a, c);
- LD_RHS_VFMA_M0xN0(A, a, c);
- LD_RHS_VFMA_M0xN0(B, a, c);
- LD_RHS_VFMA_M0xN0(C, a, c);
- LD_RHS_VFMA_M0xN0(D, a, c);
- LD_RHS_VFMA_M0xN0(E, a, c);
- LD_RHS_VFMA_M0xN0(F, a, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 8 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(8, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 9 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(9, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 10 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(A, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 11 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(B, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 12 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(C, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 13 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(D, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 14 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(E, a, b0, c);
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 15 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(F, a, b0, c);
#endif // K0 > 8
lhs_offset += K0 * sizeof(DATA_TYPE);
@@ -1603,7 +1951,11 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
#endif // M0 > 7
- LD_RHS_VFMA_M0xN0(0, a, c);
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = VLOAD(N0)(0, (__global DATA_TYPE *)(rhs_ptr + rhs_offset + 0 * RHS_STEP_X * sizeof(DATA_TYPE)));
+ VFMA_M0xN0(0, a, b0, c);
lhs_offset += sizeof(DATA_TYPE);
rhs_offset += RHS_STEP_X * sizeof(DATA_TYPE);
@@ -1674,6 +2026,312 @@ __kernel void gemm_mm_reshaped_only_rhs_nt(IMAGE_DECLARATION(lhs),
#undef RHS_OFFSET_X
#undef RHS_STEP_X
}
+
+#if defined(OPENCL_IMAGE_SUPPORT)
+/** This OpenCL kernel computes the matrix multiplication between 2 matrices.
+ * The LHS matrix is NOT reshaped
+ * The RHS is reshaped with @ref CLGEMMReshapeRHSMatrixKernel and the block K0xN0 is NOT transposed
+ *
+ * @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
+ * @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
+ * @note The GEMM's dimensions (M,N and K) must be passed at compile time using -DM, -DN and and -DK (e.g. -DM=52, -DN=30 and -DK=90).
+ * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
+ * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
+ * could be different from the value returned by get_image_height(rhs_img).
+ * @note The block's dimensions used for reshaping the RHS matrix (N0 and K0) must be passed at compile time using -DN0 and -DK0 (e.g. -DN0=8, -DK0=4).
+ * @note The number of M0 rows to process must be passed at compile time using -DM0 (e.g. -DM0=2)
+ * @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
+ * @note If the K0xN0 blocks in the reshaped RHS matrix have been interleaved, the option -DRHS_INTERLEAVE must passed at compile time.
+ * @note Only the following configurations of M0, N0 and K0 are currently supported:
+ * - M0 = 1, 2, 3, 4, 5, 6, 7, 8
+ * - N0 = 4, 8, 16
+ * - K0 = 4, 8, 16
+ * - H0 >= 1
+ *
+ * @note If the activation type were passed at compile time through -DACTIVATION_TYPE (e.g. -DACTIVATION_TYPE=RELU), A, B variables, required by some activation functions, should be passed at compile time as well using -DA_VAL= and -DB_VAL= respectively.
+ * The activation function is performed after the bias addition
+ * @note In case the input or output have to be reinterpreted as a 3D tensor, the following information must be passed at compile time:
+ * -# REINTERPRET_INPUT_AS_3D: To reinterpret the input as 3D
+ * -# REINTERPRET_OUTPUT_AS_3D: To reinterpret the output as 3D
+ * -# HEIGHT_GEMM3D: The height of the output in case it has to be reinterpreted as a 3D tensor.
