aboutsummaryrefslogtreecommitdiff
path: root/chapters/ewise_binary.adoc
blob: 3cc2ecb94bac1d51a20fc4c0a612456b673df8c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//
// This confidential and proprietary software may be used only as
// authorised by a licensing agreement from ARM Limited
// (C) COPYRIGHT 2020-2024 ARM Limited
// ALL RIGHTS RESERVED
// The entire notice above must be reproduced on all authorised
// copies and copies may only be made to the extent permitted
// by a licensing agreement from ARM Limited.

=== Elementwise Binary Operators

==== ADD

Elementwise addition of input1 and input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/ADD.adoc[]

[source,c++]
----
include::{pseudocode}/operators/ADD.tosac[lines=10..-1]
----

==== ARITHMETIC_RIGHT_SHIFT

Elementwise arithmetic right shift of input1 by the amount specified in input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/ARITHMETIC_RIGHT_SHIFT.adoc[]

[source,c++]
----
include::{pseudocode}/operators/ARITHMETIC_RIGHT_SHIFT.tosac[lines=10..-1]
----

==== BITWISE_AND

Elementwise bitwise AND of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/BITWISE_AND.adoc[]

[source,c++]
----
include::{pseudocode}/operators/BITWISE_AND.tosac[lines=10..-1]
----

==== BITWISE_OR

Elementwise bitwise OR of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/BITWISE_OR.adoc[]

[source,c++]
----
include::{pseudocode}/operators/BITWISE_OR.tosac[lines=10..-1]
----

==== BITWISE_XOR

Elementwise bitwise XOR of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/BITWISE_XOR.adoc[]

[source,c++]
----
include::{pseudocode}/operators/BITWISE_XOR.tosac[lines=10..-1]
----

==== INTDIV

Elementwise integer divide of input1 by input2.
The result of the divide is truncated towards zero.
Expected use is for operations on non-scaled integers.
Floating point divide should use RECIPROCAL and MUL.
Quantized integer divide should use TABLE (for 1/x) and MUL.

include::{generated}/operators/INTDIV.adoc[]

[source,c++]
----
include::{pseudocode}/operators/INTDIV.tosac[lines=10..-1]
----

==== LOGICAL_AND

Elementwise logical AND of input1 and input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/LOGICAL_AND.adoc[]

[source,c++]
----
include::{pseudocode}/operators/LOGICAL_AND.tosac[lines=10..-1]
----

==== LOGICAL_LEFT_SHIFT

Elementwise logical left shift of input1 by the amount specified in input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/LOGICAL_LEFT_SHIFT.adoc[]

[source,c++]
----
include::{pseudocode}/operators/LOGICAL_LEFT_SHIFT.tosac[lines=10..-1]
----

==== LOGICAL_RIGHT_SHIFT

Elementwise logical right shift of input1 by the amount specified in input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/LOGICAL_RIGHT_SHIFT.adoc[]

[source,c++]
----
include::{pseudocode}/operators/LOGICAL_RIGHT_SHIFT.tosac[lines=10..-1]
----

==== LOGICAL_OR

Elementwise logical OR of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/LOGICAL_OR.adoc[]

[source,c++]
----
include::{pseudocode}/operators/LOGICAL_OR.tosac[lines=10..-1]
----

==== LOGICAL_XOR

Elementwise logical XOR of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/LOGICAL_XOR.adoc[]

[source,c++]
----
include::{pseudocode}/operators/LOGICAL_XOR.tosac[lines=10..-1]
----

==== MAXIMUM

Elementwise max of input1 and input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/MAXIMUM.adoc[]

[source,c++]
----
include::{pseudocode}/operators/MAXIMUM.tosac[lines=10..-1]
----

==== MINIMUM

Elementwise minimum of input1 and input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/MINIMUM.adoc[]

[source,c++]
----
include::{pseudocode}/operators/MINIMUM.tosac[lines=10..-1]
----

==== MUL

Elementwise multiplication (Hadamard product) of input1 and input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/MUL.adoc[]

[source,c++]
----
include::{pseudocode}/operators/MUL.tosac[lines=10..-1]
----

==== POW

Elementwise input1 value raised to the power of input2.
Axis of size 1 will be broadcast, as necessary. Rank of input tensors must match.

include::{generated}/operators/POW.adoc[]

[source,c++]
----
include::{pseudocode}/operators/POW.tosac[lines=10..-1]
----

==== SUB

Elementwise subtraction of input1 and input2.
Axis of size 1 will be broadcast as necessary. Rank of input tensors must match.

include::{generated}/operators/SUB.adoc[]

[source,c++]
----
include::{pseudocode}/operators/SUB.tosac[lines=10..-1]
----

====   TABLE

Table lookup operation.
For int8_t TABLE operation, perform a 256 entry table lookup returning an int8_t value.
For int16_t tables, the int16_t input is treated as a fixed-point 9.7 value.
The most significant 9 bits are used to index into the table.
The fractional 7 bits are used to interpolate based on table[index] and table[index+1].
For int16_t inputs, the TABLE operator returns a 16.7 interpolated value in an int32_t.
This value can then be input to the RESCALE operator to scale to the required output data type.
Note that int16_t table has 513 values to handle table[index+1] when index=511.

An int16_t to int16_t table lookup can be constructed in TOSA as follows:

* Use the TABLE operator to produce a fixed point 16.7 interpolated result
* Use RESCALE (in_t=int32_t, out_t=int16_t, scale=1<<14, shift=21) to scale the output to int16_t range (or alternate scale as required)

include::{generated}/operators/TABLE.adoc[]

[source,c++]
----
include::{pseudocode}/operators/TABLE.tosac[lines=10..-1]
----