// Copyright (c) 2020, ARM Limited. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "tensor_ops.h" #include "quant_util.h" #include "template_types.h" using namespace TosaReference; using namespace Eigen; using namespace tosa; template OpArgMax::OpArgMax(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_ARGMAX, id_) { setRequiredOperands(1, 1); setRequiredRank(0, 6); INIT_ATTRIBUTE(Axis); } template OpArgMax::~OpArgMax() { if (attribute) delete attribute; } template int OpArgMax::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0])) { return 1; } input = dynamic_cast*>(inputs[0]); output = dynamic_cast*>(outputs[0]); return 0; } template int OpArgMax::eval() { Eigen::Tensor index = this->input->getTensor().argmax(attribute->axis()); this->output->getTensor() = index.unaryExpr([](DenseIndex in) -> OutEigenType { return (OutEigenType)in; }); return GraphNode::eval(); } template OpAvgPool2d::OpAvgPool2d(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_AVG_POOL2D, id_) { setRequiredOperands(1, 1); setRequiredRank(4); INIT_ATTRIBUTE(Pool2d); INIT_QINFO(Unary); } template OpAvgPool2d::~OpAvgPool2d() { if (attribute) delete attribute; } template int OpAvgPool2d::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0])) { return 1; } if (inputs[0]->matchType(*outputs[0])) { printNodeValidationError("OpAvgPool2d: input and output tensor type mismatch"); return 1; } in = dynamic_cast*>(inputs[0]); out = dynamic_cast*>(outputs[0]); if (!in->hasFormat(Format_NHWC)) { printNodeValidationError("OpAvgPool2d: unsupported tensor format"); return 1; } if (attribute->padding().size() != 4) { printNodeValidationError("OpAvgPool2d: illegal size for attribute padding"); return 1; } if (attribute->kernel().size() != 2) { printNodeValidationError("OpAvgPool2d: illegal size for attribute kernel"); return 1; } if (attribute->stride().size() != 2) { printNodeValidationError("OpAvgPool2d: illegal size for attribute stride"); return 1; } return 0; } template ETensor1 OpAvgPool2d::calculate_div_map_1d(int in_size, int out_size, int kernel_size, int stride) { ETensor1 result(out_size); int32_t total_pad = (out_size - 1) * stride + kernel_size - in_size; total_pad = total_pad < 0 ? 0 : total_pad; int32_t pad_left = total_pad >> 1; int32_t pad_right = total_pad - pad_left; result.setConstant(kernel_size); // the index left to 'left_index' and index right to 'right_index' indicates // the input window of this output covers a pad bit int32_t left_index = pad_left / stride; int32_t right_index = pad_right / stride; // not handle ultra small activation yet ASSERT_MSG_NODE((out_size - 1 - right_index) >= left_index, "AvgPool2d: Small activations not supported yet"); // minus the number of pad bit this index cover while (left_index >= 0) { result(left_index) -= (pad_left - left_index * stride); left_index--; } while (right_index >= 0) { result(out_size - 1 - right_index) -= (pad_right - right_index * stride); right_index--; } return result; } // assuming input and output tensor have same scales like tflite reference // so no need to scale input and output template int OpAvgPool2d::eval() { int in_batch = this->in->getShape()[0]; int in_height = this->in->getShape()[1]; int in_width = this->in->getShape()[2]; int in_channels = this->in->getShape()[3]; int out_batch = this->out->getShape()[0]; int out_height = this->out->getShape()[1]; int out_width = this->out->getShape()[2]; int out_channels = this->out->getShape()[3]; ASSERT_MSG_NODE(in_batch == out_batch, "OpAvgPool2d: tensor batch mismatch %d != %d", in_batch, out_batch); int padding_top = this->attribute->padding()[0]; int padding_bottom = this->attribute->padding()[1]; int padding_left = this->attribute->padding()[2]; int padding_right = this->attribute->padding()[3]; int kernel_h = this->attribute->kernel()[0]; int kernel_w = this->attribute->kernel()[1]; int stride_h = this->attribute->stride()[0]; int stride_w = this->attribute->stride()[1]; DEBUG_INFO(OP, "perform AvgPool2d, input.shape=[%d,%d,%d,%d], output.shape=[%d,%d,%d,%d], kernel=[%d,%d], " "stride=[%d,%d], padding=[%d,%d,%d,%d]", in_batch, in_height, in_width, in_channels, out_batch, out_height, out_width, out_channels, kernel_h, kernel_w, stride_h, stride_w, padding_top, padding_bottom, padding_left, padding_right); Eigen::array