+ * -# DEPTH_GEMM3D: The depth of the output in case it has to be reinterpreted as a 3D tensor
+ * (HEIGHT_GEMM3D * DEPTH_GEMM3D) = columns LHS matrix
+ *
+ * @param[in] lhs_ptr Pointer to the LHS matrix. Supported data type: F32
+ * @param[in] lhs_stride_x Stride of the LHS matrix in X dimension (in bytes)
+ * @param[in] lhs_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] lhs_stride_y Stride of the LHS matrix in Y dimension (in bytes)
+ * @param[in] lhs_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] lhs_offset_first_element_in_bytes The offset of the first element in the LHS matrix
+ * @param[in] rhs_img The RHS reshaped matrix as OpenCL image object. Supported data type: same as @p lhs_ptr
+ * @param[in] bias_ptr (Optional) Pointer to the bias matrix. Supported data type: same as @p lhs_ptr
+ * @param[in] bias_stride_x (Optional) Stride of the bias matrix in X dimension (in bytes)
+ * @param[in] bias_step_x (Optional) bias_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] bias_stride_y (Optional) Stride of the bias matrix in Y dimension (in bytes)
+ * @param[in] bias_step_y (Optional) bias_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] bias_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
+ * @param[out] dst_ptr Pointer to the destination matrix Supported data type: same as @p lhs_ptr
+ * @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
+ * @param[in] lhs_stride_z Stride of the LHS matrix in Z dimension (in bytes)
+ * @param[in] rhs_stride_z Stride of the RHS reshaped matrix in Z dimension (in bytes)
+ * @param[in] bias_stride_z (Optional) Stride of the bias matrix in Z dimension (in bytes)
+ * @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] lhs_cross_plane_pad (Optional) Bottom paddings for LHS matrix in unit of elements (only if defined REINTERPRET_INPUT_AS_3D)
+ * @param[in] dst_cross_plane_pad (Optional) Bottom paddings for the output matrix in unit of elements (only if defined REINTERPRET_OUTPUT_AS_3D)
+ */
+__kernel void gemm_mm_reshaped_only_rhs_nt_texture(IMAGE_DECLARATION(lhs),
+ __read_only image2d_t rhs_img,
+#if defined(BETA)
+ IMAGE_DECLARATION(bias),
+#endif // defined(BETA)
+ IMAGE_DECLARATION(dst),
+ uint lhs_stride_z,
+ uint rhs_stride_z,
+#if defined(BETA)
+ uint bias_stride_z,
+#endif //defined(BETA)
+ uint dst_stride_z
+#if defined(REINTERPRET_INPUT_AS_3D)
+ ,
+ uint lhs_cross_plane_pad
+#endif // REINTERPRET_INPUT_AS_3D
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ ,
+ uint dst_cross_plane_pad
+#endif // REINTERPRET_OUTPUT_AS_3D
+ )
+{
+ // Pixel unit
+#define PIXEL_UNIT CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(N0)
+
+ // Block size
+#define RHS_BLOCK_SIZE ((K0) * (PIXEL_UNIT))
+
+ // RHS offset and step X
+#if defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (PIXEL_UNIT)
+#define RHS_STEP_X ((PIXEL_UNIT) * (H0))
+#else // defined(RHS_INTERLEAVE)
+#define RHS_OFFSET_X (RHS_BLOCK_SIZE)
+#define RHS_STEP_X (PIXEL_UNIT)
+#endif // defined(RHS_INTERLEAVE)
+
+ uint x = get_global_id(0);
+ uint y = get_global_id(1);
+ uint z = get_global_id(2);
+
+#if defined(DUMMY_WORK_ITEMS)
+ if((x * N0 >= N) || (y * M0 >= M))
+ {
+ return;
+ }
+#endif // defined(DUMMY_WORK_ITEMS)
+
+ // Compute LHS matrix address
+ uint lhs_offset = lhs_offset_first_element_in_bytes + y * M0 * (uint)lhs_stride_y;
+
+#if defined(MATRIX_B_DEPTH)
+ // Do not slide matrix B if the matrix B has 3 dimensions and matrix A more than 3
+ const uint z_rhs = (z % MATRIX_B_DEPTH);
+#else // defined(MATRIX_B_DEPTH)
+ const uint z_rhs = z;
+#endif // defined(MATRIX_B_DEPTH)
+
+ // Compute RHS matrix coordinates
+ uint x_rhs = (x % H0) * (uint)RHS_OFFSET_X;
+ const uint y_rhs = (x / (uint)H0) + z_rhs * RHS_HEIGHT;
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zin, 0);
+ REPEAT_VAR_INIT_TO_CONST(16, uint, zero, 0);
+
+#if defined(REINTERPRET_INPUT_AS_3D)
+
+ // The plane (zin) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zin, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, lhs_cross_plane_pad, lhs_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply lhs_stride_z by DEPTH_GEMM3D
+ lhs_offset += z * lhs_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ lhs_offset += z * lhs_stride_z;
+
+#endif // defined(REINTERPRET_INPUT_AS_3D)
+
+ // Initialize the accumulators
+ REPEAT_VAR_INIT_TO_CONST(M0, VEC_DATA_TYPE(DATA_TYPE, N0), c, 0);
+
+ int i = 0;
+ for(; i <= (K - K0); i += K0)
+ {
+ // Load values from LHS matrix
+ LOAD_BLOCK(M0, K0, DATA_TYPE, a, lhs_ptr, lhs_offset, lhs_stride_y, zin);
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(0, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 1 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(1, a, b0, c);
+#if K0 > 2
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 2 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(2, a, b0, c);
+#endif // K0 > 2
+#if K0 > 3
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 3 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(3, a, b0, c);
+#endif // K0 > 3
+#if K0 > 4
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 4 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(4, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 5 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(5, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 6 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(6, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 7 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(7, a, b0, c);
+#endif // K0 > 4
+#if K0 > 8
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 8 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(8, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 9 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(9, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 10 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(A, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 11 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(B, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 12 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(C, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 13 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(D, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 14 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(E, a, b0, c);
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 15 * RHS_STEP_X), (y_rhs));
+ VFMA_M0xN0(F, a, b0, c);
+#endif // K0 > 8
+
+ lhs_offset += K0 * sizeof(DATA_TYPE);
+ x_rhs += K0 * RHS_STEP_X * RHS_STEP_LOOP;
+ }
+
+ // Left-over accumulations
+ for(; i < K; ++i)
+ {
+ // Load values from LHS matrix
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a0 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 0 * lhs_stride_y + zin0));
+#if M0 > 1
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a1 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 1 * lhs_stride_y + zin1));
+#endif // M0 > 1
+#if M0 > 2
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a2 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 2 * lhs_stride_y + zin2));
+#endif // M0 > 2
+#if M0 > 3
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a3 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 3 * lhs_stride_y + zin3));
+#endif // M0 > 3
+#if M0 > 4
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a4 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 4 * lhs_stride_y + zin4));
+#endif // M0 > 4
+#if M0 > 5
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a5 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 5 * lhs_stride_y + zin5));
+#endif // M0 > 5
+#if M0 > 6
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a6 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 6 * lhs_stride_y + zin6));
+#endif // M0 > 6
+#if M0 > 7
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ a7 = *((__global DATA_TYPE *)(lhs_ptr + lhs_offset + 7 * lhs_stride_y + zin7));
+#endif // M0 > 7
+
+ VEC_DATA_TYPE(DATA_TYPE, N0)
+ b0;
+ b0 = READ_IMAGE2D(DATA_TYPE, PIXEL_UNIT, rhs_img, (x_rhs + 0 * RHS_STEP_X), (y_rhs));
+
+ VFMA_M0xN0(0, a, b0, c);
+
+ lhs_offset += sizeof(DATA_TYPE);
+ x_rhs += RHS_STEP_X;
+ }
+
+ __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + (x * (uint)N0 * sizeof(DATA_TYPE)) + (y * (uint)M0 * dst_stride_y);
+
+ REPEAT_VAR_INIT_TO_CONST(8, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
+
+#if defined(REINTERPRET_OUTPUT_AS_3D)
+ // The plane (zout) is calculated dividing M (y * M0) by HEIGHT_GEMM3D
+ CALCULATE_Z_OFFSET(M0, uint, zout, y, HEIGHT_GEMM3D, DEPTH_GEMM3D, dst_cross_plane_pad, dst_stride_y);
+
+ // Add offset for batched GEMM. The batches will be in the fourth dimension and for this reason we
+ // multiply dst_stride_z by DEPTH_GEMM3D
+ dst_addr += z * dst_stride_z * DEPTH_GEMM3D;
+
+#else // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Add offset for batched GEMM
+ dst_addr += z * dst_stride_z;
+
+#endif // defined(REINTERPRET_OUTPUT_AS_3D)
+
+ // Multiply by the weight of matrix-matrix product and store the result
+#if defined(ALPHA)
+ SCALE_BLOCK(M0, DATA_TYPE, c, ALPHA);
+#endif // defined(ALPHA)
+
+ // Add beta*bias
+#if defined(BETA)
+#if defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE));
+
+ LOAD_BLOCK(1, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(1, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias[broadcasted]
+ ADD_BLOCK_BROADCAST(M0, c, bias0);
+
+#else // defined(BROADCAST_BIAS)
+ __global uchar *bias_addr = bias_ptr + bias_offset_first_element_in_bytes + (get_global_id(0) * (uint)N0 * sizeof(DATA_TYPE)) + (get_global_id(1) * (uint)M0 * bias_stride_y) + get_global_id(
+ 2) * bias_stride_z;
+
+ LOAD_BLOCK(M0, N0, DATA_TYPE, bias, bias_addr, 0, bias_stride_y, zero);
+
+#ifndef UNIT_BETA
+ SCALE_BLOCK(M0, DATA_TYPE, bias, BETA);
+#endif // UNIT_BIAS
+
+ // c = c + bias
+ ADD_BLOCK(M0, c, bias);
+
+#endif // defined(BROADCAST_BIAS)
+#endif // defined(BETA)
+
+#if defined(ACTIVATION_TYPE)
+ ACTIVATION_BLOCK(M0, ACTIVATION_TYPE, DATA_TYPE, c, A_VAL, B_VAL);
+#endif // defined(ACTIVATION_TYPE)
+
+ // Store output block
+ STORE_BLOCK(M0, N0, DATA_TYPE, c, dst_addr, dst_stride_y, zout);
+
+#undef RHS_BLOCK_SIZE
+#undef RHS_OFFSET_X
+#undef RHS_STEP_X
+}
+#endif // defined(OPENCL_IMAGE_SUPPORT)
#endif // defined(M0) && defined(N0) && defined(K0) && defined(H0) && defined(DATA_TYPE) && defined(M) && defined(N) && defined(K)
#if defined(M0) && defined(N0) && defined(K0) && defined(V0) && defined(H0) && defined(DATA_TYPE) && defined(DATA_TYPE_ACCUMULATOR) && defined(M) && defined(N)
@@ -2129,6 +2787,9 @@ __kernel void gemm_mm_reshaped_lhs_nt_rhs_t(IMAGE_DECLARATION(lhs),
* @note The F16 computation also supports mixed precision through the option -DMIXED_PRECISION passed at compile time. If enabled, DATA_TYPE_ACCUMULATOR should be set to float
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
* @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
+ * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
+ * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
+ * could be different from the value returned by get_image_height(rhs_img).