im2col_input_dims; im2col_input_dims[0] = kernel_h * kernel_w; im2col_input_dims[1] = out_batch * out_height * out_width * out_channels; Eigen::array col2im_output_dims; col2im_output_dims[0] = out_batch; col2im_output_dims[1] = out_height; col2im_output_dims[2] = out_width; col2im_output_dims[3] = out_channels; Eigen::array, 4> padding; padding[0] = std::make_pair(0, 0); padding[1] = std::make_pair(padding_top, padding_bottom); padding[2] = std::make_pair(padding_left, padding_right); padding[3] = std::make_pair(0, 0); ETensor4 input_val = this->in->getTensor(); if (this->qinfo) { input_val = input_val - (InEigenType)this->qinfo->input_zp(); } ETensor4 input_padded = input_val.pad(padding); // assuming input and output have same scales // so input and output scaling is not required // TODO: check if this assumption TOSA made // extract_image_patches() output [N, KH, KW, H * W, C] // transpose to [KH, KW, N, H * W, C] // reshape to [KH * KW, N * H * W * C] ETensor2 input_extract_patches = input_padded.extract_image_patches(kernel_h, kernel_w, stride_h, stride_w, 1, 1, Eigen::PADDING_VALID) .shuffle(Eigen::array{ 1, 2, 0, 3, 4 }) .reshape(im2col_input_dims); // 1D result with [N * H * W * C] ETensor1 out_1d(this->out->getElementCount()); out_1d.setZero(); // sum pool for (size_t i = 0; i < this->out->getElementCount(); i++) { for (int32_t j = 0; j < kernel_h * kernel_w; j++) { out_1d(i) += (AccEigenType)input_extract_patches(j, i); } } // reshape result to [N, H, W, C] and divide with div_map ETensor4 sum = out_1d.reshape(col2im_output_dims); // calculate 1d height/width div_map (number of elements this pooling window covers) // and outer product to get 2d div_map, then reshape/broadcast to [N, H, W, C] ETensor1 div_map_h = calculate_div_map_1d(in_height, out_height, kernel_h, stride_h); ETensor1 div_map_w = calculate_div_map_1d(in_width, out_width, kernel_w, stride_w); Eigen::array, 1> contract_dims = { Eigen::IndexPair(1, 0) }; Eigen::array bcast{ out_batch, 1, 1, out_channels }; ETensor4 div_map = div_map_h.reshape(Eigen::array{ out_height, 1 }) .contract(div_map_w.reshape(Eigen::array{ 1, out_width }), contract_dims) .reshape(Eigen::array{ 1, out_height, out_width, 1 }) .broadcast(bcast); if (Dtype != DType_FLOAT) { this->out->getTensor() = sum.binaryExpr(div_map, [](AccEigenType value, int32_t div) -> OutEigenType { int32_t multiplier, shift; TosaReference::QuantUtil::reciprocal_scale(div, multiplier, shift); return (OutEigenType)TosaReference::QuantUtil::apply_scale(value, multiplier, shift, false); }); this->out->getTensor() = this->out->getTensor() + (OutEigenType)(this->qinfo->output_zp()); this->out->getTensor() = this->out->getTensor().cwiseMax((OutEigenType)QMin); this->out->getTensor() = this->out->getTensor().cwiseMin((OutEigenType)QMax); } else { this->out->getTensor() = (sum / div_map.template cast()).template cast(); } return GraphNode::eval(); } template OpConv2d::OpConv2d(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_CONV2D, id_) { setRequiredOperands(3, 1); setRequiredRank(4); INIT_ATTRIBUTE(Conv2d); INIT_QINFO(Conv); } template OpConv2d::~OpConv2d() { if (attribute) delete attribute; if (qinfo) delete qinfo; } template int OpConv2d::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(inputs[1]) || validateRequiredRank(outputs[0])) { return 1; } // 'bias' checked separatedly since it doens't make sense to make required rank ranging from 1 to 4 if (inputs[2]->getRank() != 1) { printNodeValidationError("OpConv2d: bias tensor must be rank 1"); } if (inputs[1]->getIsConst() == 0) { printNodeValidationError("OpConv2d: weight tensor is not const typed"); } input = dynamic_cast*>(inputs[0]); weight = dynamic_cast*>(inputs[1]); bias = dynamic_cast*>(inputs[2]); output = dynamic_cast*>(outputs[0]); if (!input->hasFormat(Format_NHWC)) { printNodeValidationError("OpConv2d: unsupported input tensor format"); return 1; } if (!weight->hasFormat(Format_OHWI)) { printNodeValidationError("OpConv2d: unsupported weight tensor