* @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
* @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
@@ -2871,9 +3532,11 @@ __kernel void gemm_mm_reshaped_lhs_t_rhs_nt(IMAGE_DECLARATION(lhs),
*
* @note -DOPENCL_IMAGE_SUPPORT must be passed at compile time in order to compile this OpenCL kernel
* @note LHS_TRANSPOSE should be passed at compile time in order to compile this OpenCL kernel (e.g. -DLHS_TRANSPOSE).
- * @note The height of the RHS matrix should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
* @note If the first two dimensions of NDRange have been dispatched with "dummy_work_items" support, the option -DDUMMY_WORK_ITEMS must be passed at compile time.
* @note The GEMM's dimensions M, N and K must be passed at compile time using -DM, -DN and -DK (e.g. -DM=52, -DN=90 and -DK=24).
+ * @note The height of the RHS matrix, defined before creating the OpenCL image object from the OpenCL buffer, should be passed at compile time using -DRHS_HEIGHT=<value> (e.g. -DRHS_HEIGHT=32)
+ * Since we cannot create a 3d image from a buffer, the third dimension could be collapsed with the second dimension so RHS_HEIGHT
+ * could be different from the value returned by get_image_height(rhs_img).
* @note The block's dimensions used for reshaping the LHS matrix and the RHS matrix (M0, N0 and K0) must be passed at compile time using -DM0, -DN0 and -DK0 (e.g. -DM0=4, -DN0=8, -DK0=4).
* @note The number of M0xK0 vertical blocks stored on the same output row of the reshaped LHS matrix must be passed at compile time using -DV0 (e.g. -DV0=2)
* @note The number of K0xN0 horizontal blocks stored on the same output row of the reshaped RHS matrix must be passed at compile time using -DH0 (e.g. -DH0=2)
diff --git a/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp
index 22bde635e6..d6ee0b0c4d 100644
--- a/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedKernel.cpp
@@ -38,6 +38,7 @@
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/helpers/float_ops.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/CL/CLUtils.h"
#include "support/StringSupport.h"
#include <cstddef>
@@ -380,29 +381,14 @@ void CLGEMMMatrixMultiplyReshapedKernel::run(const Window &window, cl::CommandQu
const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
- cl_mem cl_image;
- cl_int err = CL_SUCCESS;
cl::Image2D input1_image2d;
if(_export_to_cl_image)
{
- // Create OpenCL image object from OpenCL buffer
- const cl_image_format format = { CL_RGBA, CL_FLOAT };
+ const TensorShape shape2d(_input1->info()->dimension(0) / 4, _input1->info()->dimension(1) * _input1->info()->dimension(2));
+ const size_t image_row_pitch = _input1->info()->strides_in_bytes()[1];
- cl_image_desc desc;
- memset(&desc, 0, sizeof(desc));
- desc.image_type = CL_MEM_OBJECT_IMAGE2D;
- desc.mem_object = _input1->cl_buffer()();
- desc.image_row_pitch = _input1->info()->strides_in_bytes()[1];
- desc.image_width = _input1->info()->dimension(0) / 4;
- desc.image_height = _input1->info()->dimension(1) * _input1->info()->dimension(2);
-
- cl_image = clCreateImage(CLKernelLibrary::get().context()(), CL_MEM_READ_ONLY, &format, &desc, nullptr, &err);
-
- ARM_COMPUTE_UNUSED(err);
- ARM_COMPUTE_ERROR_ON_MSG(err != CL_SUCCESS, "Error during the creation of CL image from buffer");
-
- input1_image2d = cl::Image2D(cl_image);
+ input1_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), _input1->cl_buffer(), shape2d, CL_FLOAT, image_row_pitch);
}
do
diff --git a/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.cpp b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.cpp
index 8e194d5139..deeb491fd7 100644
--- a/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.cpp
+++ b/src/core/CL/kernels/CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.cpp
@@ -32,6 +32,7 @@
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/helpers/float_ops.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/CL/CLUtils.h"
#include "support/StringSupport.h"
#include <tuple>
@@ -65,6 +66,23 @@ Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1,
"Bias addition only supported with broadcast mode in case the input or output has to be reinterpreted as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
+ if(rhs_info.export_to_cl_image)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.n0 == 2) || (rhs_info.n0 == 3), "Export to cl_image only supported with n0 = 4, 8 or 16");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG((rhs_info.k0 == 2) || (rhs_info.k0 == 3), "Export to cl_image only supported with k0 = 4, 8 or 16");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->data_type() != DataType::F32, "Export to cl_image only supported with F32 data type");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!image2d_from_buffer_supported(CLKernelLibrary::get().get_device()), "The extension cl_khr_image2d_from_buffer is not supported on the target platform");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(get_cl_image_pitch_alignment(CLKernelLibrary::get().get_device()) == 0, "Impossible to retrieve the cl_image pitch alignment");
+
+ // Check the width and height of the output tensor.