format"); return 1; } if (attribute->padding().size() != 4) { printNodeValidationError("OpConv2d: illegal size for attribute padding"); return 1; } if (attribute->stride().size() != 2) { printNodeValidationError("OpConv2d: illegal size for attribute stride"); return 1; } if (attribute->dilation().size() != 2) { printNodeValidationError("OpConv2d: illegal size for attribute dilation"); return 1; } return 0; } template int OpConv2d::eval() { int in_batch = this->input->getShape()[0]; int in_height = this->input->getShape()[1]; int in_width = this->input->getShape()[2]; int in_channels = this->input->getShape()[3]; int f_out_channels = this->weight->getShape()[0]; int f_height = this->weight->getShape()[1]; int f_width = this->weight->getShape()[2]; int f_in_channels = this->weight->getShape()[3]; int b_out_channels = this->bias->getShape()[0]; int out_batch = this->output->getShape()[0]; int out_height = this->output->getShape()[1]; int out_width = this->output->getShape()[2]; int out_channels = this->output->getShape()[3]; ASSERT_MSG_NODE(in_batch == out_batch, "OpConv2d: tensor batch mismatch %d != %d", in_batch, out_batch); ASSERT_MSG_NODE(f_in_channels == in_channels, "OpConv2d: tensor input channel mismatch %d != %d", f_in_channels, in_channels); ASSERT_MSG_NODE(f_out_channels == out_channels, "OpConv2d: tensor output channel mismatch %d != %d", f_out_channels, out_channels); ASSERT_MSG_NODE(b_out_channels == out_channels, "OpConv2d: tensor output channel mismatch %d != %d", b_out_channels, out_channels); int padding_top = this->attribute->padding()[0]; int padding_bottom = this->attribute->padding()[1]; int padding_left = this->attribute->padding()[2]; int padding_right = this->attribute->padding()[3]; int stride_h = this->attribute->stride()[0]; int stride_w = this->attribute->stride()[1]; int dilation_h = this->attribute->dilation()[0]; int dilation_w = this->attribute->dilation()[1]; DEBUG_INFO(OP, "perform OpConv2d, input.shape=[%d,%d,%d,%d], weight.shape=[%d,%d,%d,%d], output.shape=[%d,%d,%d,%d], " "stride=[%d,%d], dilation=[%d,%d], padding=[%d,%d,%d,%d]", in_batch, in_height, in_width, in_channels, f_height, f_width, f_in_channels, f_out_channels, out_batch, out_height, out_width, out_channels, stride_h, stride_w, dilation_h, dilation_w, padding_top, padding_bottom, padding_left, padding_right); // GEMM-conv2d, left matrix is input, right matrix is weight Eigen::array im2col_input_dims; im2col_input_dims[0] = out_batch * out_height * out_width; im2col_input_dims[1] = f_height * f_width * f_in_channels; Eigen::array im2col_weight_dims; im2col_weight_dims[0] = f_height * f_width * f_in_channels; im2col_weight_dims[1] = f_out_channels; Eigen::array bias_reshaped_dims; bias_reshaped_dims[0] = 1; bias_reshaped_dims[1] = b_out_channels; Eigen::array weight_zp_bcast_dims; weight_zp_bcast_dims[0] = f_height; weight_zp_bcast_dims[1] = f_width; weight_zp_bcast_dims[2] = f_in_channels; Eigen::array bias_bcast_dims; bias_bcast_dims[0] = out_batch * out_height * out_width; bias_bcast_dims[1] = 1; Eigen::array col2im_output_dims; col2im_output_dims[0] = out_batch; col2im_output_dims[1] = out_height; col2im_output_dims[2] = out_width; col2im_output_dims[3] = out_channels; Eigen::array, 1> contract_dims = { Eigen::IndexPair(1, 0) }; Eigen::array, 4> padding; padding[0] = std::make_pair(0, 0); padding[1] = std::make_pair(padding_top, padding_bottom); padding[2] = std::make_pair(padding_left, padding_right); padding[3] = std::make_pair(0, 0); TIn input_val = this->input->getTensor(); TWeight weight_val = this->weight->getTensor(); if (this->qinfo) { input_val = input_val - (InEigenType)this->qinfo->input_zp(); weight_val = weight_val - (WeightEigenType)this->qinfo->weight_zp(); } ETensor4 input_padded = input_val.pad(padding); // extract_image_patches() output [N, KH, KW, H * W, C] // need to transpose to [N, H * W, KH, KW, C] ETensor5 input_extract_patches = input_padded .extract_image_patches(f_height, f_width, stride_h, stride_w, dilation_h, dilation_w, Eigen::PADDING_VALID) .shuffle(Eigen::array{ 0, 3, 1, 2, 4 }); // reshape input to [N * H * W, KH * KW * C] ETensor2 im2col_input = input_extract_patches.reshape(im2col_input_dims); // transpose and reshape weight from [OC, H, W, IC] to [H * W * IC, OC] ETensor2 im2col_weight = weight_val.shuffle(Eigen::array({ 1, 2, 3, 0 })).reshape(im2col_weight_dims); // don't need to apply bias_multiplier ( * bias_scale and >> bias_shift) since tflite already scale it // and reshaped from [C] to [1, C], and broadcast to [N * H * W, C] ETensor2 bias_2d = this->bias->getTensor().reshape(bias_reshaped_dims).broadcast(bias_bcast_dims); // output matrix is [N * H * W, C] ETensor2 contracted_result = im2col_input.template cast().contract(im2col_weight.template cast(), contract_dims); // adding bias ETensor2 biased_output = contracted_result + bias_2d.template cast(); // reshape back to [N, H, W, C] this->output->getTensor() = biased_output.reshape(col2im_output_dims); if (AccDtype == DType_INT48) { this->output->getTensor() = this->output->getTensor().cwiseMax((AccEigenType)AccQMin); this->output->getTensor() = this->output->getTensor().cwiseMin((AccEigenType)AccQMax); } return GraphNode::eval(); } template OpDepthwiseConv2d::OpDepthwiseConv2d(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_DEPTHWISE_CONV2D, id_) { setRequiredOperands(3, 1); setRequiredRank(4); INIT_ATTRIBUTE(Conv2d); INIT_QINFO(Conv); } template OpDepthwiseConv2d::~OpDepthwiseConv2d() { if (attribute) delete attribute; if (qinfo) delete qinfo; } template int OpDepthwiseConv2d::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(inputs[1]) || validateRequiredRank(outputs[0])) { return 1; } // 'bias' checked separatedly since it doens't make sense to make required rank ranging from 1 to 4 if (inputs[2]->getRank() != 1) { printNodeValidationError("OpDepthwiseConv2d: bias tensor must be rank 1"); } if (inputs[1]->getIsConst() == 0) { printNodeValidationError("OpDepthwiseConv2d: weight tensor is not const typed"); } input = dynamic_cast*>(inputs[0]); weight = dynamic_cast*>(inputs[1]); bias = dynamic_cast*>(inputs[2]); output = dynamic_cast*>(outputs[0]); if (!input->hasFormat(Format_NHWC)) { printNodeValidationError("OpDepthwiseConv2d: unsupported input tensor format"); return 1; } if (!weight->hasFormat(Format_HWIM)) { printNodeValidationError("OpDepthwiseConv2d: unsupported weight tensor format"); return 1; } if (attribute->padding().size() != 4) { printNodeValidationError("OpDepthwiseConv2d: illegal size for attribute padding"); return 1; } if (attribute->stride().size() != 2) { printNodeValidationError("OpDepthwiseConv2d: illegal size for attribute stride"); return 1; } if (attribute->dilation().size() != 2) { printNodeValidationError("OpDepthwiseConv2d: illegal size for attribute dilation"); return 1; } return 0; } template int OpDepthwiseConv2d::eval() { int in_batch = this->input->getShape()[0]; int in_height = this->input->getShape()[1]; int in_width = this->input->getShape()[2]; int in_channels = this->input->getShape()[3]; int f_height = this->weight->getShape()[0]; int f_width = this->weight->getShape()[1]; int f_in_channels = this->weight->getShape()[2]; int f_multiplier = this->weight->getShape()[3]; int b_out_channels = this->bias->getShape()[0]; int out_batch = this->output->getShape()[0]; int out_height = this->output->getShape()[1]; int out_width = this->output->getShape()[2]; int out_channels = this->output->getShape()[3]; ASSERT_MSG_NODE(in_batch == out_batch, "OpDepthwiseConv2d: tensor batch mismatch %d != %d", in_batch, out_batch); ASSERT_MSG_NODE(f_in_channels == in_channels, "OpDepthwiseConv2d: tensor input channel mismatch %d != %d", f_in_channels, in_channels); ASSERT_MSG_NODE(in_channels * f_multiplier == out_channels, "OpDepthwiseConv2d: tensor output channel mismatch %d != %d", in_channels * f_multiplier, out_channels); ASSERT_MSG_NODE(b_out_channels == out_channels, "OpDepthwiseConv2d: tensor b_out_channels mismatch %d != %d", b_out_channels, out_channels); int padding_top = this->attribute->padding()[0]; int padding_bottom = this->attribute->padding()[1]; int padding_left = this->attribute->padding()[2]; int padding_right = this->attribute->padding()[3]; int stride_h = this->attribute->stride()[0]; int stride_w = this->attribute->stride()[1]; int dilation_h = this->attribute->dilation()[0]; int dilation_w = this->attribute->dilation()[1]; DEBUG_INFO(OP, "perform OpDepthwiseConv2d, input.shape=[%d,%d,%d,%d], weight.shape=[%d,%d,%d,%d], " "output.shape=[%d,%d,%d,%d], stride=[%d,%d], dilation=[%d,%d], padding=[%d,%d,%d,%d]", in_batch, in_height, in_width, in_channels, f_height, f_width, f_in_channels, f_multiplier, out_batch, out_height, out_width, out_channels, stride_h, stride_w, dilation_h, dilation_w, padding_top, padding_bottom, padding_left, padding_right); Eigen::array, 4> padding; padding[0] = std::make_pair(0, 0); padding[1] = std::make_pair(padding_top, padding_bottom); padding[2] = std::make_pair(padding_left, padding_right); padding[3] = std::make_pair(0, 0); TIn input_val = this->input->getTensor(); TWeight weight_val = this->weight->getTensor(); if (this->qinfo) { input_val = input_val - (InEigenType)this->qinfo->input_zp(); weight_val = weight_val - (WeightEigenType)this->qinfo->weight_zp(); } ETensor4 input_padded = input_val.pad(padding); // GEMM doesn't fit well with DepthwiseConv2d // 1. use extract_image_patches() to handle stride/dilation/padding // 2. perform direct convolution // 1. extract_image_patches() output [N, KH, KW, OH * OW, IC] ETensor5 input_extract_patches = input_padded.extract_image_patches( f_height, f_width, stride_h, stride_w, dilation_h, dilation_w, Eigen::PADDING_VALID); Eigen::array reshape_dim; reshape_dim.fill(1); reshape_dim[3] = b_out_channels; Eigen::array bcast; bcast[0] = out_batch; bcast[1] = out_height; bcast[2] = out_width; bcast[3] = 1; // initialize with bias this->output->getTensor() = this->bias->getTensor().reshape(reshape_dim).broadcast(bcast); // 2. direct depthwise convolution for (int ob = 0; ob < out_batch; ob++) { for (int oh = 0; oh < out_height; oh++) { for (int ow = 0; ow < out_width; ow++) { for (int ic = 0; ic < in_channels; ic++) { for (int cm = 0; cm < f_multiplier; cm++) { for (int fh = 0; fh < f_height; fh++) { for (int fw = 0; fw < f_width; fw++) { this->output->getTensor()(ob, oh, ow, ic * f_multiplier + cm) += ((AccEigenType)input_extract_patches(ob, fh, fw, ow * out_height + oh, ic) * (AccEigenType)weight_val(fh, fw, ic, cm)); } } } } } } } if (AccDtype == DType_INT48) { this->output->getTensor() = this->output->getTensor().cwiseMax((AccEigenType)AccQMin); this->output->getTensor() = this->output->getTensor().cwiseMin((AccEigenType)AccQMax); } return GraphNode::eval(); } template OpFullyConnected::OpFullyConnected(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_FULLY_CONNECTED, id_) { setRequiredOperands(3, 1); setRequiredRank(2); INIT_QINFO(Conv); } template OpFullyConnected::~OpFullyConnected() { if (qinfo) delete qinfo; } template int OpFullyConnected::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(inputs[1]) || validateRequiredRank(outputs[0])) { return 1; } input = dynamic_cast*>(inputs[0]); weight = dynamic_cast*>(inputs[1]); bias = dynamic_cast*>(inputs[2]); if (input->getShape()[1] != weight->getShape()[1]) { printNodeValidationError("OpFullyConnected operator input.shape[1] should match weight.shape[1]"); return 1; } if (weight->getShape()[0] != bias->getShape()[0]) { printNodeValidationError("OpFullyConnected operator bias.shape[0] should match weight.shape[0]"); return 1; } output = dynamic_cast*>(outputs[0]); return 0; } template int OpFullyConnected::eval() { typedef Eigen::Tensor::DimensionPair DimPair; Eigen::array dims{ { DimPair(1, 0) } }; Eigen::array weight_shuffle{ 1, 0 }; Eigen::array bias_reshape; bias_reshape[0] = 1; bias_reshape[1] = this->bias->getShape()[0]; Eigen::array bias_bcast; bias_bcast[0] = this->input->getShape()[0]; bias_bcast[1] = 1; TIn input_val = this->input->getTensor(); TWeight weight_val = this->weight->getTensor().shuffle(weight_shuffle); if (this->qinfo) { input_val = input_val - (InEigenType)this->qinfo->input_zp(); weight_val = weight_val - (WeightEigenType)this->qinfo->weight_zp(); } this->output->getTensor() = input_val.template cast().contract(weight_val.template cast(), dims) + this->bias->getTensor().reshape(bias_reshape).broadcast(bias_bcast); if (AccDtype == DType_INT48) { this->output->getTensor() = this->output->getTensor().cwiseMax((AccEigenType)AccQMin); this->output->getTensor() = this->output->getTensor().cwiseMin((AccEigenType)AccQMax); } return GraphNode::eval(); } template OpMatMul::OpMatMul(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_MATMUL, id_) { setRequiredOperands(2, 1); setRequiredRank(2); INIT_QINFO(MatMul); } template OpMatMul::~OpMatMul() { if (qinfo) delete qinfo; } template int OpMatMul::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(inputs[1]) || validateRequiredRank(outputs[0])) { return 1; } a = dynamic_cast*>(inputs[0]); b = dynamic_cast*>(inputs[1]); if (a->getShape()[1] != b->getShape()[0]) { printNodeValidationError("OpMatMul operator a.shape[1] should match b.shape[0]"); return 1; } c = dynamic_cast*>(outputs[0]); return 0; } template int OpMatMul::eval() { typedef Eigen::Tensor::DimensionPair DimPair; Eigen::array dims{ { DimPair(1, 0) } }; TIn a_val = this->a->getTensor(); TIn b_val = this->b->getTensor(); if (this->qinfo) { a_val = a_val - (InEigenType)this->qinfo->a_zp(); b_val = b_val - (InEigenType)this->qinfo->b_zp(); } this->c->getTensor() = a_val.template cast().contract(b_val.template cast(), dims); if (AccDtype == DType_INT48) { this->c->getTensor() = this->c->getTensor().cwiseMax((AccEigenType)AccQMin); this->c->getTensor() = this->c->getTensor().cwiseMin((AccEigenType)AccQMax); } return GraphNode::eval(); } template OpMaxPool2d::OpMaxPool2d(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_MAX_POOL2D, id_) { setRequiredOperands(1, 1); setRequiredRank(4); INIT_ATTRIBUTE(Pool2d); } template OpMaxPool2d::~OpMaxPool2d() { if (attribute) delete attribute; } template int OpMaxPool2d::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(outputs[0])) { return 1; } if (inputs[0]->matchType(*outputs[0])) { printNodeValidationError("OpMaxPool2d: input and output tensor type mismatch"); return 1; } in = dynamic_cast*>(inputs[0]); out = dynamic_cast*>(outputs[0]); if (!in->hasFormat(Format_NHWC)) { printNodeValidationError("OpMaxPool2d: unsupported tensor format"); return 1; } if (attribute->padding().size() != 4) { printNodeValidationError("OpMaxPool2d: illegal size for attribute padding"); return 1; } if (attribute->kernel().size() != 2) { printNodeValidationError("OpMaxPool2d: illegal size for attribute kernel"); return 1; } if (attribute->stride().size() != 2) { printNodeValidationError("OpMaxPool2d: illegal size for attribute stride"); return 1; } return 0; } template int OpMaxPool2d::eval() { int in_batch = this->in->getShape()[0]; int in_height = this->in->getShape()[1]; int in_width = this->in->getShape()[2]; int in_channels = this->in->getShape()[3]; int out_batch = this->out->getShape()[0]; int out_height = this->out->getShape()[1]; int out_width = this->out->getShape()[2]; int out_channels = this->out->getShape()[3]; ASSERT_MSG_NODE(in_batch == out_batch, "OpMaxPool2d: tensor batch mismatch %d != %d", in_batch, out_batch); int padding_top = this->attribute->padding()[0]; int padding_bottom = this->attribute->padding()[1]; int padding_left = this->attribute->padding()[2]; int padding_right = this->attribute->padding()[3]; int kernel_h = this->attribute->kernel()[0]; int kernel_w = this->attribute->kernel()[1]; int stride_h = this->attribute->stride()[0]; int stride_w = this->attribute->stride()[1]; DEBUG_INFO(OP, "perform MaxPool2d, input.shape=[%d,%d,%d,%d], output.shape=[%d,%d,%d,%d], kernel=[%d,%d], " "stride=[%d,%d], padding=[%d,%d,%d,%d]", in_batch, in_height, in_width, in_channels, out_batch, out_height, out_width, out_channels, kernel_h, kernel_w, stride_h, stride_w, padding_top, padding_bottom, padding_left, padding_right); Eigen::array im2col_input_dims; im2col_input_dims[0] = kernel_h * kernel_w; im2col_input_dims[1] = out_batch * out_height * out_width * out_channels; Eigen::array col2im_output_dims; col2im_output_dims[0] = out_batch; col2im_output_dims[1] = out_height; col2im_output_dims[2] = out_width; col2im_output_dims[3] = out_channels; Eigen::array, 4> padding; padding[0] = std::make_pair(0, 0); padding[1] = std::make_pair(padding_top, padding_bottom); padding[2] = std::make_pair(padding_left, padding_right); padding[3] = std::make_pair(0, 