+ // Since we cannot create a 3d image from a buffer, the third dimension is collapsed with the second dimension
+ size_t max_image_w = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_IMAGE2D_MAX_WIDTH>();
+ size_t max_image_h = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_IMAGE2D_MAX_HEIGHT>();
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->tensor_shape()[0] > max_image_w * 4, "Not supported width for cl_image");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->tensor_shape()[1] * input1->tensor_shape()[2] > max_image_h, "Not supported height for cl_image");
+ }
+
const unsigned int m = gemm_info.m;
const unsigned int n = gemm_info.n;
const unsigned int k = gemm_info.k;
@@ -204,7 +222,7 @@ std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITe
CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::CLGEMMMatrixMultiplyReshapedOnlyRHSKernel()
: _input0(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _use_dummy_work_items(false),
- _add_bias(false), _broadcast_bias(false)
+ _add_bias(false), _broadcast_bias(false), _export_to_cl_image(false)
{
}
@@ -234,6 +252,7 @@ void CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::configure(const CLCompileContext
_use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
_add_bias = _input2 != nullptr;
_broadcast_bias = gemm_info.broadcast_bias;
+ _export_to_cl_image = rhs_info.export_to_cl_image;
// In case both input and output have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
@@ -276,6 +295,8 @@ void CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::configure(const CLCompileContext
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
+ build_opts.add_option_if(rhs_info.export_to_cl_image, "-DOPENCL_IMAGE_SUPPORT");
+ build_opts.add_option("-DRHS_HEIGHT=" + support::cpp11::to_string(input1->info()->dimension(1)));
build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
@@ -289,6 +310,7 @@ void CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::configure(const CLCompileContext
std::string kernel_name("gemm_mm_reshaped_only_rhs_");
kernel_name += rhs_info.transpose ? "t" : "nt";
+ kernel_name += rhs_info.export_to_cl_image ? "_texture" : "";
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
@@ -358,36 +380,17 @@ void CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::run(const Window &window, cl::Co
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
- if(_reinterpret_input_as_3d)
- {
- // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
- unsigned int idx0;
- if(_add_bias)
- {
- idx0 = 4 * num_arguments_per_2D_tensor() + 4;
- }
- else
- {
- idx0 = 3 * num_arguments_per_2D_tensor() + 3;
- }
- const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
- _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
- }
+ const unsigned int total_cross_plane_pad_lhs = _input0->info()->padding().top + _input0->info()->padding().bottom;
+ const unsigned int total_cross_plane_pad_out = _output->info()->padding().top + _output->info()->padding().bottom;
+
+ cl::Image2D input1_image2d;
- if(_reinterpret_output_as_3d)
+ if(_export_to_cl_image)
{
- // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
- unsigned int idx0;
- if(_add_bias)
- {
- idx0 = 4 * num_arguments_per_2D_tensor() + 4 + (_reinterpret_input_as_3d ? 1 : 0);
- }
- else
- {
- idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
- }
- const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
- _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
+ const TensorShape shape2d(_input1->info()->dimension(0) / 4, _input1->info()->dimension(1) * _input1->info()->dimension(2));
+ const size_t image_row_pitch = _input1->info()->strides_in_bytes()[1];
+
+ input1_image2d = create_image2d_from_buffer(CLKernelLibrary::get().context(), _input1->cl_buffer(), shape2d, CL_FLOAT, image_row_pitch);
}
do
@@ -401,17 +404,53 @@ void CLGEMMMatrixMultiplyReshapedOnlyRHSKernel::run(const Window &window, cl::Co
}
unsigned int idx = 0;
+
+ // LHS buffer
add_2D_tensor_argument(idx, _input0, slice);
- add_2D_tensor_argument(idx, _input1, slice_b);
- add_2D_tensor_argument_if((_add_bias), idx, _input2, slice);
+
+ // RHS buffer or RHS OpenCL image (_export_to_cl_image == true)
+ if(_export_to_cl_image)
+ {
+ _kernel.setArg(idx++, input1_image2d);
+ }
+ else
+ {
+ add_2D_tensor_argument(idx, _input1, slice_b);
+ }
+
+ // Bias buffer (_add_bias == true)
+ add_2D_tensor_argument_if(_add_bias, idx, _input2, slice);
+
+ // Output buffer
add_2D_tensor_argument(idx, _output, slice);
+
+ // LHS stride_z
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
+
+ // RHS stride_z (not used if _export_to_cl_image == true)
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
+
+ // Bias stride_z (if _add_bias == true)
if(_add_bias)
{
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input2->info()->strides_in_bytes()[2]));
}
+
+ // Output stride_z
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
+
+ // Cross-plan padding (if _reinterpret_input_as_3d = true)
+ if(_reinterpret_input_as_3d)
+ {
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(total_cross_plane_pad_lhs));
+ }
+
+ // Cross-plan padding (if _reinterpret_output_as_3d = true)
+ if(_reinterpret_output_as_3d)
+ {
+ _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(total_cross_plane_pad_out));
+ }
+
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
diff --git a/tests/validation/CL/GEMMMatrixMultiplyReshapedOnlyRHS.cpp b/tests/validation/CL/GEMMMatrixMultiplyReshapedOnlyRHS.cpp
index b8b586053b..15198edee2 100644
--- a/tests/validation/CL/GEMMMatrixMultiplyReshapedOnlyRHS.cpp
+++ b/tests/validation/CL/GEMMMatrixMultiplyReshapedOnlyRHS.cpp
@@ -67,6 +67,9 @@ namespace
RelativeTolerance<float> rel_tolerance_f32(0.001f);
constexpr float abs_tolerance_f32(0.0001f);
+RelativeTolerance<float> rel_tolerance_f16(0.001f);
+constexpr float abs_tolerance_f16(0.01f);
+
/** Alpha values to test */
const auto a_values = framework::dataset::make("alpha", {-0.75f} );
@@ -98,14 +101,23 @@ const auto act_values = framework::dataset::make("Activation",
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
});
-/** M0 values to test */
-const auto m0_values = framework::dataset::make("M0", { 8 });
+/** M0 values to test - precommit */
+const auto m0_values_precommit = framework::dataset::make("M0", { 4 });
+
+/** N0 values to test - precommit*/
+const auto n0_values_precommit = framework::dataset::make("N0", { 4 });
+
+/** K0 values to test - precommit*/
+const auto k0_values_precommit = framework::dataset::make("K0", { 4 });
-/** N0 values to test */
-const auto n0_values = framework::dataset::make("N0", { 16 });
+/** M0 values to test - nightly */
+const auto m0_values_nightly = framework::dataset::make("M0", { 8 });
-/** K0 values to test */
-const auto k0_values = framework::dataset::make("K0", { 16 });
+/** N0 values to test - nightly */
+const auto n0_values_nightly = framework::dataset::make("N0", { 16 });
+
+/** K0 values to test - nightly */
+const auto k0_values_nightly = framework::dataset::make("K0", { 16 });
/** H0 values to test */
const auto h0_values = framework::dataset::make("H0", 1, 3);
@@ -122,7 +134,7 @@ const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", {
/** Configuration test */
bool validate_configuration(unsigned int m_value, unsigned int n_value, unsigned int k_value, unsigned int b_value,
unsigned int m0_value, unsigned int n0_value, unsigned int k0_value, unsigned int h0_value,
- bool i_value_rhs, bool t_value_rhs, bool broadcast_bias, bool input_as_3d, unsigned int depth_output_gemm3d, const ActivationLayerInfo &act_info,
+ bool i_value_rhs, bool t_value_rhs, bool export_to_cl_image, bool broadcast_bias, bool input_as_3d, unsigned int depth_output_gemm3d, const ActivationLayerInfo &act_info,
DataType dt_input0, DataType dt_input1, DataType dt_input2, DataType dt_output, float alpha, float beta)
{
const unsigned int M = m_value;
@@ -139,6 +151,7 @@ bool validate_configuration(unsigned int m_value, unsigned int n_value, unsigned
rhs_info.h0 = h0_value;
rhs_info.interleave = i_value_rhs;
rhs_info.transpose = t_value_rhs;
+ rhs_info.export_to_cl_image = export_to_cl_image;
GEMMKernelInfo kernel_info;
kernel_info.m = M;
@@ -190,42 +203,78 @@ TEST_SUITE(GEMMMatrixMultiplyReshapedOnlyRHS)
* - Unsupported bias addition: bias broadcast mode is 0 if the input or output has to be reinterpreted as 3D
* - Incorrect bias diemension when bias broadcast mode is 1 and beta is not 0.0f, should be (n, 1), not (n, m)
* - Incorrect input0 dimension when input is reinterpreted as 3D: input0->dimension(1) * input0->dimension(2) != m
+ * - Correct support for creating an OpenCL image object from buffer
+ * - Incorrect support for creating an OpenCL image object from buffer. N0 is 2 but it can only be 4,8 and 16
+ * - Incorrect support for creating an OpenCL image object from buffer. Data type is F16 but it can only be F32
*/
-DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(
-framework::dataset::make("batch_size", { 1, 1, 1, 1, 1, 1, 2 }),
-framework::dataset::make("M0", { 4, 9, 4, 4, 4, 4, 4 })),
-framework::dataset::make("N0", { 4, 4, 18, 4, 4, 4, 4 })),
-framework::dataset::make("K0", { 4, 4, 4, 1, 4, 4, 4 })),
-framework::dataset::make("broadcast_bias", { false, false, false, false, false, true, true })),
-framework::dataset::make("input_as_3d", { 0, 0, 0, 0, 1, 0, 1 })),
-framework::dataset::make("depth_output_gemm3d", { 0, 0, 0, 0, 0, 1, 0 })),
-framework::dataset::make("data_type_input0", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32})),
-framework::dataset::make("data_type_input1", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32})),
-framework::dataset::make("data_type_input2", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32})),
-framework::dataset::make("data_type_output", { DataType::F16, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32})),
-framework::dataset::make("Beta", { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f })),