0); ETensor4 input_padded = this->in->getTensor().pad(padding, std::numeric_limits::lowest()); // extract_image_patches() output [N, KH, KW, H * W, C] // transpose to [KH, KW, N, H * W, C] // reshape to [KH * KW, N * H * W * C] // // Set the padding value to be the most negative value that can be // represented by the datatype to ensure that any padding values will be equal // to or smaller than the actual maximum in the KH x KW patch. ETensor2 input_extract_patches = input_padded .extract_image_patches(kernel_h, kernel_w, stride_h, stride_w, 1, 1, Eigen::PADDING_VALID, std::numeric_limits::lowest()) .shuffle(Eigen::array{ 1, 2, 0, 3, 4 }) .reshape(im2col_input_dims); // Get the maximum of the KHxHW patches along axis 0 Eigen::Tensor tensor_argmax = input_extract_patches.argmax(0); // 1D result with [N * H * W * C] ETensor1 out_1d(this->out->getElementCount()); // index input_patches with argmax array should give the result for (size_t i = 0; i < this->out->getElementCount(); i++) { out_1d(i) = (OutEigenType)input_extract_patches(tensor_argmax(i), i); } // reshape result to [N, H, W, C] this->out->getTensor() = out_1d.reshape(col2im_output_dims); return GraphNode::eval(); } template OpTransposeConv2d::OpTransposeConv2d(TosaAttributeBase* attribute_, TosaQuantInfoBase* qinfo_, uint64_t id_) : GraphNode(Op_TRANSPOSE_CONV2D, id_) { setRequiredOperands(3, 1); setRequiredRank(4); INIT_ATTRIBUTE(TransposeConv2d); INIT_QINFO(Conv); } template OpTransposeConv2d::~OpTransposeConv2d() { if (attribute) delete attribute; if (qinfo) delete qinfo; } template int OpTransposeConv2d::checkTensorAttributes() { if (validateRequiredOperands()) return 1; if (validateRequiredRank(inputs[0]) || validateRequiredRank(inputs[1]) || validateRequiredRank(outputs[0])) { return 1; } if (inputs[1]->getIsConst() == 0) { printNodeValidationError("OpTransposeConv2d: weight tensor is not const typed"); } input = dynamic_cast*>(inputs[0]); weight = dynamic_cast*>(inputs[1]); bias = dynamic_cast*>(inputs[2]); output = dynamic_cast*>(outputs[0]); if (!input->hasFormat(Format_NHWC)) { printNodeValidationError("OpTransposeConv2d: unsupported input tensor format"); return 1; } if (!weight->hasFormat(Format_OHWI)) { printNodeValidationError("OpTransposeConv2d: unsupported weight tensor format"); return 1; } if (attribute->outpad().size() != 2) { printNodeValidationError("OpTransposeConv2d: illegal size for attribute outpad"); return 1; } if (attribute->stride().size() != 2) { printNodeValidationError("OpTransposeConv2d: illegal size for attribute stride"); return 1; } if (attribute->dilation().size() != 2) { printNodeValidationError("OpTransposeConv2d: illegal size for attribute dilation"); return 1; } if (attribute->output_shape().size() != 4) { printNodeValidationError("OpTransposeConv2d: illegal size for attribute output_shape"); return 1; } for (int d = 0; d < 4; d++) { if (attribute->output_shape()[d] != this->output->getShape()[d]) { printNodeValidationError("OpTransposeConv2d: illegal size for attribute output_shape"); return 1; } } return 0; } template int OpTransposeConv2d::eval() { int in_batch = this->input->getShape()[0]; int in_height = this->input->getShape()[1]; int in_width = this->input->getShape()[2]; int in_channels = this->input->getShape()[3]; int f_out_channels = this->weight->getShape()[0]; int f_height = this->weight->getShape()[1]; int f_width = this->weight->getShape()[2]; int f_in_channels = this->weight->getShape()[3]; int b_out_channels = this->bias->getShape()[0]; int out_batch = this->output->getShape()[0]; int out_height = this->output->getShape()[1]; int out_width = this->output->getShape()[2]; int out_channels = this->output->getShape()[3]; int padding_top = this->attribute->outpad()[0]; int padding_left = this->attribute->outpad()[1]; int stride_h = this->attribute->stride()[0]; int stride_w = this->attribute->stride()[1]; int dilation_h = this->attribute->dilation()[0]; int dilation_w = this->attribute->dilation()[1]; ASSERT_MSG_NODE(in_batch == out_batch, "OpTransposeConv2d: tensor batch mismatch %d != %d", in_batch, out_batch); ASSERT_MSG_NODE(f_in_channels == in_channels, "OpTransposeConv2d: tensor input channel mismatch %d != %d", f_in_channels, in_channels); ASSERT_MSG_NODE(f_out_channels == out_channels, "OpTransposeConv2d: tensor output channel mismatch %d != %d", f_out_channels, out_channels); ASSERT_MSG_NODE(b_out_channels == out_channels, "OpDepthwiseConv2d: tensor b_out_channels mismatch %d != %d", b_out_channels, out_channels); DEBUG_INFO(OP, "perform OpTransposeConv2d, input.shape=[%d,%d,%d,%d], weight.shape=[%d,%d,%d,%d], " "output.shape=[%d,%d,%d,%d], stride=[%d,%d], dilation=[%d,%d], padding=[%d,%d]", in_batch, in_height, in_width, in_channels, f_height, f_width, f_out_channels, f_in_channels, out_batch, out_height, out_width, out_channels, stride_h, stride_w, dilation_h, dilation_w, padding_top, padding_left); TIn input_val = this->input->getTensor(); TWeight weight_val = this->weight->getTensor(); if (this->qinfo) { input_val = input_val - (InEigenType)this->qinfo->input_zp(); weight_val = weight_val - (WeightEigenType)this->qinfo->weight_zp(); } Eigen::array reshape_dim; reshape_dim.fill(1); reshape_dim[3] = b_out_channels; Eigen::array bcast; bcast[0] = out_batch; bcast[1] = out_height; bcast[2] = out_width; bcast[3] = 1; // initialize with bias this->output->getTensor() = this->bias->getTensor().reshape(reshape_dim).broadcast(bcast); int out_x_origin, out_y_origin; int out_x, out_y; // reference implementation from: tensorflow/tensorflow/lite/kernels/internal/reference/reference_ops.h for (int ob = 0; ob < out_batch; ob++) { for (int ih = 0; ih < in_height; ih++) { for (int iw = 0; iw < in_width; iw++) { out_x_origin = iw * stride_w - padding_left; out_y_origin = ih * stride_h - padding_top; for (int ic = 0; ic < in_channels; ic++) { for (int fh = 0; fh < f_height; fh++) { for (int fw = 0; fw < f_width; fw++) { out_x = out_x_origin + fw * dilation_w; out_y = out_y_origin + fh * dilation_h; for (int oc = 0; oc < out_channels; oc++) { if ((out_x >= 0 && out_x < out_width) && (out_y >= 0 && out_y < out_height)) { this->output->getTensor()(ob, out_y, out_x, oc) += ((AccEigenType)input_val(ob, ih, iw, ic) * (AccEigenType)weight_val(oc, fh, fw, ic)); } } } } } } } } if (AccDtype == DType_INT48) { this->output->getTensor() = this->output->getTensor().cwiseMax((AccEigenType)AccQMin); this->output->getTensor() = this->output->getTensor().cwiseMin((AccEigenType)AccQMax); } return GraphNode::eval(); } // template explicit instantiation DEF_INSTANTIATE_RANK1_6_ONE_RANK_ONE_TYPE(OpArgMax, FLOAT); DEF_INSTANTIATE_RANK1_6_ONE_RANK_ONE_TYPE(OpArgMax, AINT8); DEF_INSTANTIATE_RANK1_6_ONE_RANK_ONE_TYPE(OpArgMax, INT16); DEF_INSTANTIATE_ONE_TYPE(OpAvgPool2d, FLOAT) DEF_INSTANTIATE_ONE_TYPE(OpAvgPool2d, AINT8) DEF_INSTANTIATE_ONE_TYPE(OpAvgPool2d, INT16) DEF_INSTANTIATE_TWO_TYPE(OpConv2d, FLOAT, FLOAT); DEF_INSTANTIATE_TWO_TYPE(OpConv2d, AINT8, INT4); DEF_INSTANTIATE_TWO_TYPE(OpConv2d, AINT8, INT8); DEF_INSTANTIATE_TWO_TYPE(OpConv2d, AINT8, AINT8); DEF_INSTANTIATE_TWO_TYPE(OpConv2d, INT16, INT8); DEF_INSTANTIATE_TWO_TYPE(OpDepthwiseConv2d, FLOAT, FLOAT); DEF_INSTANTIATE_TWO_TYPE(OpDepthwiseConv2d, AINT8, INT4); DEF_INSTANTIATE_TWO_TYPE(OpDepthwiseConv2d, AINT8, INT8); DEF_INSTANTIATE_TWO_TYPE(OpDepthwiseConv2d, AINT8, AINT8); DEF_INSTANTIATE_TWO_TYPE(OpDepthwiseConv2d, INT16, INT8); DEF_INSTANTIATE_TWO_TYPE(OpFullyConnected, FLOAT, FLOAT); DEF_INSTANTIATE_TWO_TYPE(OpFullyConnected, AINT8, INT4); DEF_INSTANTIATE_TWO_TYPE(OpFullyConnected, AINT8, INT8); DEF_INSTANTIATE_TWO_TYPE(OpFullyConnected, AINT8, AINT8); DEF_INSTANTIATE_TWO_TYPE(OpFullyConnected, INT16, INT8); DEF_INSTANTIATE_ONE_TYPE(OpMatMul, AINT8); DEF_INSTANTIATE_ONE_TYPE(OpMatMul, INT16); DEF_INSTANTIATE_ONE_TYPE(OpMatMul, FLOAT); DEF_INSTANTIATE_ONE_TYPE(OpMaxPool2d, FLOAT); DEF_INSTANTIATE_ONE_TYPE(OpMaxPool2d, AINT8); DEF_INSTANTIATE_ONE_TYPE(OpMaxPool2d, INT16); DEF_INSTANTIATE_TWO_TYPE(OpTransposeConv2d, FLOAT, FLOAT); DEF_INSTANTIATE_TWO_TYPE(OpTransposeConv2d, AINT8, INT4); DEF_INSTANTIATE_TWO_TYPE(OpTransposeConv2d, AINT8, INT8); DEF_INSTANTIATE_TWO_TYPE(OpTransposeConv2d, AINT8, AINT8); DEF_INSTANTIATE_TWO_TYPE(OpTransposeConv2d, INT16, INT8);