-framework::dataset::make("Expected", { false, false, false, false, false, false, false })),
-b_value, m0_value, n0_value, k0_value, broadcast_bias, input_as_3d, depth_output_gemm3d, dt_input0, dt_intpu1, dt_input2, dt_output, beta, expected)
+DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(zip(
+framework::dataset::make("batch_size", { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1 }),
+framework::dataset::make("M0", { 4, 9, 4, 4, 4, 4, 4, 4, 4, 4 })),
+framework::dataset::make("N0", { 4, 4, 18, 4, 4, 4, 4, 8, 2, 8 })),
+framework::dataset::make("K0", { 4, 4, 4, 1, 4, 4, 4, 4, 4, 4 })),
+framework::dataset::make("broadcast_bias", { false, false, false, false, false, true, true, false, false, false })),
+framework::dataset::make("input_as_3d", { 0, 0, 0, 0, 1, 0, 1, 0, 0, 0 })),
+framework::dataset::make("depth_output_gemm3d", { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 })),
+framework::dataset::make("export_to_cl_image", { false, false, false, false, false, false, false, true, true, true })),
+framework::dataset::make("data_type_input0", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F16})),
+framework::dataset::make("data_type_input1", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F16})),
+framework::dataset::make("data_type_input2", { DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F16})),
+framework::dataset::make("data_type_output", { DataType::F16, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F32, DataType::F16})),
+framework::dataset::make("Beta", { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f , 1.0f})),
+framework::dataset::make("Expected", { false, false, false, false, false, false, false, true, false, false })),
+b_value, m0_value, n0_value, k0_value, broadcast_bias, input_as_3d, depth_output_gemm3d, export_to_cl_image, dt_input0, dt_intpu1, dt_input2, dt_output, beta, expected)
{
- bool status = validate_configuration(37, 51, 23, b_value, m0_value, n0_value, k0_value, 1, false, false, broadcast_bias, input_as_3d, depth_output_gemm3d, ActivationLayerInfo(), dt_input0, dt_intpu1, dt_input2, dt_output, 1.0f, beta);
- ARM_COMPUTE_EXPECT(status == expected, framework::LogLevel::ERRORS);
+ bool expected_value = expected;
+
+ // Change expected to false if the target platform does not support the OpenCL cl_khr_image2d_from_buffer extension
+ if(!image2d_from_buffer_supported(CLKernelLibrary::get().get_device()) && export_to_cl_image)
+ {
+ expected_value = false;
+ }
+
+ bool status = validate_configuration(37, 51, 23, b_value, m0_value, n0_value, k0_value, 1, false, false, export_to_cl_image, broadcast_bias, input_as_3d, depth_output_gemm3d, ActivationLayerInfo(), dt_input0, dt_intpu1, dt_input2, dt_output, 1.0f, beta);
+ ARM_COMPUTE_EXPECT(status == expected_value, framework::LogLevel::ERRORS);
}
TEST_SUITE(Float)
TEST_SUITE(FP32)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<float>, framework::DatasetMode::ALL,
- combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+FIXTURE_DATA_TEST_CASE(RunPrecommit, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<float>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ broadcast_bias_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunNightly, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<float>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
- m0_values),
- n0_values),
- k0_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
h0_values),
i_values_rhs),
t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
@@ -236,19 +285,20 @@ FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<floa
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
-FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<float>, framework::DatasetMode::ALL,
- combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+FIXTURE_DATA_TEST_CASE(RunPrecommit3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<float>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
- m0_values),
- n0_values),
- k0_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
h0_values),
i_values_rhs),
t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
@@ -258,7 +308,235 @@ FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
+FIXTURE_DATA_TEST_CASE(RunNightly3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<float>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_w_values,
+ m_h_values),
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+}
+
+TEST_SUITE(ExportToCLImage)
+FIXTURE_DATA_TEST_CASE(RunPrecommit, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<float>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ broadcast_bias_values),
+ act_values))
+{
+ // Validate output only if the target platform supports the OpenCL cl_khr_image2d_from_buffer extension
+ if(image2d_from_buffer_supported(CLKernelLibrary::get().get_device()))
+ {
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+ }
+ else
+ {
+ ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ }
+}
+
+FIXTURE_DATA_TEST_CASE(RunNightly, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<float>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ broadcast_bias_values),
+ act_values))
+{
+ // Validate output only if the target platform supports the OpenCL cl_khr_image2d_from_buffer extension
+ if(image2d_from_buffer_supported(CLKernelLibrary::get().get_device()))
+ {
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+ }
+ else
+ {
+ ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ }
+}
+
+FIXTURE_DATA_TEST_CASE(RunPrecommit3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<float>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_w_values,
+ m_h_values),
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+}
+
+FIXTURE_DATA_TEST_CASE(RunNightly3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<float>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_w_values,
+ m_h_values),
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", true)),
+ framework::dataset::make("DataType", DataType::F32)),
+ a_values),
+ beta_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
+}
+TEST_SUITE_END() // ExportToCLImage
TEST_SUITE_END() // FP32
+
+TEST_SUITE(FP16)
+FIXTURE_DATA_TEST_CASE(RunPrecommit, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<half>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values),
+ beta_values),
+ broadcast_bias_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+}
+
+FIXTURE_DATA_TEST_CASE(RunNightly, CLGEMMMatrixMultiplyReshapedOnlyRHSFixture<half>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_values,
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values),
+ beta_values),
+ broadcast_bias_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+}
+
+FIXTURE_DATA_TEST_CASE(RunPrecommit3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<half>, framework::DatasetMode::PRECOMMIT,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_w_values,
+ m_h_values),
+ n_values),
+ k_values),
+ b_values),
+ m0_values_precommit),
+ n0_values_precommit),
+ k0_values_precommit),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values),
+ beta_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+}
+
+FIXTURE_DATA_TEST_CASE(RunNightly3D, CLGEMMMatrixMultiplyReshapedOnlyRHS3DFixture<half>, framework::DatasetMode::NIGHTLY,
+ combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
+ m_w_values,
+ m_h_values),
+ n_values),
+ k_values),
+ b_values),
+ m0_values_nightly),
+ n0_values_nightly),
+ k0_values_nightly),
+ h0_values),
+ i_values_rhs),
+ t_values_rhs),
+ framework::dataset::make("export_to_cl_image_rhs", false)),
+ framework::dataset::make("DataType", DataType::F16)),
+ a_values),
+ beta_values),
+ act_values))
+{
+ // Validate output
+ validate(CLAccessor(_target), _reference, rel_tolerance_f16, 0.f, abs_tolerance_f16);
+}
+
+TEST_SUITE_END() // FP16
+
TEST_SUITE_END() // Float
TEST_SUITE_END() // GEMMMatrixMulipltyReshapedOnlyRHS
TEST_SUITE_END() // CL
diff --git a/tests/validation/fixtures/GEMMFixture.h b/tests/validation/fixtures/GEMMFixture.h
index b2adf2dfc0..e91becfa0f 100644
--- a/tests/validation/fixtures/GEMMFixture.h
+++ b/tests/validation/fixtures/GEMMFixture.h
@@ -986,18 +986,19 @@ class GEMMMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fix
public:
template <typename...>
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0,
- bool interleave_rhs, bool transpose_rhs, DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
+ bool interleave_rhs, bool transpose_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, bool broadcast_bias, const ActivationLayerInfo &act_info)
{
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0;
lhs_info.k0 = k0;
GEMMRHSMatrixInfo rhs_info;
- rhs_info.n0 = n0;
- rhs_info.k0 = k0;
- rhs_info.h0 = h0;
- rhs_info.interleave = interleave_rhs;
- rhs_info.transpose = transpose_rhs;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = transpose_rhs;
+ rhs_info.export_to_cl_image = export_to_cl_image;
// Set the tensor shapes for LHS and RHS matrices
const TensorShape lhs_shape(k, m, batch_size);
@@ -1124,18 +1125,19 @@ class GEMMMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::F
public:
template <typename...>
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int h0,
- bool interleave_rhs, bool transpose_rhs, DataType data_type, float alpha, float beta, const ActivationLayerInfo &act_info)
+ bool interleave_rhs, bool transpose_rhs, bool export_to_cl_image, DataType data_type, float alpha, float beta, const ActivationLayerInfo &act_info)
{
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0;
lhs_info.k0 = k0;
GEMMRHSMatrixInfo rhs_info;
- rhs_info.n0 = n0;
- rhs_info.k0 = k0;
- rhs_info.h0 = h0;
- rhs_info.interleave = interleave_rhs;
- rhs_info.transpose = transpose_rhs;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = transpose_rhs;
+ rhs_info.export_to_cl_image = export_to_cl_image;
// In case of GEMM3D, m is the product between m_w and m_h
const unsigned int m = m_w * m_h;